Supplementary Online Content

Yang B-Y, Hu L-W, Jalaludin B, et al. Association between residential greenness, cardiometabolic disorders, and cardiovascular disease among adults in China. *JAMA Netw Open*. 2020;3(9):e2017507. doi:10.1001/jamanetworkopen.2020.17507

eTable 1. Previous Human Epidemiological Studies of Greenness Exposure and CVD Mortality and Morbidity

eTable 2. Characteristics of Study Participants With and Without Blood Sampling

eTable 3. Main Characteristics of Study Participants With and Without CVD

eTable 4. Distributions and Intercorrelations (Spearman Correlation Coefficients) of NDVI and SAVI

eTable 5. Sensitivity Analyses of Associations Between Greenness Measures and CVD Prevalence Using Different Adjusted Models

eTable 6. Associations Between Quartiles of Greenness Measures and CVD Prevalence

eTable 7. Associations of Greenness With CVD Prevalence by Age, Sex, and Annual Household Income

eTable 8. Mediation of Association Between Greenness and CVD Prevalence by Combined Cardiometabolic Disorders

eFigure 1. Directed Acyclic Graph for the Association Between Greenness and CVD

eFigure 2. Directed Acyclic Graph for the Association Between Greenness and Cardiometabolic Disorders

eFigure 3. Directed Acyclic Graph for the Association Between Cardiometabolic Disorders and CVD

eFigure 4. Three-Way Decomposition Encompassing Decompositions for Both Mediation and Interaction

eFigure 5. Dose-Response Curves for Greenness Levels With CVD Prevalence

eReferences

This supplementary material has been provided by the authors to give readers additional information about their work.

Author (Year)	Sample size	Study design	Study setting	Exposure	Outcome	Main findings
Hu et al. (2008) ¹	Not reported	Cross-sectional	USA	Distance to and	Stroke	High risk of stroke mortality was
				frequency of visiting	mortality	found in areas with low level of
				green space;		exposure to green space
				satellite-derived		
		_		greenness		
Mitchell et al. (2008) ²	40,813,236	Cross-sectional	England	Percentage of	CVD mortality	Lower mortality incidence rate ratio
				greenspace		was associated with higher levels of
				_		green space
Mass et al. (2009) ³	345,143	Cross-sectional	Dutch	Percentage of green	CVD	More green space within a 1 km
				space	prevalence	radius around the postal code
						coordinates was associated with
						lower odds of CVD prevalence
Richardson et al.	1,546,405	Ecological	New Zealand	Percent coverage of	CVD mortality	No significant association was
(2010) ⁴				green space types		observed for usable or total green
						space with CVD mortality
Dominguez-Berjon et al.	5,423,384	Cross-sectional	Spain	Dearth of green	CVD mortality	Lack of green space was associated
(2010) ⁵				space (surveyed		with higher risk of death due to
				using questionnaire)		ischemic heart disease in men, and
						with death due to cerebrovascular
0 11 1 (0040)						disease in both men and women
Coutts et al. (2010)°	Not reported	Cross-sectional	USA	Amount of	CVD mortality	The amount of greenspace within
				greenspace within		defined distances of census tract in
				defined distance		each county was associated with
	00.0					CVD mortality
Richardson et al.	28.6 million	Cross-sectional	UK	Proportion of	CVD mortality	CVD mortality rates decreased with
(2010)'				greenspace by area		increasing green space only in
	40		1104	D		males.
Richardson et al.	43 million	Cross-sectional	USA	Population weighted	CVD mortality	No association was observed
(2012)				green space		between green space coverage and
	44.404	One of the state	Australia	coverage		
Pereira et al. (2012) ⁹	11,404	Cross-sectional	Australia	ועטא		Levels and variability of greenness
					prevalence	were inversely associated with

eTable 1. Previous Human Epidemiological Studies of Greenness Exposure and CVD Mortality and Morbidity

						prevalence of coronary heart
						disease and stroke.
Donovan et al. (2013) ¹⁰	21,080	Natural	USA	The emerald ash	CVD mortality	Loss of trees (i.e., reduction in
		experiment		borer, an invasive		greenness) to the emerald ash borer
				forest pest		Increased mortality related to
	0.157				0.0	cardiovascular illness.
Richardson et al.	8157	Cross-sectional	New Zealand	Proportion of green	CVD	CVD risk was reduced in all
(2013)''				space within each	prevalence	neighborhoods with >15%
				census area unit		greenspace availability (e.g. OR
						0.80, 95% CI, 0.64-0.99 for those
						with 33-70% green space).
lamosiunas et al.	5112	Cohort	Lithuania	Distance to the	CVD incidence	Distance to green space was
(2014) ¹²				nearest green space	and mortality	significantly associated with fatal
	105 101					and non-fatal CVD
	165,424	Cross-sectional	England	Percentage of	CVD mortality	Decreased premature circulatory
(2014)13				greenspace		mortality was found in greener
						areas, especially in those most
$\mathbf{M}(\mathbf{H}_{\mathbf{a}}, \mathbf{a}, \mathbf{b}) = (2014)^{14}$	4760	Cabart				Compared with stroke notionts living
1 vilker et al. $(2014)^{14}$	1763	Conort	USA	NDVI	CVD monality	compared with stroke patients living
						In the lowest quartile of green space,
						those living in the highest quartile of
\mathbf{D}	>100.000	Cross sectional	Frederid	Dranartian of sity		green space had lower risk of dealin
Bixby et al. $(2015)^{10}$	2100,000	Cross-sectional	England	Proportion of city	CVD monality	No significant association was
				area covered by		observed between green space
Chum at al. (2015)16	0444	Cross sectional	Canada	green land		proportion and CVD mortality
Chum et al. (2015) ¹⁰	2411	Cross-sectional	Canada	Proportion of parks		No significant association was
					prevalence	observed between proportion of
Densition at al. $(2015)^{17}$	156 146	Cohort			CVD incidence	Women living in a county infected
Donovan et al. (2015).	150,140	CONOIL	USA	herer		with omorald ash borar had an
				borei		increased rick of CVD
1000000000000000000000000000000000000	109 630	Cohort	1100		CVD mortality	Higher levels of groop vegetation
James et al. (2010)	100,030	CONOIL	USA	NDVI		were associated with decreased
						mortality
Massa et al. (2016) ¹⁹	1333	Cross-sectional	Brazil	Total green area per	СИЛ	In comparison to participants living
	1000	UIU33-3CUIUIIAI	שומבוו	square meter	nrevalence	with the low green space levels
				Square meter	Prevalence	those in higher levels were

						significantly less likely to report having a CVD.
Ngom et al. (2016) ²⁰	3,920,000	Cross-sectional	Canada	The nearest distance to green spaces	CVD prevalence	Among the various green space types, only green spaces with sport facilities showed a significant relationship with diabetes and cerebrovascular disease morbidity
Picavet et al. (2016) ²¹	12,546	Cross-sectional	Netherlands	Percentage of green space	CVD prevalence	No significant association was observed between percentage of green space and CVD prevalence
Vienneau et al. (2017) ²²	4.2 million	Cohort	Switzerland	NDVI; land use green exposure	CVD mortality	Higher NDVI levels were associated with lower CVD mortality
Wang et al. (2017) ²³	3544	Cohort	China	NDVI	CVD mortality	A 10% increase in coverage of green space was significantly associated with a reduction in all-cause mortality
Yitshak-Sade et al.(2017) ²⁴	23,110	Cross-sectional	Israel	NDVI	CVD prevalence	NDVI was associated with myocardial infarction
Crouse et al. (2017) ²⁵	1,265,000	Cohort	Canada	NDVI	CVD prevalence and mortality	Per 0.15-unit increase in NDVI-250m was significantly associated with 0.960 (95% CI: 0.943-0.976), 0.949 (95% CI: 0.927-0.972), and 1.042 (95% CI: 0.963-1.047)-fold risk of cardiovascular disease, ischemic heart disease, and cerebrovascular disease, respectively.
Jia et al. (2018) ²⁶	1944	Cross-sectional	China	NDVI	CVD prevalence	Compared to the participants with low NDVI level, participants with moderate to high levels of NDVI had a 75% and 45% reduced odds of coronary heart disease and stroke, respectively
Silveira et al. (2018) ²⁷	6,230,446	Cross-sectional	Brazil	NDVI	CVD mortality	Mortality rates for CVD are inversely associated with greenness exposure
Astell-Burt et al. (2019) ²⁸	46,786	Cohort	Australia	Percentage of green space and tree canopy	CVD incidence	Larger percentage of tree canopy, but not green space, was associated with lower odds of incident CVD.

Orioli et al. (2019) ²⁹	1,263,721	Cohort	Italy	NDVI and LAI	CVD mortality	Residential greenness, expressed as NDVI and LAI, was inversely associated with stroke incidence and cardiovascular mortality.
Kim et al. (2019) ³⁰	73 districts with an average population per district of 317,869	Time-series	Korea	NDVI	CVD mortality	High level of greenness was associated with decreased risk of CVD-related mortality
Servadio et al. (2019) ³¹	169 census tracts	Cross-sectional	USA	Park access and tree canopy cover	CVD prevalence	Greater percent tree canopy cover and green space access were associated with higher prevalence of coronary heart disease and stroke.
Wang et al. (2019) ³²	249,405	Cross-sectional	USA	NDVI	CVD prevalence	Compared with the lowest tertile of greenness, the highest tertile of greenness was associated with reduced odds of acute myocardial infarction by 25%, ischaemic heart disease by 20%, heart failure by 16%, and atrial fibrillation by 6%. Additional adjustment for biological risk factors attenuated the associations.
Zijlema et al. (2019) ³³	9218	Cohort	Australia	NDVI, number and size of parks and nature space	CVD mortality	Access to natural spaces was associated with decreased mortality

Abbreviations: CI, confidence interval; CVD, cardiovascular disease; LAI, the leaf area index; NDVI, the normalized difference vegetation index; NP, not reported; OR, odds ratio; USA, the United States of America.

Characteristic	Participants with blood sampling (n = 15 477)	Participants without blood sampling (n = 9368)
Age (years, mean ± SD)	45.0 ± 13.5	45.7 ± 13.0
Gender, No. (%)		
Men	8156 (52.7)	4505 (48.1)
Women	7321 (47.3)	4863 (51.9)
Ethnicity, No. (%)		
Han	14 554 (94.0)	8916 (95.2)
Others	923 (6.0)	452 (4.8)
Education, No. (%)		
≤ 9 years	11 898 (76.9)	7472 (79.8)
> 9 years	3579 (23.1)	1896 (20.2)
Annual household income, No. (%)		
≤10 000 Yuan	3144 (20.3)	2617 (27.9)
>10 000 Yuan	12 333 (79.7)	6751 (72.1)

eTable 2. Characteristics of Study Participants With and Without Blood Sampling

Abbreviations: SD, standard deviation.

Table 3. Main Characteristics of Stu	ly Participants With	n and Without CVD ($(N = 24\ 845)$
--------------------------------------	----------------------	---------------------	-----------------

Characteristic	CVD (n = 1006) ^a	Non-CVD (n = 23 839)	P value
Age, No.(%)		, , , , , , , , , , , , , , , , , , , ,	<.001
<50 years	257 (25.5)	15 246 (64.0)	
≥50 years	749 (75.5)	8593 (36.0)	
Gender, No.(%)			<.001
Men	743 (73.9)	11 918 (50.0)	
Women	263 (26.1)	11 921 (50.0)	
Ethnicity, No.(%)			<.001
Han	980 (97.4)	22 490 (94.3)	
Others	26 (2.6)	1349 (5.7)	
Education, No.(%)			<.001
≤ 9 years	836 (93.1)	18 534 (77.8)	
> 9 years	170 (16.9)	5305 (22.3)	
Annual household income, No.(%)			<.001
≤10 000 Yuan	366 (36.4)	5395 (22.6)	
>10 000 Yuan	640 (63.6)	18 444 (77.4)	

Abbreviations: CVD, cardiovascular disease. ^aCVD patients included 417 participants with heart disease, 529 with stroke, and 60 with both.

eTable 4. Distributions and Intercorrelations (Spearman Correlation Coefficients) of NDVI and SAVI

	Median (IQR)	Min	Max	NDVI _{500 m}	NDVI 1000 m	SAVI _{500 m}	SAVI 1000 m
NDVI500 -m	0.29 (0.17)	0.18	0.80	1	0.90 ^a	0.98ª	0.88ª
NDVI1000 -m	0.31 (0.15)	0.20	0.75		1	0.88ª	0.96ª
SAVI500-m	0.16 (0.11)	0.10	0.48			1	0.90ª
SAVI1000 -m	0.17 (0.10)	0.11	0.45				1

Abbreviations: IQR, interquartile range (computed by subtracting the 1st quartile from the 3rd quartile); max, maximum; min, minimum; NDVI, normalized difference vegetation index; SAVI, soil adjusted vegetation index. ^aStatistically significant correlation (P < .05).

eTable 5. Sensitivity Analyses of Associations Between Greenness Measures and CVD Prevalence Using Different Adjusted Models (N = 24 845)^a

	NDVI _{500-m}		SAVI _{500-m}	
Model	OR (95% CI)	P value	OR (95% CI)	P value
Main model ^b	0.73 (0.65, 0.83)	<.0001	0.74 (0.66, 0.84)	<.0001
Main model ^b + alcohol drinking	0.74 (0.65, 0.83)	<.0001	0.74 (0.66, 0.84)	<.0001
Main model ^b + cigarette smoking	0.73 (0.64, 0.86)	<.0001	0.73 (0.65, 0.83)	<.0001
Main model ^b + low-calorie and	0.73 (0.65, 0.82)	<.0001	0.74 (0.65, 0.83)	<.0001
low-fat diet				
Main model ^b + sugar-sweetened	0.73 (0.64, 0.82)	<.0001	0.73 (0.65, 0.83)	<.0001
soft drinks				
Main model ^b + family history of CVD	0.73 (0.65, 0.82)	<.0001	0.74 (0.65, 0.83)	<.0001
Model 1 ^c	0.71 (0.63, 0.80)	<.0001	0.72 (0.64, 0.81)	<.0001
Model 2 ^d	0.71 (0.63, 0.80)	<.0001	0.71 (0.63, 0.81)	<.0001
Model 3 ^e	0.70 (0.62, 0.79)	<.0001	0.70 (0.62, 0.79)	<.0001

Abbreviations: CI, confidence interval; CVD, cardiovascular disease; NDVI, normalized difference vegetation index; OR, odds ratio; SAVI, soil adjusted vegetation index

^aGreenness per IQR Increase in NDVI_{500-m} and SAVI_{500-m}. ^bAdjusted for age, gender, ethnicity, household income, education, district-level of gross domestic product, physical activity, and air pollution ($PM_{2.5}$).

^cAdjusted for age, gender, ethnicity, and community size ^dAdjusted for age, gender, ethnicity, community size, education, household income, and district-level of gross domestic product eAdjusted for age, gender, ethnicity, community size, education, household income, and district-level of gross domestic product, smoking status, physical activity level, low-calorie and low-fat diet, sugar-sweetened soft drinks, alcohol drinking, and family history of CVD.

eTable 6. Associations Between Quartiles of Greenness Measures and CVD Prevalence (N = 24 845)

Greenness measure	Adjusted OR (95% CI) ^a	<i>P</i> value for trend
NDVI _{500-m}		<.0001
Q1	Referent	
Q2	1.03 (0.86, 1.23)	
Q ₃	0.66 (0.55, 0.80)	
Q4	0.63 (0.50, 0.79)	
SAVI _{500-m}		<.0001
Q ₁	Referent	
Q2	0.72 (0.61, 0.86)	
Q ₃	0.55 (0.45, 0.67)	
Q4	0.58 (0.48, 0.71)	

Abbreviations: CI, confidence interval; CVD, cardiovascular disease; NDVI, normalized difference vegetation index; OR, odds ratio; SAVI, soil adjusted vegetation index

^aAdjusted for age, gender, ethnicity, household income, education, district-level of gross domestic product, physical activity, and air pollution.

eTable 7. Associations of Greenness With CVD Prevalence by Age, Sex, and Annual Household Income (N = 24 845)^a

	NDVI _{500-m}		SAVI _{500-m}	
Subgroup	OR (95% CI) ^b	P interaction	OR (95% CI) ^b	P interaction
Age		.39		.41
<50 years	0.71 (0.58 to 0.86)		0.71 (0.58 to 0.87)	
≥50 years	0.78 (0.68 to 0.90)		0.79 (0.68 to 0.91)	
Gender		.83		.81
Men	0.76 (0.66 to 0.88)		0.77 (0.66 to 0.89)	
Women	0.74 (0.61 to 0.90)		0.75 (0.61 to 0.91)	
Annual household income		.32		.33
<10 000 Yuan	0.82 (0.66 to 1.01)		0.83 (0.67 to 1.02)	
≥10 000 Yuan	0.73 (0.63 to 0.83)		0.73 (0.64 to 0.84)	
Education		.06		.09
<9 years	0.79 (0.69 to 0.90)		0.80 (0.70 to 0.91)	
≥9 years	0.60 (0.45 to 0.79)		0.61 (0.46 to 0.81)	

Abbreviations: CI, confidence interval; CVD, cardiovascular disease; IQR, interquartile range; NDVI, normalized difference vegetation index; OR, odds ratio; SAVI, soil adjusted vegetation index.

^aGreenness per IQR in in NDVI_{500-m} and NDVI_{500-m}. ^bAdjusted for age, sex, ethnicity, household income, education, district-level of gross domestic product, physical activity, and air pollution ($PM_{2.5}$), except the variable that were stratified.

eTable 8. Mediation of Association Between Greenness and CVD Prevalence by Combined Cardiometabolic Disorders^a

	Indirect effect		Direct effect		
	% (95% CI) ^b	P value	% (95% CI) ^b	P value	
NDVI _{500-m}	21.2 (6.4 to 35.9)	.004	78.8 (64.1 to 93.4)	<.001	
SAVI _{500-m}	21.3 (7.4 to 35.2)	.003	78.7 (64.8 to 92.6)	<.001	

Abbreviations: CI, confidence interval; CVD, cardiovascular disease; NDVI, normalized difference vegetation index; SAVI, soil adjusted vegetation index.

^aCardiovascular disorders included hypertension, diabetes, overweight/obesity, hypercholesterolemia, hypertriglyceridemia, and high LDL-C, which are individually significantly mediated the association between greenness and CVD prevalence. ^bAdjusted for age, gender, education, ethnicity, household income, physical activity, district-level gross domestic product, and air

pollution (PM_{2.5}).

eFigure 1. Directed Acyclic Graph for the Association Between Greenness and CVD

Created with the help of DAGitty.net (www.dagitty.net). Minimally sufficient adjustment set: age, sex, ethnicity, education, household income, physical activity, district-level gross domestic product, and air pollution (PM_{2.5}).

Created with the help of DAGitty.net (www.dagitty.net). Minimally sufficient adjustment set: age, sex, ethnicity, education, household income, physical activity, district-level product, and air pollution (PM_{2.5}).

eFigure 3. Directed Acyclic Graph for the Association Between Cardiometabolic Disorders and CVD

Created with the help of DAGitty.net (www.dagitty.net). Minimally sufficient adjustment set: age, sex, ethnicity, education, household income, physical activity, district-level gross domestic product, air pollution (PM_{2.5}), alcohol drinking, cigarette smoking, controlled diet with low calorie and low fat, sugar-sweetened soft drink, and family history of cardiovascular diseases.

eFigure 4. Three-Way Decomposition Encompassing Decompositions for Both Mediation and Interaction

eFigure 5. Dose-Response Curves for Greenness Levels With CVD Prevalence

eReferences

- 1. Hu Z, Liebens J, Rao KR (2008) Linking stroke mortality with air pollution, income, and greenness in northwest Florida: an ecological geographical study. Int J Health Geogr 7: 20.
- 2. Mitchell R, Popham F (2008) Effect of exposure to natural environment on health inequalities: an observational population study. Lancet 372: 1655-1660.
- 3. Maas J, Verheij RA, de Vries S, Spreeuwenberg P, Schellevis FG, et al. (2009) Morbidity is related to a green living environment. J Epidemiol Community Health 63: 967-973.
- 4. Richardson E, Pearce J, Mitchell R, Day P, Kingham S (2010) The association between green space and cause-specific mortality in urban New Zealand: an ecological analysis of green space utility. BMC Public Health 10: 240.
- 5. Dominguez-Berjon MF, Gandarillas A, Segura DPJ, Zorrilla B, Soto MJ, et al. (2010) Census tract socioeconomic and physical environment and cardiovascular mortality in the Region of Madrid (Spain). J Epidemiol Community Health 64: 1086-1093.
- 6. Coutts C, Horner M, Chapin T (2010) Using geographical information system to model the effects of green space accessibility on mortality in Florida. Geocarto International 25: 471-484.
- 7. Richardson EA, Mitchell R (2010) Gender differences in relationships between urban green space and health in the United Kingdom. Social Science Medicine 71: 568-575.
- 8. Richardson EA, Mitchell R, Hartig T, de Vries S, Astell-Burt T, et al. (2012) Green cities and health: a question of scale? J Epidemiol Community Health 66: 160-165.
- 9. Pereira G, Foster S, Martin K, Christian H, Boruff BJ, et al. (2012) The association between neighborhood greenness and cardiovascular disease: an observational study. BMC Public Health 12: 466.
- Donovan GH, Butry DT, Michael YL, et al. The relationship between trees and human health: Evidence form the spread of the Emerald Ash Borer. Am J Prev Med. 2013; 44(2): 139-145.
- 11. Richardson EA, Pearce J, Mitchell R, Kingham S (2013) Role of physical activity in the relationship between urban green space and health. Public Health 127: 318-324.
- 12. Tamosiunas A, Grazuleviciene R, Luksiene D, Dedele A, Reklaitiene R, et al. (2014) Accessibility and use of urban green spaces, and cardiovascular health: findings from a Kaunas cohort study. Environ Health 13: 20.
- 13. Lachowycz K, Jones AP (2014) Does walking explain associations between access to greenspace and lower mortality? Soc Sci Med 107: 9-17.
- 14. Wilker EH, Wu CD, McNeely E, Mostofsky E, Spengler J, et al. (2014) Green space and mortality following ischemic stroke. Environ Res 133: 42-48.
- Bixby H, Hodgson S, Fortunato L, Hansell A, Fecht D (2015) Associations between green space and health in English cities: an ecological, cross-sectional study. PLoS One 10: e119495.
- 16. Chum A, O'Campo P (2015) Cross-sectional associations between residential environmental exposures and cardiovascular diseases. BMC Public Health 15: 438.
- 17. Donovan GH, Michael YL, Gatziolis D, Prestemon JP, Whitsel EA (2015) Is tree loss associated with cardiovascular-disease risk in the Women's Health Initiative? A natural experiment. Health Place 36: 1-7.
- James P, Hart JE, Banay RF, Laden F (2016) Exposure to Greenness and Mortality in a Nationwide Prospective Cohort Study of Women. Environ Health Perspect 124: 1344-1352.
- 19. Massa KH, Pabayo R, Lebrao ML, Chiavegatto FA (2016) Environmental factors and cardiovascular diseases: the association of income inequality and green spaces in elderly residents of Sao Paulo, Brazil. BMJ Open 6: e11850.
- Ngom R, Gosselin P, Blais C, Rochette L (2016) Type and Proximity of Green Spaces Are Important for Preventing Cardiovascular Morbidity and Diabetes--A Cross-Sectional Study for Quebec, Canada. Int J Environ Res Public Health 13: 423.

- 21. Picavet H, Milder I, Kruize H, de Vries S, Hermans T, et al. (2016) Greener living environment healthier people?: Exploring green space, physical activity and health in the Doetinchem Cohort Study. Prev Med 89: 7-14.
- 22. Vienneau D, de Hoogh K, Faeh D, Kaufmann M, Wunderli JM, et al. (2017) More than clean air and tranquillity: Residential green is independently associated with decreasing mortality. Environ Int 108: 176-184.
- Wang D, Lau KK, Yu R, Wong S, Kwok T, et al. (2017) Neighbouring green space and mortality in community-dwelling elderly Hong Kong Chinese: a cohort study. BMJ Open 7: e15794.
- 24. Yitshak-Sade M, Kloog I, Novack V (2017) Do air pollution and neighborhood greenness exposures improve the predicted cardiovascular risk? Environ Int 107: 147-153.
- 25. Crouse DL, Pinault L, Balram A, Hystad P, Peters PA, et al. (2017) Urban greenness and mortality in Canada's largest cities: a national cohort study. Lancet Planet Health 1: e289-e297.
- 26. Jia X, Yu Y, Xia W, Masri S, Sami M, et al. (2018) Cardiovascular diseases in middle aged and older adults in China: the joint effects and mediation of different types of physical exercise and neighborhood greenness and walkability. Environ Res 167: 175-183.
- 27. Silveira I, Junger WL (2018) Green spaces and mortality due to cardiovascular diseases in the city of Rio de Janeiro. Rev Saude Publica 52: 49.
- Astell-Burt T, Feng X (2019) Urban green space, tree canopy and prevention of cardiometabolic diseases: a multilevel longitudinal study of 46 786 Australians. Int J Epidemiol. Doi: 10.1093/ije/dyz239.
- 29. Orioli R, Antonucci C, Scortichini M, Cerza F, Marando F, et al. (2019) Exposure to Residential Greenness as a Predictor of Cause-Specific Mortality and Stroke Incidence in the Rome Longitudinal Study. Environ Health Perspect 127: 27002.
- Kim S, Kim H, Lee JT (2019) Interactions between Ambient Air Particles and Greenness on Cause-specific Mortality in Seven Korean Metropolitan Cities, 2008-2016. Int J Environ Res Public Health 16: 1866.
- 31. Servadio JL, Lawal AS, Davis T, Bates J, Russell AG, et al. (2019) Demographic Inequities in Health Outcomes and Air Pollution Exposure in the Atlanta Area and its Relationship to Urban Infrastructure. J Urban Health 96: 219-234.
- 32. Wang K, Lombard J, Rundek T, Dong C, Gutierrez CM, et al. (2019) Relationship of Neighborhood Greenness to Heart Disease in 249 405 US Medicare Beneficiaries. J Am Heart Assoc 8: e10258.
- 33. Zijlema WL, Stasinska A, Blake D, Dirgawati M, Flicker L, et al. (2019) The longitudinal association between natural outdoor environments and mortality in 9218 older men from Perth, Western Australia. Environ Int 125: 430-436.