Supporting information

NH₃ sensor based on 3D hierarchical flower-shaped *n*-ZnO/*p*-NiO heterostructures yields outstanding sensing capabilities at **ppb** level

Zhenting Zhao^{a, b}, Haoyue Yang^b, Zihan Wei^c, Yan Xue^b, Yongjiao Sun^b, Wenlei Zhang^b, Pengwei Li^b, Weiping Gong^a, Serge Zhuiykov^c and Jie Hu^{b*}

^a Guangdong Provincial Key Laboratory of Electronic Functional Materials and Devices, Huizhou University, Huizhou 516001, Guangdong, China

^b Center of Nano Energy and Devices, College of Information and computer, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China

^c Ghent University Global Campus, Department of Solid State Science, Faculty of Science, 119 Songdomunhwa-ro, Yeonsu-gu, Incheon 21985, South Korea *Correspondence: hujie@tyut.edu.cn S1: Gas response of the Zn_1Ni_5 under different working temperatures

Figure. S1 Gas response of the Zn_1Ni_5 toward 200 ppm NH_3 under the different working temperatures.

S2: Dynamic response of the Zn_1Ni_5 in presence of 1-300 ppm concentrations of NH_3

Figure. S2 Dynamic response of the Zn₁Ni₅ to 1-300 ppm concentrations of NH₃ at 280 °C.

S3: Relationship of NH₃ concentration vs. response

Figure. S3 Response of the 3D *n*-ZnO/*p*-NiO with the different Zn-to-Ni molar ratio to 50-500 ppb NH₃ concentrations at 280 °C.

S4: Energy band structure of p-type NiO and n-type ZnO before and after contact

Figure. S4 Schematic diagram of the energy band structure of p-type NiO and n-type ZnO before (a) and after (b) contact.