1	Supporting information for:				
2	Functional and structural insights into a novel promiscuous ketoreductase of the				
3	lugdunomycin biosynthetic pathway				
4	Xiansha Xiao ^a , Somayah S. Elsayed ^a , Changsheng Wu ^b , Helga U. van der Heul ^a , Mikko Metsä-				
5	Ketelä ^c , Chao Du ^a , Andrea E. Prota ^d , Chun-Chi Chen ^e , Weidong Liu ^e , Rey-Ting Guo ^e , Jan Pieter				
6	Abrahams ^{a,f,g} and Gilles P. van Wezel ^a *				
7	^a Molecular Biotechnology, Leiden University, PO Box 9505, 2300RA Leiden, The Netherlands				
8	^b State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong				
9	University, Qingdao 266237, P. R. China				
10	$^{\rm c}$ Department of Biochemistry and Food Chemistry, University of Turku, FIN-20014 Turku,				
11	Finland				
12	^d Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer				
13	Institut, CH-5232 Villigen, Switzerland				
14	^e State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei				

- 15 University, Wuhan 43420, P. R. China
- ^f Bio-nano diffraction Biozentrum, Paul Scherrer Institut, CH-5232 Villigen, Switzerland
- ^g Biozentrum, University of Basel, Mattenstrasse 26, CH-4058 Basel, Switzerland
- 18

* Correspondence: <u>g.wezel@biology.leidenuniv.nl</u>.

19	TABLE OF CONTENTS	
20	SUPPLEMENTAL METHODS	3
21	Bacterial strains and culture conditions3	3
22	Metabolite extraction, isolation and characterization	3
23	LC-MS/MS peptide identification	ł
24	LC-MS analysis of metabolites	;
25	SUPPLEMENTAL FIGURES	,
26	Figure S1	,
27	Figure S2	,
28	Figure S3	3
29	Figure S4	3
30	Figure S5)
31	Figure S6)
32	Figure S7	L
33	Supplemental Data	?
34	Scheme S1	2
35	Data S1	5
36	Data S2. Spectroscopic data of compound 7 14	ļ
37	1H NMR spectrum of 7 in CDCl3 (600 MHz, 298 K)14	ł
38	COSY spectrum of 7 in CDCl₃ (600 MHz, 298 K)14	ł
39	Multiplicity-edited HSQC spectrum of 7 in CDCl₃ (600 MHz, 298 K)15	5
40	HMBC spectrum of 7 in CDCl ₃ (600 MHz, 298 K)15	5
41	(+)-HR-ESI-MS spectrum of 7 16	5
42	UV spectrum of 7	5
43	Data S3. Spectroscopic data of compound 8 17	,
44	1 H NMR spectrum of 8 in CDCl ₃ (600 MHz, 298 K)17	7
45	COSY spectrum of 8 in CDCl₃ (600 MHz, 298 K)17	7
46	Multiplicity-edited HSQC spectrum of 8 in CDCl₃ (600 MHz, 298 K)18	3
47	HMBC spectrum of 8 in CDCl ₃ (600 MHz, 298 K)	3
48	(+)-HR-ESI-MS spectrum of 8)
49	UV spectrum of 8)
50	SUPPLEMENTAL TABLES)
51	Table S1 20)
52	Table S2 20)
53	Table S3 21	L
54	Table S4 23	;
55	REFERENCES	ļ
56		

57 SUPPLEMENTAL METHODS

58 Bacterial strains and culture conditions.

59 Bacterial strains used in this study are summarized in Table S1. Escherichia coli JM109 was the 60 host for plasmid propagation, E. coli ET12567/pUZ8002 for conjugation, and E. coli strains 61 BL21(DE3) pLysS Star and TOP10 for protein expression and purification. All E. coli strains were 62 cultured in Luria Bertani broth (LB) or on agar plates supplemented), except for TOP10, which 63 was cultured in 2×YE liquid medium. Antibiotics were added where appropriate (ampicillin 100 μg ml⁻¹; kanamycin 50 μg ml⁻¹; chloramphenicol 25 μg ml⁻¹). Media for growth of *Streptomyces* 64 65 are described in the Streptomyces laboratory manual (1). Streptomyces sp. QL37 and its 66 derivatives were grown on SFM agar plates for sporulation, on SFM agar supplemented with 67 60 mM MgCl2 and 60 mM CaCl₂ for conjugation, on R5 agar for protoplast transformation, 68 and in YEME liquid medium for genomic DNA preparation. For the analysis of LugOII proteins, 69 lugOII was cloned behind the constitutive ermE promoter and inserted into the conjugative 70 plasmid pWHM3-oriT; this construct was introduced in Streptomyces sp. QL37 ΔlugOII by 71 conjugation. For studies on angucycline and limamycin production, Streptomyces sp. QL37 was 72 grown on R5 agar supplemented with 0.8% peptone and 1% mannitol for seven days at 30 °C. 73 Whereas, MM agar supplemented with 0.5% glycerol and 1% mannitol was used for 74 lugdunomycin production studies, with antibiotics (thiostrepton 20 μg ml⁻¹ and/or apramycin 75 50 μ g ml⁻¹) where relevant.

76

77 Metabolite extraction, isolation and characterization.

HPLC purifications were performed on a Waters preparative HPLC system equipped with a
photodiode array detector (PDA). The absorption was monitored at 220 nm, 290 nm and 350
nm. LC-MS analysis was performed on Shimadzu LC-MS 9030 system comprised of a UPLC with
an attached PDA, coupled to a QTOF HRMS, which uses ESI as an ionization source. NMR
spectra were acquired on a Bruker AVIII-600 NMR spectrometer (Bruker BioSpin GmbH).

Compound 5 (containing a smaller amount of 4) was isolated and identified previously (2). Compound 4 was isolated from a *lugOl* null mutant of *Streptomyces* sp. QL37 (our unpublished data). TO do so, 100 μ L fresh spores (1 × 10⁷) of the mutant strain were inoculated onto R5 agar plates (7.5 L; 25 mL × 300 plates) supplemented with 0.8% peptone and 1%

87 mannitol, and then incubated at 30 °C for seven days. The agar was cut into small blocks and 88 homogenized with a pestle. The resultant lysate was extracted three times with an equal 89 volume of ethyl acetate by soaking for 24 h at room temperature. The extract was centrifuged 90 and evaporated under reduced pressure at 40 °C to obtain a dry mass of 7.8 g. The crude extract was adsorbed on silica gel and loaded on a silica gel column (VLC, 125 × 50 mm, 60 Å 91 92 pore size, 230-400 mesh, Sigma). One column volume of *n*-hexane was applied to de-fat the 93 solution. A gradient elution was employed from ethyl acetate to methanol, which generated 94 15 fractions. Fractions containing 4 (eluted with ethyl acetate–methanol 3:1) were confirmed 95 by LC-MS and UV spectrum analysis, and were then pooled and concentrated to obtain 1.4 g 96 dry mass. After dissolving in methanol, the pooled fractions were subjected to a preparative scale HPLC for the purification of 4. A linear gradient of water and acetonitrile (solvent A = 97 98 H₂O; solvent B = acetonitrile; 0–30 min, 20% to 80% B) at a flowrate of 12 mL/min was used to purify the compound on a SunFire C₁₈ column (10 μ m, 100 Å, 19 \times 150 mm). The UV 99 100 chromatogram was monitored at 220, 290 and 355 nm. HPLC peaks were manually collected 101 and dried to yield pure 4 (2 mg). The compound was identified by matching its retention time, 102 UV, and MS data to 8-O-methylrabelomycin which was previously identified by NMR from the 103 wild type strain (2).

8-*O*-methylrabelomycin (4): bright yellow solid; UV λ_{max} (LC-MS): 221, 266, 417 nm; HRESIMS
 m/z 353.1023 [M+H]⁺ (calcd for C₂₀H₁₆O₆, 353.1020).

- 106 1-deoxo-1-hydroxy-8-*O*-methylrabelomycin (7) (2): yellow solid; UV λ_{max} (LC-MS): 220, 260,
 107 285, 433 nm; HRESIMS *m/z* 355.1173 [M+H]⁺ (calcd for C₂₀H₁₉O₆, 355.1176); ¹H and ¹³C NMR
 108 data (Table S4, Data S2).
- SM 196B (8) (3): yellow solid; UV λ_{max} (LC-MS): 218, 259, 381 nm; HRESIMS *m/z* 339.1229
 [M+H]⁺ (calcd for C₂₀H₁₉O₅, 339.1227); ¹H and ¹³C NMR data (Table S4, Data S3).
- 111

112 LC-MS/MS-based peptide identification.

For identification of LugOII proteins, *Streptomyces* sp. QL37 Δ*lugOII* harbouring plasmid pWHM3-*ermE*p-*lugOII* was incubated in 250 ml TSB medium in 1 L Erlenmayer flasks at 30°C for 5 days. Cells were centrifugated and lysed by sonication, followed by removing of the cell debris. The soluble supernatant was dialyzed in 20 mM Tris, pH 7.5 and loaded on a monoQ ion-exchange chromatography column. Elution was performed with a gradient 20 mM Tris, 1 M NaCl, pH 7.5. The protein fractions were detected by sodium dodecylsulfate polyacrylamide
 gel electrophoresis (SDS-PAGE). The sequences of the targeted bands were identified by LC MS/MS peptide analysis.

121 The semi-purified crude extract of LugOII overexpression strain was process by SDS-PAGE and 122 stained with Coomassie. The target bands were excised into small cubes and destained with 123 0.1 M ammonium bicarbonate/acetonitrile (1:1, v/v). Saturated gel pieces were digested with 124 trypsin (0.1 µg, recombinant, proteomics grade, Roche) at 37°C overnight. The digestion 125 solution was withdrew and further desalted using STAGE-Tipping (4). Briefly, peptide was 126 loaded on a conditioned StageTip with 2 pieces of 1 mm diameter SDB-XC plug (Empore), 127 washed twice with 0.5% formic acid solution, and eluted with elution solution (80% 128 acetonitrile, 0.5% formic acid). Acetonitrile was then evaporated in a SpeedVac. Sample 129 solution (3% acetonitrile, 0.5% formic acid) was added for analysis.

Peptides were injected and analysed by reversed-phase liquid chromatography on a nanoAcquity UPLC system (Waters) equipped with HSS-T3 C18 1.8 μm, 75 μm X 250 mm column (Waters). A gradient from 1% to 40% acetonitrile in 60 min (ending with a brief regeneration step to 90% for 3 min) was applied. [Glu¹]-fibrinopeptide B was used as lock mass compound and sampled every 30 s. Online MS/MS analysis was done using Synapt G2-Si HDMS mass spectrometer (Waters) with an UDMS^E method set up as described in (*5*).

Raw data from all samples were first analysed using the vender software ProteinLynx Global SERVER (PLGS) version 3.0.3. Generally, mass spectrum data were generated using an MS^E processing parameter with charge 2 lock mass 785.8426, and default energy thresholds. For protein identification, default workflow parameters except an additional acetyl in N-terminal variable modification were used. Reference protein database was downloaded from GenBank with the accession number NC 003888.3.

142

143 LC-MS analysis of metabolites.

144 LC-MS/MS acquisition was performed using Shimadzu Nexera X2 UHPLC system, with attached 145 PDA, coupled to Shimadzu 9030 QTOF mass spectrometer, equipped with a standard ESI 146 source unit, in which a calibrant delivery system (CDS) is installed. Samples were dissolved in 147 MeOH to a final concentration of 1 mg/mL, and 2 μ L were injected into a Waters Acquity HSS 148 C₁₈ column (1.8 μ m, 100 Å, 2.1 × 100 mm). The column was maintained at 30 °C, and run at a 149 flow rate of 0.5 mL/min, using 0.1% formic acid in H₂O as solvent A, and 0.1% formic acid in 150 acetonitrile as solvent B. A gradient was employed for chromatographic separation starting at 151 5% B for 1 min, then 5 – 85% B for 9 min, 85 – 100% B for 1 min, and finally held at 100% B for 152 4 min. The column was re-equilibrated to 5% B for 3 min before the next run was started. The 153 PDA acquisition was performed in the range 200 – 600 nm, at 4.2 Hz, with 1.2 nm slit width. 154 The flow cell was maintained at 40 °C. 155 All samples were analyzed in positive polarity, using data dependent acquisition mode. In this 156 regard, full scan MS spectra (m/z 100–2000, scan rate 20 Hz) were followed by three data 157 dependent MS/MS spectra (m/z 100-2000, scan rate 20 Hz) for the three most intense ions

per scan. The parameters used for the ESI source were: interface voltage 4 kV, interface temperature 300 °C, nebulizing gas flow 3 L/min, and drying gas flow 10 L/min. The instrument was calibrated using standard NaI solution (Shimadzu) before each run sequence. Additionally, a calibrant solution consisting of the Agilent API-TOF reference mass solution kit was introduced through the CDS system, the first 0.5 min of each run, and the masses detected were used for post-run mass correction of the file, ensuring stable accurate mass measurements.

165

encoding polyketide synthases (pink), tailoring enzymes (red), regulators (blue) and transporters (green). The gene *lugOII* that is located downstream of *lugA-F* (the minimal PKS genes) encodes a two-domain oxidoreductase and is the subject of this study. Hypothetical genes are labeled in black.

- 176
- 177

178

Figure S2. SDS-PAGE analysis of semi-purified LugOII isoforms. Lane a, protein marker (in kDa). Lane b and c, LugOII full-length gives a band corresponding to a protein of 70-kDa, while the reductase domain of LugOII generates a band at 27-kDa. LugOII was overexpressed in *Streptomyces* sp. QL37 (OII⁻) and purified by employing ion exchange chromatography (IEX) using a monoQ column. Both bands were analysed by in-gel digestion followed by LC-MS/MS analysis, confirming the presence of two isoforms of LugOII (LugOII full-length and the separated reductase domain, labeled by asterisks).

Lughtt				\$1	a1	32	<u>aj</u>	¢3
Lugeras			4	3.0	20 	3.9	40 50	69
1 LogOTI 2 FysMtred, 3 Urdhred, 4 Seabtred, 5 LanV, 5 EncosF, 7 DnrS, 8 AknU, 3 ActER, 10 RedSS,	MAANTESTEPEFYF	amipapintpipupu MuraaryTymumia	. MINITOR MINITOR MORETON MAGEDOR MAGEDOR POSEPARI MATODIA MATODIA , MINITOR				ADDEA ADDITAQ IAREA ADDITAQ IAREA ADDITAT ADDITAT ADDITAT ADDITAT ADDITAT ADDITAT ADDITAT ADDITAT ADDITAT ADDITAT ADDITAT ADDITAT ADDITAT ADDITAT ADDITAT	
11 DeFahG, 13 Geht, 14 BenL, 15 ARX21, 16 Fdm0,		L T R 2 R T R 3,4 A 7 A 8 R 7	PPAOLAGE MNLFLIGE LELGLEGE HELELVOT				AG SE ENARA V MET REEDONTASLORES ON FLAGADOLULES REESSONS SLORES RTEUE AD SLORES	A NOVO SPACION APLICO SON ALIGA EN LOCOMPACIÓN A LOCOMPACIÓN E LOCOMPACIÓN E LOCOMPACIÓN
LugoII	, innered	1) 1222222222	μ.		ilig ananan		in and the second second	IT
1 longOII 2 FighMred, 3 UrdMred, 4 BooMred, 5 LooV, 6 BooaF, 7 DurH, 8 AknU, 9 ActKD, 10 BooKR, 11 DpeE, 13 GabT, 13 GabT, 14 BooL, 15 ANK21, 16 FikmO,	ELIO YA UDO'NECUT LO READ YE ODO'NECUT LO READ YE ODO'NECUT LO READ YE ODO'NECUT LA DEAA FOOTONIO NECUT LA DEAA FOOTONIO NECUT DE'NEST PLOTONIO NECUT DE'NEST PLOTONIO NECUT DE'NEST PLOTONIO NECUT DE'NEST PLOTONIO NECUT DE'NEST ALTO DE'NEAUYAA D'NEST ALTO DE'NEAUYAA	Excision of the second		V TSVDSIL VHG - SVE VHG - SVE VHG - SVE WHL - HGA VHG - SVA HGA VHG - SFA SFA SFA SFA SFA SFA SFA SFA SFA SFA				
LagoII	η3 η4 	405 101101000000000000000000000000000000	ni 	(). 199	+ 2022 + 2022		7 21221 - 73 219	220 PM 100 100
1 Lugoll 2 FigsMrmd, 3 UrdBrmd, 4 BaxMrmd, 5 LarV, 6 BoosF, 7 DucH, 8 AkmU, 9 ActrEM, 10 HedECM, 11 DpsE, 12 BaFabG, 13 Grbn, 14 BenL, 15 AFK21, 16 Fimo,	- LTECAVEL - LTEVAVED - LTEVAVED - LTEVAVED - LTEVAVED - LTEVAVED - LTEVAS - LT				IDENO GAVID INNE INVEST INNE INVEST CONSTRUCTS CONSTRUCTS CONSTRUCTS CONSTRUCTS CONSTRUCTS CONSTRUCTS CONSTRUCTS INNE ALBAL CONSTRUCTS INNE ALBAL CONSTRUCTS INNE ALBAL CONSTRUCTS INNE ALBAL CONSTRUCTS INNE ALBAL	L PTIL T PTIL STOCA	VEQ	
LogOII 1 LogOII 2 FooMend.	87 839 217105084110	289 TT						
 Urdbred, Bankred, Bankred, SaarV, SnosF, DnrH, Anu, Anu, AntKR, Basch, Basch, Sast, Sast,<!--</th--><th>12111111111111111111111111111111111111</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th>	12111111111111111111111111111111111111							

187 Figure S3. Multi-sequence alignment of LugOII and the functionally characterized keto-188 reductase (KRs). Sequences include PgaMred from *Streptomyces* sp. PGA64, UrdMred from 189 Streptomyces fradiae Tu 2717, BexMred from Streptomyces fulvissimus DSM 40593, SnoaF 190 from *Streptomyces nogalater*, AknU from *Streptomyces galilaeus*, DnrH from *Streptomyces* 191 peucetius, DpsE from Streptomyces peucetius, HedKR from Streptomyces griseoruber, ActKR 192 from *Streptomyces coelicolor* (Muller 1908), ARX21 from uncultured bacterium, BenL from 193 Streptomyces sp. A2991200, GrhT from Streptomyces sp. CN48+, and FdmO from 194 Streptomyces griseus. The secondary structural features are labeled on the top of the 195 sequence based on the crystal structure of LugOII.

197 Figure S4. An unrooted maximum likelihood tree of the KRs that are related to LugOII. The

- 198 phylogenetic tree was drawn as a consensus model. Bootstrap values are shown at each node
- 199 as percentage of 1000 replicates.

- 202 Figure S5. The interactions between the ligands and the key residues of LugOII structure.
- 203 The residues and ligands are shown in sticks. (A) The distance between the OH group of Y162
- and C5 of ligand **4** is around 3.0 Å. (B) The hydrogen bond between T101 and ligand **5** is around
- 205 3.3 Å.

Figure S6. Alignment of the different chains from LugOII complex structures. Ligands are
shown in sticks. (A) Superimposition of chain A and B in the ligand 4 bonded LugOII structure.
The loop region of chain A is highlighted in yellow and that of chain B in magenta. (B)
Superimposition of chain A and B in ligand 5 bonded LugOII structure. The loop region of chain
A is highlighted in green and that of chain B in cyan. Related to Figure 4.

Figure S7. Interaction network of Q159 in LugOII complex structures. The ligands and residues are shown in sticks. Interactions of Q159 with T101, G102, V103, and either compound 4 (A) or 5 (B), via water molecules that stabilize the α 4- β 4 loop.

218 SUPPLEMENTAL DATA

Scheme S1. Postulated lugdunomycin biosynthetic pathway (2). Flavoenzyme (LugOI), methyl transferase (LugM) and keto-reductase (LugOII) are proposed to react sequentially in the early steps of angucycline biosynthesis, as part of the lugdunomycin biosynthetic pathway.

Data S1. LC-MS analysis of the metabolite profiles from the extracts derived from wild-type 224 225 S sp. QL37, ΔlugOII and ΔlugOII::lugOII. (A) Extracted ion chromatogram of the wild-type, 226 ΔlugOII and ΔlugOII::lugOII strains grown on R5 medium (containing 0.8% peptone and 1% 227 mannitol). Deletion of *lugOII* blocks the production of 5, 6 and 9, while its introduction under 228 the control of ermE promoter restores their production. (B) Extracted ion chromatogram of the wild-type and ΔlugOII and ΔlugOII::lugOII strains grown on MM medium (containing 0.5% 229 230 glycerol and 1% mannitol). Deletion of lugOII blocks the production of 1, 5, 6 and 9. The 231 complementation of *lugOII* didn't work. Note that **1** is only produced in MM medium.

234 Data S2. Spectroscopic data of compound 7.

240 COSY spectrum of **7** in CDCl₃ (600 MHz, 298 K).

246 HMBC spectrum of **7** in CDCl₃ (600 MHz, 298 K).

248 (+)-HR-ESI-MS spectrum of 7.

251 UV spectrum of 7.

253 Data S3. Spectroscopic data of compound 8.

261 Multiplicity-edited HSQC spectrum of **8** in CDCl₃ (600 MHz, 298 K).

263 HMBC spectrum of **8** in CDCl₃ (600 MHz, 298 K).

267 UV spectrum of **8**.

269 SUPPLEMENTAL TABLES

270 Table S1. Bacterial strains used in this study. For all the primers used, see table S2 (below).

271

Bacterial strains	Relevant characteristics	Metabolites produced	References
Streptomyces sp. QL37	wild-type strain	1, 4, 5, 6, 9	This study
Streptomyces sp. QL37 (OI ⁻)	lugOI deletion mutant	4	This study
Streptomyces sp. QL37 (OII ⁻)	lugOII deletion mutant	4	This study
Streptomyces sp. QL37	lugOII deletion mutant	4, 5, 6, 9	This study
(OII⁻1)	harbouring pWHM3- <i>oriT</i> -		
	permE*-lugOII		
Streptomyces sp. QL37	wild-type harbouring pWHM3-	4, 5, 6, 9	This study
(OII+1)	oriT-permE*-lugOll		
E. coli JM109	Strain for plasmid propagation	-	(6)
E. coli	E. coli host for conjugative	-	(7)
ET12567/pUZ8002	transfer of plasmids to		
	Streptomyces		
E.coli BL21(DE3) pLysS	E. coli host for over-expression	-	(8)
Star	of proteins		

272

273

Table S2. Primers used for amplifying the DNA sequences in this study.

Name of primers	Oligonucleotide sequence (5' -> 3')
LugOII_fw	gtcaCATATGagcaggctcacgggcaagaacgcac
LugOII_rv	gtcaAAGCTTtcatccgaggagcgtcccgccgctcgcgtc
lugM_fw	gtcaCATATGactgcgcagcaccccctgttgtggaag
lugM_rv	gtcaAAGCTTtcagcggtccttgtggcccagcaccagc
LugOII_V156A_fw	ctgcgccGCAccggagcaggtc
LugOII_V156A_rv	cgggtgagaccggacgagatg
LugOII_S214Y_fw	ggcgcagTACtccgccttcaagcgc
LugOII_S214Y_rv	atctgctccacgatctcggggatg
LugOII_C154F_fw	tcacccgctTcgccgtgccggag
LugOII_C154F_rv	gcacggcgAagcgggtgagaccg
LugOII_Q159A_fw	gtgccggagGCAgtcgcgtactcgatgacc

LugOII_Q159A_rv	gtacgcgacTGCctccggcacggcgc
LugOII_∆V103_fw	cgtcaccggagacggcatactccccgag
LugOII_ΔV103_rv	gtatgccgtctccggtgacggccgc
LugOII_∆V103∆D104_fw	gggagtatgcctccggtgacggccgc
LugOII_ΔV103ΔD104_rv	gccgtcaccggaggcatactccccgag
LugOII_T101M_fw	cgtccactccCAtgacggccgcgttg
LugOII_T101M_rv	gcggccgtcaTGggagtggacggc
LugOII_I194S_fw	tccgccgttgtcggtTGAtcccggtgccacgctgtt
LugOII_I194S_rv	agcgtggcaccgggaTCAaccgacaacggcggagcg
dLugOII_check_Fw	tcgacccaccacggaatc
dlugOII check_RV	ttcctcgccgatgtgcttgg
lugOII_LF_Fw	cgataagcttggtaccgagctgtggctggacgtgatcaac
lugOII_LF_Rv	cgattctagacgtggtgcccacgggtcagc
lugOII_RF_Fw	cgattctagaggcgggacgctcctcggatg
lugOII_RF_Rv	cgatgaattcggtgagggccggcgagtagg
lugOI_KO_check_Fw	cgagtgccatgccctgatgaag
lugOI_KO_check_Rv	gcgacgatcagagtgcttgg
lugOI-LF-Fw	cgataagcttagatcttccatcccgccttctgaagac
lugOI-LF-Rv	cgattctagagactacgactgatgcgtccatgtg
lugOI-RF-Fw	cgattctagaggaccggccaggtgagattc
lugOI-RF-Rv	cgatggtaccgccggtcgttctgcttggtc
lugOII_OE_Fw	cgatGGATCCATATGGGCACCACGCGCGACGCGGAC
lugOII_OE_Rv	cgatGGATCCGTGCACCGAGGACGGCTCATC

275 Table S3. X-Ray data collection, processing and refinement.

	Apo LugOII	NADPH binary complex	NADPH plus 4 ternary complex	NADPH plus 5 ternary complex
Data collection				
PDB accession	6YQ6	6YPZ	6YQ3	6YQ0
code				
Beamline	X06DA	X06DA	BL13B1	X06DA
Wavelength (Å)	1.0	1.0	1.0	1.0
Detector	PILATUS 2MF	PILATUS 2MF	ADSC	PILATUS 2MF
			Quantum-315	
			CCD	

Resolution range	47.47-2.08	49.3-1.08	24.70-1.57	49.49-1.08
(Å) ^a	(2.13-2.08)	(1.108-1.08)	(1.61-1.57)	(1.108-1.08)
Space group	P6122	1121	1121	1121
A, b, c (Å)	185.99, 185.99,	110.31, 59.97,	87.97, 60.21,	110.47, 60.38,
	75.64	87.83	88.31	88.1
α, β, γ (°)	90.0, 90.0,	90.0, 128.5,	90.0, 102.5,	90.0, 128.7,
	120.0	90.0	90.0	90.0
Total	1837762	1326582	695227	1330599
observations ^a	(285625)	(201219)	(166021)	(198024)
No. unique	87905 (14133)	428985 (67732)	60525 (6124)	431114 (68021)
reflections ^a				
Redundancy ^a	20.9 (20.2)	3.1 (3.0)	2.9 (2.8)	3.1 (2.9)
Completeness	99.8 (99.0)	95.4 (99.1)	98.1 (91.9)	95.4 (99.0)
(%) ^a				
Mean //σ(/) ^a	12.5 (1.7)	13.4 (2.1)	22.5 (2.7)	16.3 (3.2)
R _{merge} ^{a, b}	0.399 (2.839)	0.054 (0.679)	0.053 (0.464)	0.049 (0.435)
R _{meas} ^{a, c}	0.409 (2.912)	0.064 (0.827)	0.064 (0.566)	0.058 (0.532)
CC ^{1/2} ^{a, d}	0.994 (0.431)	0.999 (0.648)	0.999 (0.818)	0.999 (0.801)
Wilson B value	33.82	12.94	16.88	11.77
(Ų)				
Refinement				
		101020/12457	57497/4253	183000/13494
No. of reflections ^b	44261/3168	181839/13457		
No. of reflections ^b Final R _{work} ^{a, c}	44261/3168 0.168 (0.273)	0.146 (0.270)	0.142 (0.218)	0.155 (0.248)
No. of reflections ^b Final $R_{work}^{a, c}$ Final $R_{free}^{a, c}$	44261/3168 0.168 (0.273) 0.204 (0.287)	0.146 (0.270) 0.165 (0.266)	0.142 (0.218) 0.166 (0.239)	0.155 (0.248) 0.170 (0.249)
No. of reflections ^b Final $R_{work}^{a, c}$ Final $R_{free}^{a, c}$ R.m.s.bond	44261/3168 0.168 (0.273) 0.204 (0.287) 0.015	0.146 (0.270) 0.165 (0.266) 0.022	0.142 (0.218) 0.166 (0.239) 0.017	0.155 (0.248) 0.170 (0.249) 0.022
No. of reflections ^b Final $R_{work}^{a, c}$ Final $R_{free}^{a, c}$ R.m.s.deviations (Å)	44261/3168 0.168 (0.273) 0.204 (0.287) 0.015	0.146 (0.270) 0.165 (0.266) 0.022	0.142 (0.218) 0.166 (0.239) 0.017	0.155 (0.248) 0.170 (0.249) 0.022
No. of reflections ^b Final $R_{work}^{a, c}$ Final $R_{free}^{a, c}$ R.m.s.bonddeviations (Å)R.m.s.angle	44261/3168 0.168 (0.273) 0.204 (0.287) 0.015 1.830	181839/1343/ 0.146 (0.270) 0.165 (0.266) 0.022 2.215	0.142 (0.218) 0.166 (0.239) 0.017 2.114	0.155 (0.248) 0.170 (0.249) 0.022 2.206
No. of reflections ^b Final $R_{work}^{a, c}$ Final $R_{free}^{a, c}$ R.m.s.bonddeviations (Å)R.m.s.angledeviations (°)	44261/3168 0.168 (0.273) 0.204 (0.287) 0.015 1.830	181839/13437 0.146 (0.270) 0.165 (0.266) 0.022 2.215	0.142 (0.218) 0.166 (0.239) 0.017 2.114	0.155 (0.248) 0.170 (0.249) 0.022 2.206
No. of reflectionsbFinal $R_{work}^{a, c}$ Final $R_{free}^{a, c}$ R.m.s.bonddeviations (Å)R.m.s.angledeviations (°)Number of atoms	44261/3168 0.168 (0.273) 0.204 (0.287) 0.015 1.830 4027	181839/1343/ 0.146 (0.270) 0.165 (0.266) 0.022 2.215 4481	0.142 (0.218) 0.166 (0.239) 0.017 2.114 4421	0.155 (0.248) 0.170 (0.249) 0.022 2.206 4583
No. of reflectionsFinal $R_{work}^{a, c}$ Final $R_{free}^{a, c}$ R.m.s.bonddeviations (Å)R.m.s.angledeviations (°)Number of atomsNumber of water	44261/3168 0.168 (0.273) 0.204 (0.287) 0.015 1.830 4027 363	181839/1343/ 0.146 (0.270) 0.165 (0.266) 0.022 2.215 4481 507	0.142 (0.218) 0.166 (0.239) 0.017 2.114 4421 484	0.155 (0.248) 0.170 (0.249) 0.022 2.206 4583 551
No. of reflections ^b Final R _{work} ^{a, c} Final R _{free} ^{a, c} R.m.s. bond deviations (Å) R.m.s. angle deviations (°) Number of atoms Number of water molecules	44261/3168 0.168 (0.273) 0.204 (0.287) 0.015 1.830 4027 363	181839/1343/ 0.146 (0.270) 0.165 (0.266) 0.022 2.215 4481 507	0.142 (0.218) 0.166 (0.239) 0.017 2.114 4421 484	0.155 (0.248) 0.170 (0.249) 0.022 2.206 4583 551
No. of reflections ^b Final R _{work} ^{a, c} Final R _{free} ^{a, c} R.m.s. bond deviations (Å) R.m.s. angle deviations (°) Number of atoms Number of water molecules Number of other	44261/3168 0.168 (0.273) 0.204 (0.287) 0.015 1.830 4027 363 16 EDO, 4 PEG,	181839/1343/ 0.146 (0.270) 0.165 (0.266) 0.022 2.215 4481 507 2 2 2 2 0.022	0.142 (0.218) 0.166 (0.239) 0.017 2.114 4421 484 2 compound 4 ,	0.155 (0.248) 0.170 (0.249) 0.022 2.206 4583 551 2 compound 5 ,
No. of reflections ^b Final R _{work} ^{a, c} Final R _{free} ^{a, c} R.m.s. bond deviations (Å) R.m.s. angle deviations (°) Number of atoms Number of water molecules Number of other molecules	44261/3168 0.168 (0.273) 0.204 (0.287) 0.015 1.830 4027 363 16 EDO, 4 PEG, 3 SO4 ²⁻	0.146 (0.270) 0.165 (0.266) 0.022 2.215 4481 507 2 NADPH, 12 EDO, 2 PEG	0.142 (0.218) 0.166 (0.239) 0.017 2.114 4421 484 2 compound 4, 2 NADPH, 2	0.155 (0.248) 0.170 (0.249) 0.022 2.206 4583 551 2 compound 5 , 2 NADPH, 14
No. of reflections ^b Final R _{work} ^{a, c} Final R _{free} ^{a, c} R.m.s. bond deviations (Å) R.m.s. angle deviations (°) Number of atoms Number of water molecules Number of other molecules	44261/3168 0.168 (0.273) 0.204 (0.287) 0.015 1.830 4027 363 16 EDO, 4 PEG, 3 SO4 ²⁻	181839/1343/ 0.146 (0.270) 0.165 (0.266) 0.022 2.215 4481 507 2 NADPH, 12 EDO, 2 PEG	0.142 (0.218) 0.166 (0.239) 0.017 2.114 2.114 4421 484 2 compound 4 , 2 NADPH, 2 EDO	0.155 (0.248) 0.170 (0.249) 0.022 2.206 4583 551 2 compound 5 , 2 NADPH, 14 EDO
No. of reflectionsbFinal $R_{work}^{a, c}$ Final $R_{free}^{a, c}$ R.m.s.bonddeviations (Å)R.m.s.angledeviations (°)Number of atomsNumber of watermoleculesNumber of othermoleculesMeanB-factor	44261/3168 0.168 (0.273) 0.204 (0.287) 0.015 1.830 4027 363 16 EDO, 4 PEG, 3 SO4 ²⁻	181839/1343/ 0.146 (0.270) 0.165 (0.266) 0.022 2.215 4481 507 2 NADPH, 12 EDO, 2 PEG	0.142 (0.218) 0.166 (0.239) 0.017 2.114 4421 484 2 compound 4 , 2 NADPH, 2 EDO	0.155 (0.248) 0.170 (0.249) 0.022 2.206 4583 551 2 compound 5 , 2 NADPH, 14 EDO
No. of reflections ^b Final R _{work} ^{a, c} Final R _{free} ^{a, c} R.m.s. bond deviations (Å) R.m.s. angle deviations (°) Number of atoms Number of water molecules Number of other molecules Mean <i>B</i> -factor (Å ²)	44261/3168 0.168 (0.273) 0.204 (0.287) 0.015 1.830 4027 363 16 EDO, 4 PEG, 3 SO4 ²⁻	181839/1343/ 0.146 (0.270) 0.165 (0.266) 0.022 2.215 4481 507 2 NADPH, 12 EDO, 2 PEG	0.142 (0.218) 0.166 (0.239) 0.017 2.114 4421 484 2 compound 4 , 2 NADPH, 2 EDO	0.155 (0.248) 0.170 (0.249) 0.022 2.206 4583 551 2 compound 5 , 2 NADPH, 14 EDO
No. of reflections ^b Final R _{work} ^{a, c} Final R _{free} ^{a, c} R.m.s. bond deviations (Å) R.m.s. angle deviations (°) Number of atoms Number of water molecules Number of other molecules Mean <i>B</i> -factor (Å ²) protein	44261/3168 0.168 (0.273) 0.204 (0.287) 0.015 1.830 4027 363 16 EDO, 4 PEG, 3 SO4 ²⁻ 29.74	181839/1343/ 0.146 (0.270) 0.165 (0.266) 0.022 2.215 4481 507 2 NADPH, 12 EDO, 2 PEG 12.04	0.142 (0.218) 0.166 (0.239) 0.017 2.114 4421 484 2 compound 4 , 2 NADPH, 2 EDO 17.00	0.155 (0.248) 0.170 (0.249) 0.022 2.206 4583 551 2 compound 5 , 2 NADPH, 14 EDO
No. of reflections ^b Final R _{work} ^{a, c} Final R _{free} ^{a, c} R.m.s. bond deviations (Å) R.m.s. angle deviations (°) Number of atoms Number of water molecules Number of other molecules Mean <i>B</i> -factor (Å ²) protein water	44261/3168 0.168 (0.273) 0.204 (0.287) 0.015 1.830 4027 363 16 EDO, 4 PEG, 3 SO4 ²⁻ 29.74 38.82	181839/1343/ 0.146 (0.270) 0.165 (0.266) 0.022 2.215 4481 507 2 NADPH, 12 EDO, 2 PEG 12.04 24.87	0.142 (0.218) 0.166 (0.239) 0.017 2.114 4421 484 2 compound 4 , 2 NADPH, 2 EDO 17.00 28.60	0.155 (0.248) 0.170 (0.249) 0.022 2.206 4583 551 2 compound 5 , 2 NADPH, 14 EDO 10.56 23.10

others	54.25	22.72	26.63	17.16
Ramachandran plot (%) ^e				
Favored regions	97.63	97.80	97.40	97.22
Allowed regions	2.37	2.20	2.60	2.78
Outliers	0	0	0	0

^a Values for the outer resolution shell are given in parentheses.

^b The data set was split into "working" and "free" sets consisting of 95 and 5% of the data, respectively. The free
 set was not used for refinement.

279 ^c The R-factors R_{work} and R_{free} are calculated as follows: $R = \Sigma$ (| Fobs - Fcalc |)/ Σ | Fobs |, where Fobs and Fcalc 280 are the observed and calculated structure factor amplitudes, respectively.

^d Diffraction precision indicator based on R_{free} based as calculated by REFMAC5(9).

^e As calculated using MOLPROBITY(10).

283

284

285 Table S4. ¹H and ¹³C NMR data of 7 and 8 at 298 K in CDCl3 with added TMS^{*a*}.

Desition		7		8		
POSITION	$\delta_{ m C}$, type	$\delta_{ extsf{H}}$, mult. (J in Hz)	$\delta_{ m c}$, type	$\delta_{ m H}$, mult. (J in Hz)		
1	65.0, CH	5.37, ddd (6.9, 5.5, 4.3)	65.5 <i>,</i> CH	5.49 <i>,</i> m		
2	44.1, CH ₂	a: 2.3, ddd (13.8, 6.9, 1.8)	44.0, CH ₂	a: 2.35, m		
		b: 2.14, ddd (13.8, 5.5, 1.4)		b: 2.15, m		
3	69.1, C		69.3 <i>,</i> C			
4	45.5, CH₂	a: 3.05, dt (16.6, 1.4)	45.5, CH₂	a: 3.11, m		
		b: 2.85 <i>,</i> m		b: 2.91 <i>,</i> m		
4a	146.3 <i>,</i> C		142.3, C			
5	125.8 <i>,</i> CH	7.08, d (1.1)	136.3 <i>,</i> CH	7.53, dt (8.0, 0.9)		
6	161.7, C		127.5 <i>,</i> CH	8.21, d (8.0)		
6a	117.1, C		136.3 <i>,</i> C			
7	188.6, C		ND ^{<i>c</i>} , C			
7a	119.9 <i>,</i> C		120.7, C			
8	160.2 <i>,</i> C		159.9 <i>,</i> C			
9	118.0 <i>,</i> CH	7.35, dd (8.5, 1.1)	117.9 <i>,</i> CH	7.3, dd (8.5, 1.1)		
10	135.9 <i>,</i> CH	7.75, dd (8.5, 7.7)	135.3 <i>,</i> CH	7.72, dd (8.5, 7.8)		
11	120.4 <i>,</i> CH	7.89, dd (7.7, 1.1)	120.3 <i>,</i> CH	7.89, dd (7.8, 1.1)		
11a	136.9 <i>,</i> C		137.2, C			

12	187.3 <i>,</i> C		ND ^{<i>c</i>} , C	
12a	ND ^{<i>c</i>} , C		131.2 <i>,</i> C	
12b	133.5 <i>,</i> C		140.1, C	
1-OH		4.98, d (4.3)		5.14 <i>,</i> d (4.5)
3-CH₃	29.5, CH₃	1.49, s	29.6, CH₃	1.50, s
6-OH		13.26, s		
8-OH				
8-OCH ₃	56.7, CH ₃	4.07, s	56.7, CH₃	4.04, s

^{a 1}H 600 MHz, ¹³C chemical shifts inferred from multiplicity-edited HSQC and HMBC spectra.

^b Chemical shifts assignments were interchanged in literature(11). Re-assignments were based on the observed
 HMBC correlations.

^cND: Not determined due to lack of HMBC correlations to them.

- 290
- 291

292

293 REFERENCES

- Kieser, T., Bibb, M. J., Buttner, M. J., Chater, K. F., and Hopwood, D. A. (2000) *Practical Streptomyces genetics*, John Innes Foundation, Norwich, U.K.
- Wu, C. S., van der Heul, H. U., Melnik, A. V., Lubben, J., Dorrestein, P. C., Minnaard, A.
 J., Choi, Y. H., and van Wezel, G. P. (2019) Lugdunomycin, an angucycline-derived molecule with unprecedented chemical architecture, *Angew Chem Int Edit 58*, 2809-2814.
- Grabley, S., Hammann, P., Hutter, K., Kluge, H., Thiericke, R., Wink, J., and Zeeck, A.
 (1991) Secondary metabolites by chemical-screening .19. Sm-196-a and Sm-196-B,
 novel biologically-active angucyclinones from Streptomyces Sp, J Antibiot 44, 670-673.
- Rappsilber, J., Mann, M., and Ishihama, Y. (2007) Protocol for micro-purification,
 enrichment, pre-fractionation and storage of peptides for proteomics using StageTips,
 Nat. Protoc. 2, 1896-1906.
- Distler, U., Kuharev, J., Navarro, P., Levin, Y., Schild, H., and Tenzer, S. (2014) Drift time specific collision energies enable deep-coverage data-independent acquisition
 proteomics, *Nat. Methods 11*, 167-170.
- 309 6. Yanisch-Perron, C., Vieira, J., and Messing, J. (1985) Improved M13 phage cloning
 310 vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors,
 311 *Gene 33*, 103-119.
- MacNeil, D. J., Occi, J. L., Gewain, K. M., MacNeil, T., Gibbons, P. H., Ruby, C. L., and
 Danis, S. J. (1992) Complex organization of the Streptomyces avermitilis genes
 encoding the avermectin polyketide synthase, *Gene 115*, 119-125.
- Zhang, X., and Studier, F. W. (1997) Mechanism of inhibition of bacteriophage T7 RNA
 polymerase by T7 lysozyme, *J Mol Biol 269*, 10-27.

- Murshudov, G. N., Vagin, A. A., and Dodson, E. J. (1997) Refinement of macromolecular
 structures by the maximum-likelihood method, *Acta Crystallogr D 53*, 240-255.
- Davis, I. W., Leaver-Fay, A., Chen, V. B., Block, J. N., Kapral, G. J., Wang, X., Murray, L.
 W., Arendall, W. B., 3rd, Snoeyink, J., Richardson, J. S., and Richardson, D. C. (2007)
 MolProbity: all-atom contacts and structure validation for proteins and nucleic acids,
 Nucleic Acids Res 35, W375-383.
- Shaaban, K. A., Srinivasan, S., Kumar, R., Damodaran, C., and Rohr, J. (2011)
 Landomycins P-W, cytotoxic angucyclines from Streptomyces cyanogenus S-136, *J Nat Prod 74*, 2-11.
- 326
- 327