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Simulation details

To construct our system, we placed an Aβ1−42 fibril segment containing ten monomers in an

orthorhombic cell of size (Lx, Ly, Lz) = (14, 14, 4.87) nm whose z dimension was chosen to

match the length of ten layers of an infinite fibril. To this, we added a full-length monomer

and solvated the box with TIP4P/2005 water,1 150 mM NaCl and excess neutralizing cations.

The monomer was added in two different places to generate two initial conditions, and both

systems were equilibrated in the isobaric-isothermal ensemble for 200 ns at 300 K using

Gromacs 4.6.7.2

For the production runs, we used a Hamiltonian replica exchange scheme to facilitate several

binding and unbinding events. The energy function of the ith window was:

Ui(r
3Np
p , r3Ns

s ) = Upp(r3Np
p ) + Uss(r

3Ns
s ) + λiεps(r

3Np
p , r3Ns

s ) + U ′ps(r
3Np
p , r3Ns

s ), (1)

where rp and rs refer respectively to protein and solvent atomic coordinates and Np and Ns

are the numbers of protein and solvent atoms, respectively. Upp and Uss are the protein-

protein and solvent-solvent energy terms, εps is the Lennard-Jones interaction term between

protein atoms and water oxygens, and U ′ps contains all other non-bonded protein-solvent

terms, i.e. Coulombic interactions. The parameter λ is the scaling factor that sets the solva-

tion energy strength, with λ = 1.10 the value corresponding to experimentally-consistent IDP

behavior and the value used for all equilibration runs in the structure preparation stage.3,4

The parameter space λ > 1.10 results in proteins being more solvated than realistic, whilst

the region λ < 1.10 results in the converse.

We then ran long isobaric-isothermal (NPT) simulations using Gromacs version 4.6.7 with

Plumed version 2.1, using 16 copies of the system with different λ and Hamiltonian replica

exchange swaps attempted every 1 ps between adjacent windows.2,5 Two sets of such simu-
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lations were run, starting from two different initial geometries (shown for the protein coor-

dinates in S2). The first simulation set was 1 µs long, and the second was 0.9279 µs, for a

total of 30.8 µs of chemical time simulated.

Forces were evaluated using the Amber03ws force field,3 which has been shown to repro-

duce experimental observations of the Aβ42 monomer.4 A leap-frog integrator was used to

propagate Langevin dynamics with force evaluations every 2 fs, constrained by a velocity-

rescaling thermostat with a time constant of 0.1 ps. The pressures were kept constant

using a semi-isotropic Parrinello-Rahman barostat at reference pressure 1 bar in both the

x/y and z directions using a coupling time constant of 5 ps.6,7 Nearest neighbor searches

were of grid type, using a group cutoff scheme with an update frequency of 10 steps and

a neighbor list cutoff of 1.2 nm. All bonds were constrained with the LINCS algorithm.8

Non-bonded interactions were truncated at 1.2 nm for both van der Waals and Coulombic

energies, with both energy and pressure dispersion corrections. Long-range electrostatics

were treated with a fourth-order particle mesh Ewald sum of spacing 0.12 nm−1 and relative

tolerance of 1×10−5.9

In all analyses, the first 100 ns were discarded as equilibration and frames in which the

free peptide was within 4.5 Å of its periodic image were discarded to ignore non-physical

configurations (corresponding to 6.8% or 2.8% of frames in each simulation). Analyses

were performed with the help of the GrocasWrapper Python module (developed by Oliver

Beckstein et al, doi: 10.5281/zenodo.17901).
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Calculation of free energies and thermodynamics

To estimate the free energy surfaces of adsorption, we built the potentials of mean force on

rmin through a Boltzmann inversion of the probability density p(rmin),

G(rmin) = −RT ln [p(rmin)] , (2)

for R the universal gas constant and T the temperature. Note that addition of an arbitrary

constant to Eq. (2) does not affect the distribution function, so we set the lowest free energy

to zero. Standard errors in the probability distribution were calculated using block averaging,

with 10 blocks, and propagated to the free energy in quadrature.

To average the free energy surfaces from the two simulations, we used Boltzmann averaging:

exp [−β〈G(rmin)〉] =
∑
i=1,2

exp [−βGi(rmin)] , (3)

where the index i goes over both simulations. Errors from the individual free energies were

propagated in quadrature.

To calculate the free energy change upon adsorption, we first calculated the dimensionless

association constant Kbind from the probability density function p(rmin), averaged over both

simulations, as

Kbind =
1− pbound

pbound

, (4)

for the total bound probability pbound =
∫ rbound

0
drminp(rmin) using a cutoff rbound = 4.5 Å.

Then we could estimate the averaged standard binding free energies as:

∆bindG
−◦ = RT ln

[
Kbind

csim

c−◦

]
, (5)
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with the csim/c
−◦ factor correcting for the difference between the simulation monomer con-

centration (1.74 mM) and the experimental standard state (1 M). Errors were propagated

in quadrature from the individual probability distribution functions.

To calculate the thermodynamics of adsorption, we considered the thermodynamic definition

of the enthalpy change ∆H under isobaric and isothermal constraints:

∆H)p,T = ∆U)p,T + p∆V )p,T , (6)

where the ∆ refers to the difference between bound and unbound states, U is the potential

energy, p is the pressure and V is the volume. In these simulations, the volume fluctuations

were negligible compared to the potential energy changes, so that the expansion work term in

Eq. (6) could be ignored and ∆bindH ≈ ∆bindU . Hence, by averaging the potential energies

when the peptide was bound (rmin < 4.5 Å) and unbound (rmin > 4.5 Å) and subtracting, we

could derive the enthalpy of binding. Standard errors were calculated using block averaging,

with 10 blocks. The individual estimates of binding enthalpies were then averaged to yield

an averaged adsorption enthalpy, with weights determined by estimate variance:

∆bindH =

∑
i=1,2wi∆bindHi∑

i=1,2wi
, (7)

where ∆bindHi and δ(∆bindHi) are respectively the estimate of ∆bindH and its error from the

ith simulation, and wi = δ(∆bindHi)
−2. Individual errors were propagated to the averaged

error via:

δ∆bindH =

√
1∑

i=1,2wi
. (8)

By knowing the total free energy change of adsorption and the enthalpic contribution, we

S5



could calculate the entropy change upon binding as:

−T∆bindS
−◦ = ∆bindG

−◦ −∆bindH, (9)

with errors propagated in quadrature.

To verify our estimate of the binding free energy, we estimated the range of binding free en-

ergies consistent with the coarse-grained simulations in10 by calculating the binding constant

KD as:

K−1
D = 2πNAL

∫ 1.5σ

σ

dr r exp(−βV (r)), (10)

where NA is Avogadro’s Constant, L is a characteristic lengthscale of binding, V (r) is the

interaction potential and σ is the particle width. In this work, the interaction potential was

non-zero only over the range r1.5σ and given by V (r) = −ε(σ/r)6, for ε the peptide-fibril

contact energy. Using the value of σ =2 nm and assuming a binding lengthscale equal to this,

L = σ, then the published range of contact energies consistent with secondary nucleation

ε ∈ (6, 16) kBT yielded values of standard binding free energies ∆bindG
−◦ = RT ln(KD/c

−◦ ) of

∆bindG
−◦ ∈ (−37,−15) kJ.mol−1, bracketing our estimate of ∆bindG

−◦ = −19 ± 2 kJ.mol−1.

The maximum in catalytic efficiency occurred for a value of ε = 8 kBT, corresponding to a

standard binding free energy of ∆bindG
−◦ = −19 kJ.mol−1.10

Intermolecular contact analysis

To investigate the nature of peptide-fibril interactions, we generated distance matrices be-

tween all protein non-hydrogen atoms using the Gromacs g mdmat tool, and converted to

a system contact probability matrix C, whose elements Ci,j measure the fraction of frames
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in which residues i and j are within 4.5 Å of each other, provided that some fibril atom is

within 4.5 Å of some peptide atom (i.e. the two species are in contact). This system-level

contact map was transformed to a reduced 42× 42 contact map C ′ whose elements C ′i,j mea-

sure the fraction of frames in which any fibril residue i is within 4.5 Å of free peptide residue

j, which was then integrated along rows and columns respectively to yield one-dimensional

arrays that measure the fibril and peptide contact hotspots. This was done for each indi-

vidual simulation, with the results averaged and standard errors calculated to generate the

curves shown in Fig. 3(a) of the main text.

To obtain a two-dimensional view of the binding process by identifying specific residue pairs

responsible for contact, we used a machine learning algorithm to extract the dominant bind-

ing modes observed in our simulations. We did this by performing a k-means clustering

analysis on all the matrices C ′(t) (from both simulations). We created instantaneous interac-

tion matrices from the distance matrices D through the continuous transformation Eq. (11)

to the distances, for β = 50 nm−1 and r0 = 4.5 Å:

Cij(t) =
1

1 + exp(β(Dij(t)− r0))
, (11)

Clustering was done using k = 4 clusters, as this was the best choice as determined by our

validation method described below. The clustering algorithm was the vq.kmeans function

of the scipy.cluster Python module. The results of the clustering are shown in Fig. 3(c)

of the main text, with the fourth minor cluster corresponding to a region of the fibril surface

that would be sequestered in inter-fibril binding to generate the two-fold symmetric surface,

and hence not biophysically relevant.

The validation of our choice of k follows the method described in,4 which balances the need

to describe the data adequately against the risk of overfitting. This is done by generating
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the metric ∆, defined as:

∆ = ||〈C〉t, 〈C〉k||, (12)

with || · · · || the L2 norm, 〈C〉t the contact map averaged over all simulation frames and 〈C〉k

the contact map averaged over just the frames closest to the cluster centers. This metric,

then, measures the ability of the clusters to describe the ensemble data. We fit the data to

several values of k, finding ∆ at each iteration, and determined the point at which adding

a cluster did not improve the fit (and hence entered the regime of overfitting). This was

determined as the point at which the fractional decrease in ∆ relative to using just two

clusters was no longer above 10%, which as shown in S5 occurs for k = 4.

Monomer configurational analysis

Intramolecular contact maps for the monomer were generated by building time-dependent

distance matrices of the peptide residues against themselves and converting each of these to

contact probability matrices by applying Eq. (11), with β = 50 nm−1 and r0 = 4.5 Å. These

contact probability maps were then averaged within the bound (rmin < 4.5 Å) and free sets

(rmin > 4.5 Å), and subtracted to generate the average free and difference maps shown in

Fig. 4 of the main text. The individual simulation contact maps were averaged, weighted

according to the fraction of time each simulation spent either as bound or free.

The β-propensity of the monomer was calculated as:

〈∆p(β)〉 =
1

42

42∑
i=1

∆p(β)i, (13)

with ∆p(β)i the difference in the fraction of frames in which the DSSP algorithm11 classified

residue i as β-sheet when the peptide was bound to or free from the fibril. This analysis

gave values of 2.0% residue−1 and 3.2% residue−1 for each individual simulation.
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Rational mutation design

To leverage the atomistic information we gleaned from our simulations, we designed several

peptide constructs which we believe will exhibit perturbed rates of secondary nucleation.

Before describing how we design mutations, it is helpful first to define two energies σ and ε:

σ(sfib) =
42∑
i=15

Bsfib(i),sfib(i) (14)

and

ε(sfib, spep, C ′) =
42∑
i=1

42∑
j=1

Vsfib(i),spep(j)C ′ij, (15)

where i and j are residue indices, sspecies(i) is the residue type of the ith element of the primary

structure of Aβ1−42 that makes up either the fibril (fib) or peptide (pep) species, C ′ is the

reduced fibril-peptide interaction contact map described previously, B is the Pasta potential

matrix (a knowledge-based potential describing interaction strengths between residue types

in amyloid structures)12 and V is the MJ statistical potential matrix.13 With such definitions,

then, σ captures the stability of a fibril made of the Aβ1−42 assuming parallel, in-register

structure where each residue mostly interacts with itself in the next amyloid chain counting

only the fibril core from the NMR structure. In contrast, ε is a measure of the interaction

energy between the fibril and the peptide, as captured in the concatenated reduced contact

map C ′.

To predict rational point mutations, we first identified each fibril residue that appeared in

some contact in C ′ with probability greater than a threshold (we took pmin = 0.05). For each

of these important fibril residues j, then, we systematically changed its residue type s(j) to

each of the other 19 amino acids, and calculated the effect of this mutation on both the fibril

stability and the interaction energy (taking both the cases that the fibril is mutated but the

free peptide is wild type, as well as both species mutated), assuming the same interaction
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contact map C ′. This algorithm then generated a collection of point mutants of the wild-type

peptide s0 → {s′k}, with each mutated sequence s′k having the following associated stability

and interaction energy changes:

∆σk = σ(s′k)− σ(s0) (16)

∆ε
M/WT
k = ε(s′k, s0, C ′)− ε(s0, s0, C ′) (17)

∆ε
M/M
k = ε(s′k, s

′
k, C ′)− ε(s0, s0, C ′), (18)

where the superscript in the ε terms indicate whether a mutant fibril is interacting with a

wild-type (WT) or mutant (M) monomer. Finally, for all generated mutants, we imposed

different criteria on ∆σ and ∆ε, described below, to create three lists of rational mutants

which we predict will have experimentally observable effects on the fibril-peptide adsorption

process and, hence, the secondary nucleation rate.

As described in the type key S1, we partitioned the identified mutants into three mutually

exclusive classes: Type I (S3) are those that are predicted not to affect the fibril stability

while affecting the adsorption energy; Type II (S4) are those that stabilize the fibril and

affect the adsorption energy; and Type III (S5) are those that affect the adsorption energy

(with the possibility of severely destabilizing the fibril). In the tables, ∆σ is the effect of

the mutation on the fibril stability, ∆εM/WT the effect on the interaction energy between a

mutant fibril and a wild type peptide and ∆εM/M the effect on the interaction energy between

a mutant fibril and a mutant peptide, all in units of kBT . S2 summarizes the meaning of the

symbols in each of the mutant tables in terms of , the effect on fibril stability or adsorption

energy. An ‘x’ entry denotes that the mutated residue lay in the disordered region of the

fibril, and hence would not be expected to affect fibril stability.
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Reweighting to different ionic strengths

Since it would have been prohibitive to run additional simulations at other ionic strengths

than the 150 mM used in our work, we reweighted the existing simulation data by using the

difference between the fibril-peptide Debye-Hückel electrostatic energy at 150 mM salt and

other ionic strengths from 20–300 mM. Specifically, the Debye-Hückel energy of coordinates

R at ionic strength I is given by:

EDH(R, I) =
∑
i∈fibril

∑
j∈peptide

qiqj
4πε0εrrij

exp[−rij/λD(I)] (19)

where qi and qj are two atomic partial charges on the fibril and peptide respectively, rij

the distance between them, and the Debye length λD is given by λD(I) = ((ε0εrkBT )/(2 ×

103NAe
2I))1/2, and kB is the Boltzmann constant, T the temperature, ε0 the permittivity of

free space, εr the dielectric constant, NA Avogadro’s number, e the elementary charge and

I the ionic strength in molar units. We used the intermolecular fibril-peptide energy rather

than the total electrostatic energy to reduce noise from the much larger fibril electrostatic

energy. The weight of each frame in computing averages was thus w ∝ exp[−β(EDH(I) −

EDH(150mM))], where β = (kBT )−1
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Supporting Figures

Figure S1: Starting configurations of protein atoms in both simulations (a) and (b), as (top)
view down fibril axis and (bottom) side view. The free monomer is shown in green, with
its N-terminus highlighted as a sphere, and the fibril in gray. Water molecules and ions not
shown for clarity. Figures made with PyMOL.
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A

B

Figure S2: Average inter- and intramolecular contacts between ordered regions (residues
14-42) of peptides which are part of the fibril. Contacts are any pairs of heavy atoms within
0.45 nm in the experimental structure. Results are shown for simulations 1 and 2 in (A) and
(B) respectively.

Figure S3: Ability of k-means clustering algorithm to describe binding data. (Top) Distance
metric ∆ and (bottom) relative improvement upon adding another cluster. Red line indicates
the 10% threshold used to avoid overfitting.
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Figure S4: Extrapolation of binding free energy to λ = 1.0, corresponding to the Amber
ff03w force field.14,15 Blue curve shows quadratic fit to the data to guide the eye.
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Figure S5: Esimate of the effect of ionic strength on binding free energy using a Debye-
Hückel approximation to the difference in peptide-fibril electrostatic energy between the
simulated (150 mM) and target ionic strengths.
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Supporting Tables

Table S1: Mutation type key.

Mutation type Effect on fibril stability Effect on adsorption energy
Type I |∆σ| < 1 kBT |∆ε| > 1 kBT
Type II ∆σ < 1 kBT |∆ε| > 1 kBT
Type III – |∆ε| > 1 kBT

Table S2: Symbol key.

Symbol ∆E range / kBT Symbol ∆E range / kBT
- (-1,0) + (0,1)
-- (-2,-1) ++ (1,2)
--- (-3,-2) +++ (2,3)
---- < −3 ++++ >3

Table S3: Type I mutations.

Mutant ∆σ ∆εM/WT ∆εM/M

E11F x - --
E11L x - --
H13F x -- ---
H13I x -- --
H13K x ++ ++
H13L x -- ---
H13M x -- --
H13V x -- --
H13W x -- --
Q15A - -- --
Q15K + ++ ++
K16R + -- --
S26C - - --
S26M - -- --
S26W - -- --
S26Y - - --
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Table S4: Type II mutations.

Mutant ∆σ ∆εM/WT ∆εM/M Mutant ∆σ ∆εM/WT ∆εM/M

Q15C -- --- ---- D23F ---- - --
Q15F --- ---- ---- D23I ---- - --
Q15H -- -- -- D23L --- - --
Q15I ---- ---- ---- D23M -- - --
Q15L -- ---- ---- D23V ---- - --
Q15M -- ---- ---- D23W --- - --
Q15V ---- ---- ---- D23Y -- - --
Q15W -- ---- ---- S26F -- -- ---
Q15Y -- ---- ---- S26I --- -- --
K16C -- --- --- S26L -- -- ---
K16F --- ---- ---- S26V --- -- --
K16H -- -- -- K28F --- - --
K16I ---- ---- ---- K28I ---- - --
K16L --- ---- ---- K28L --- - --
K16M -- --- ---- K28M -- - --
K16V ---- --- ---- K28V ---- - --
K16W -- ---- ---- K28W -- - --
K16Y -- --- ---- K28Y -- - --
E22F --- - -- G37F --- -- --
E22I ---- - -- G37I ---- - --
E22L --- - -- G37L --- -- --
E22M -- - --
E22V ---- - --
E22W --- - --
E22Y -- - --

References

(1) Abascal, J. L.; Vega, C. A general purpose model for the condensed phases of water:

TIP4P/2005. J. Chem. Phys. 2005, 123, 234505.

(2) Hess, B.; Kutzner, C.; Van Der Spoel, D.; Lindahl, E. GROMACS 4: algorithms for

highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory

Comput. 2008, 4, 435–447.

(3) Best, R. B.; Zheng, W.; Mittal, J. Balanced protein–water interactions improve prop-

S16



Table S5: Type III mutations.

Mutant ∆σ ∆εM/WT ∆εM/M

V36A +++ + ++
V36D ++++ ++ ++
V36E ++++ ++ ++
V36G ++++ ++ ++
V36H ++ + ++
V36K ++++ ++ +++
V36N ++ ++ ++
V36P ++++ ++ ++
V36Q ++++ ++ ++
V36R ++++ ++ ++
V36S +++ ++ ++
V36T +++ ++ ++

erties of disordered proteins and non-specific protein association. J. Chem. Theory

Comput. 2014, 10, 5113–5124.

(4) Meng, F.; Bellaiche, M. M.; Kim, J.-Y.; Zerze, G. H.; Best, R. B.; Chung, H. S. Highly

Disordered Amyloid-β Monomer Probed by Single-Molecule FRET and MD Simulation.

Biophys. J. 2018, 4, 870–884.

(5) Bonomi, M.; Branduardi, D.; Bussi, G.; Camilloni, C.; Provasi, D.; Raiteri, P.; Dona-

dio, D.; Marinelli, F.; Pietrucci, F.; Broglia, R. A. et al. PLUMED: A portable plugin

for free-energy calculations with molecular dynamics. Comput. Phys. Commun. 2009,

180, 1961–1972.

(6) Parrinello, M.; Rahman, A. Polymorphic transitions in single crystals: A new molecular

dynamics method. J. Appl. Phys. 1981, 52, 7182–7190.
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