THE LANCET Child & Adolescent Health

Supplementary appendix

This appendix formed part of the original submission and has been peer reviewed. We post it as supplied by the authors.

Supplement to: Wade C, Frazer JS, Qian E, et al. Development of locally relevant clinical guidelines for procedure-related neonatal analgesic practice in Kenya: a systematic review and meta-analysis. *Lancet Child Adolesc Health* 2020; published online July 28. http://dx.doi.org/10.1016/S2352-4642(20)30182-6.

1	INFANT NEWBORN/
2	INFANT PREMATURE/
3	(neonate* or newborn* or infant* or baby or babies) ab ti
4	1 or 2 or 3
5	ANALGESIA/
6	ANALGESICS
7	CONSCIOUS SEDATION/
8	DEEP SEDATION/
9	PAIN MANAGEMENT/
10	PAIN PROCEDURAL /
10	PAIN POSTOPERATIVE/
12	(nain or analges* or sedat*) ab ti
13	("oral sucrose" or "oral dextrose" or "oral glucose") ab ti
14	("breast milk" or breastfeed*) ab ti
15	(sucking or pacifier*) ab ti
15	("sterning of pacificity").ab,ii.
10	"swaddl*" ab ti
17	(music or singing or lullaby) ab ti
10	(topical and local) ab ti
20	(noracetamel or onioid* or ketamine or ibunrofen) ab ti
20	("dorsal penile perve block*" or DPNR*)
21	5 or 6 or 7 or 8 or 9 or 10 or 11 or 12 or 13 or 14 or 15 or 16 or 17 or 18 or 19 or 20 or 21
22	(procedure* or procedural or intervention*) ab ti
23	(invasive or painful) ab ti
25	23 and 24
25	("heel prick*" or "heel stick*" or lancing) ab ti
20	(venepuncture* or venipuncture*) ab ti
27	"cannulation*" ab ti
20	"injection*" ab ti
30	(intromuscular or subcutaneous) ab ti
31	29 and 30
32	(catheterisation or catheterization) ab ti
33	"lumbar puncture*" ab ti
34	prongs ab ti
35	(abscess* and drain*) ab ti
36	("chest drain*" and insert*) ab ti
37	("chest drain*" and remov*) ab ti
38	(clubfoot or "club foot" or talipes) ab ti
39	(manipulat* or casting or Ponseti) ab ti
40	38 and 39
41	"circumcision*" ab ti
42	("gastric suction*" or "nasogastric suction*") ab ti
43	("total parenteral " or TPN).ab.ti.
44	"central venous catheter*" ab ti
45	"necroti* enterocolitis ".ab.ti.
46	42 or 43 or 44
47	45 and 46
48	25 or 26 or 27 or 28 or 31 or 32 or 33 or 34 or 35 or 36 or 37 or 40 or 41 or 47
49	4 and 22 and 48
50	limit 49 to animals
51	49 not 50
51	

Supplementary Table 1. Search strategy for MEDLINE*

*Search strategies for Embase, CENTRAL and CINAHL were adapted from this strategy

Supplementary	Table 2. List of	f comparisons	included in	meta-analysis

Analgesic	Comparator
Heart Rate*	
Breastfeeding	Placebo or no intervention
Expressed breast milk	Placebo or no intervention
Local anaesthesia	Placebo or no intervention
Music	Placebo or no intervention
Non-nutritive sucking	Placebo or no intervention
Non-nutritive sucking	Oral Sugar
Skin-to-skin	Skin-to-skin plus breastfeeding
Skin-to-skin	Placebo or no intervention
Oral Sugar	Placebo or no intervention
Swaddling	Placebo or no intervention
Oxygen Saturation*	
Breastfeeding	Placebo or no intervention
Expressed breast milk	Placebo or no intervention
Local anaesthesia	Placebo or no intervention
Music	Placebo or no intervention
Non-nutritive sucking	Placebo or no intervention
Non-nutritive sucking	Oral Sugar
Skin-to-skin	Placebo or no intervention
Oral Sugar	Placebo or no intervention
Premature Infant Pain Profile (PIPP)*	
Breastfeeding	Placebo or no intervention
Breastfeeding	Oral Sugar
Expressed breast milk	Placebo or no intervention
Expressed breast milk	Oral Sugar
Local anaesthesia	Placebo or no intervention
Non-nutritive sucking	Placebo or no intervention
Skin-to-skin	Placebo or no intervention
Skin-to-skin	Oral Sugar
Skin-to-skin	Swaddling
Oral Sugar	Placebo or no intervention
Neonatal Infant Pain Scale (NIPS)*	
Breastfeeding	Placebo or no intervention
Breastfeeding	Skin-to-skin
Breastfeeding	Oral Sugar
Non-nutritive sucking	Oral Sugar
Skin-to-skin	Oral Sugar
Oral Sugar	Placebo or no intervention
Swaddling	Placebo or no intervention
Neonatal Facial Coding System (NFCS	X)*
Expressed breast milk	Placebo or no intervention
Expressed breast milk	Oral Sugar
Skin-to-skin	Placebo or no intervention
Oral Sugar	Placebo or no intervention
Local anaesthesia	Placebo or no intervention
Douleur Aiguë du Nouveau-né scale (L	DAN)*
Expressed breast milk	Placebo or no intervention
Non-nutritive sucking	Placebo or no intervention
Non-nutritive sucking	Oral Sugar

* Outcome measure used for these comparisons

Study	n	Country	Methods	Procedure	Groups	Outcome measure	Age (days) at procedure (mean[SD])*
Abad 199642	28	Spain	RCT, PG	VP	OS, Placebo	HR, SpO ₂	6.5[3.1]
Abad 200148	47	Spain	RCT, PG	VP	OS, LA, OS+LA, Placebo	HR, SpO ₂	1.9[0.5]
Acharya 1998130	19	UK	RCT, PG	VP	LA, Placebo	HR, SpO ₂ , NFCS	27.5[15.5]
Acharya 200449	39	UK	RCT, XG	VP	OS, Placebo	HR, SpO ₂ , NFCS	27.2[24.4]
Ahuja 200050	25	India	RCT, XG	IMI	OS, Placebo, No intervention	HR, SpO ₂ , NFCS	3.5
Akcam 200451	34	Turkey	RCT, XG	HP	OS, Placebo	DAN	4[2.75]
Akcam 200452	60	Turkey	RCT, XG	HP	OS, Placebo	DAN	4.5[4.5]
Altun-Köroğlu 201053	75	Turkey	RCT, PG	HP	OS, EBM, Placebo	NFCS	6.4
Aydin 201922	100	Turkey	RCT, PG	HP	BF, No intervention	NIPS	••
Badiee 2009131	72	Iran	RCT, PG	HP	PCM, Placebo	HR, SpO ₂ , PIPP	3.0[0.6]
Basnet 201054	50	Nepal	RCT, PG	VP	OS, No intervention	DAN	
Bauer 200455	58	Germany	RCT, PG	VP	OS, Placebo	HR, PIPP	3.2[0.8]
Beken 2014132	25	Turkey	RCT, PG	VP	OS+NNS, NNS+Placebo	NIPS	
Bellieni 200156	17	Italy	RCT, XG	HP	OS, OS+NNS, Placebo, No intervention	PIPP	
Bellieni 200292	79	Italy	RCT, PG	HP	OS, NNS, OS+NNS, No intervention	DAN	
Bellieni 2013133	62	Italy	RCT, XG	IMI	OS, LA	DAN	
Bembich 2018 ₃₄	80	Italy	RCT, PG	HP	OS, BF, EBM, OS+Holding	NIPS	
Biran 2011134	76	France	RCT, PG	VP	OS+LA, OS+Placebo	PIPP, DAN	15.7[9.8]
Blass 199957	40	USA	RCT, PG	HP	OS, NNS+Placebo, NNS+OS, Placebo	HR	
Brovedani 200738	146	Italy	RCT, PG	HP	OS, BF, SW	PIPP	
Bucher 1995135	16	Switzerland	RCT, XG	HP	OS, Placebo	HR, SpO ₂	
Bueno 2012100	88	Brazil	RCT, PG	HP	OS, EBM	PIPP	
Butt 2000136	14	Canada	RCT, XG	HP	M, No intervention	HR, SpO ₂	8.2[3.1]
Campos 1989137	32	USA	RCT, PG	HP	NNS, SW	HR	
Carbajal 199958	150	France	RCT, PG	VP	OS, NNS, OS+NNS, Placebo, No intervention	DAN	3.6[0.4]
Carbajal 200259	39	France	RCT, XG	SC	OS, OS+NNS, Placebo	DAN	26.2[6.1]
Carbajal 200323	179	France	RCT, PG	VP	OS+NNS, BF, Placebo, No intervention	NIPS, DAN	3[0.4]
Cardoso 201493	80	Brazil	RCT, PG	AP	OS, M, OS+M	PIPP	4
Castral 2008104	60	Brazil	RCT, PG	HP	SS, No intervention	HR, NFCS	
Chermont 200994	640	Brazil	RCT, PG	IMI	OS, SS, OS+SS, Placebo	PIPP, NIPS, NFCS	1.2[0.3]
Chiabi 201635	100	Cameroon	RCT, PG	HP	OS, BF	NIPS	2.3[0.3]
Codipietro 2008 ₃₆	101	Italy	RCT, PG	HP	OS, BF	HR, SpO ₂ , PIPP	3.4[0.5]
Collados-Gomez 2018 ₁₃₈	66	Spain	RCT, XG	VP	OS+NNS+SW, EBM+NNS+SW	PIPP	9.1[2.0]
Cong 2009105	14	USA	RCT, XG	HP	SS, No intervention	HR	6.0[1.0]
Cong 2011106	28	USA	RCT, XG	HP	SS (30 minutes, 80 minutes), No intervention	PIPP	5.2[0.9]
Cong 2012107	26	USA	RCT, XG	HP	SS (15 minutes, 30 minutes), No intervention	HR	13.9[5.8]
Cook 201795	40	USA	RCT, PG	PICC	OS, Placebo	HR, SpO ₂ , PIPP	
Corbo 2000122	24	Italy	RCT, XG	HP	NNS, No intervention	HR	4.7[1.9]
De Bernardo 2019 ₁₃₉	66	Italy	RCT, PG	VP	OS (10%, 24%)+NNS	HR, SpO ₂ , NIPS	22.9[4.9]
De Melo 2017 ₁₄₀	28	Brazil	RCT, PG	AP	OS, M	NFCS	
Deshmukh 200260	60	India	RCT, PG	VP	OS (10%, 25%), Placebo	HR, SpO ₂	7.1[1.8]
Dezhdar 201643	82	Iran	RCT, PG	VP	SS, SW, No intervention	HR, PIPP	
Elserafy 200961	36	Saudi Arabia	RCT, PG	VP	OS, NNS, NNS+Placebo (water), NNS+OS, Placebo (water), No intervention	HR, SpO ₂ , PIPP	
Eriksson 199962	120	Sweden	RCT, PG	VP	OS, No intervention	PIPP	
Eriksson 2004 ₆₃	43	Sweden	RCT, PG	HP	OS, Placebo	PIPP	

Supplementary Table 3. Study characteristics table of all 149 included studies

Erkut 2017141	74	Turkey	RCT, PG	HP	SW, No intervention	HR, SpO2, PIPP, NIPS	
Fallah 201741	120	Iran	RCT, PG	IMI	BF, SS, SW	NIPS	
Field 1984118	96	USA	RCT, PG	HP	NNS, No intervention	HR	7.0[3.4]
Gajbhiye 201824	150	India	RCT, PG	IMI	OS, BF, No intervention	HR, SpO ₂ , PIPP	1.8[0.2]
Gao 2015117	76	China	RCT, PG	HP	SS, No intervention	HR	4.3[0.2]
Gao 201864	86	China	RCT, PG	HP	OS, NNS, OS+NNS, No intervention	HR, SpO ₂ , PIPP	5.1[0.2]
Gerull 2013142	25	Switzerland	RCT, PG	HP	OS, SW, OS+SW	HR	
Gharehbaghi 2007 ₆₅	60	Iran	RCT, PG	VP	OS, Placebo	HR	5.6[1.1]
Gibbins 2002143	190	Canada	RCT, PG	HP	OS, OS+NNS, NNS+Placebo(water)	PIPP	
Golestan 200796	60	Iran	RCT, PG	IMI	OS, Placebo, No intervention	HR	0.6[0.1]
Gormally 200197	85	Canada	RCT, PG	HP	OS, OS+Holding, Placebo (water)+Holding, No intervention	HR	2.3[0.3]
Gradin 2002144	196	Sweden	RCT, PG	VP	OS+Placebo (cream), LA+Placebo (water)	HR, PIPP	4.3[3.3]
Gradin 200466	79	Sweden	RCT, PG	VP	OS, OS+BF, BF+Placebo, Placebo	PIPP	
Gray 2000108	30	USA	RCT, PG	HP	SS, No intervention	HR	
Gray 200225	30	USA	RCT, PG	HP	BF, No intervention	HR	
Gray 201298	45	USA	RCT, PG	VC	OS, NNS, No intervention	HR	
Haouari 199544	60	United Kingdom	RCT, PG	HP	OS (12.5%, 25%, 50%), Placebo	HR	3.5[0.6]
Harrison 200367	128	Australia	RCT, PG	HP	OS, Placebo	NFCS	18.8[13.3]
Hashemi 201626	131	Iran	RCT, PG	IMI	BF, SW, BF+SW, No intervention	HR, SpO ₂ , NFCS	1.7[0.8]
Hatami Bavarsad 2018 ₂₇	75	Iran	RCT, PG	IMI	BF, EBM, No intervention	HR, SpO ₂ , DAN	
Ho 2016145	54	Hong Kong	RCT, PG	HP	SW, No intervention	HR, SpO ₂ , PIPP	9.9[7.6]
Holsti 2011146	57	Canada	RCT, PG	HP	BF, NNS	HR	9
Hsieh 201899	20	Taiwan	RCT, XG	HP	OS, EBM, Placebo, No intervention	PIPP	
Huang 2004147	32	Taiwan	RCT, XG	HP	SW, No intervention	HR, SpO ₂ , PIPP	7.5[7.1]
Jain 2000148	39	United Kingdom	RCT, PG	VP	LA, Placebo	NFCS	7.0[3.8]
Jatana 200345	125	India	RCT, PG	HP	OS, EBM, Placebo	HR, SpO ₂	
Johnston 199768	87	Canada	RCT, PG	HP	OS, SW+Rocking, OS+SW+Rocking, Placebo (water)	HR	5.7[1.2]
Johnston 199969	47	Canada	RCT, PG	HP	OS, Placebo	PIPP	6.5[1.6]
Johnston 2003109	74	Canada	RCT, XG	HP	SS, No intervention	HR, SpO ₂ , PIPP	
Johnston 2008149	61	Canada	RCT, XG	HP	SS, SW	PIPP	
Kashaninia 2008110	100	Iran	RCT, PG	IMI	SS, No intervention	NIPS	0.08
Kaur 2003150	60	India	RCT, PG	LP	LA, Placebo	HR, SpO ₂ , NFCS	3.4
Kristoffersen 2018 ₁₅₁	53	Norway, South Africa	RCT, XG	VP	OS (0.2 mL, 0.5 mL)	PIPP	
Kurdahi Badr 2017 ₁₅₂	126	Lebanon	RCT, XG	HP	M, No intervention	HR, SpO ₂ , PIPP	
Larsson 1998153	111	Sweden	RCT, PG	VP	LA, No intervention	NFCS	5.0[0.8]
Leite 200928	60	Brazil	RCT, PG	HP	BF, No intervention	HR, SpO ₂ , NFCS	
Lemyre 2007154	137	Canada	RCT, PG	VP	OS+LA+NNS+SW, OS+Placebo (cream)+NNS+SW	PIPP	6.7[2.2]
Leng 2016155	671	China	RCT, PG	НР	OS, OS+NNS, OS+SW, OS+NNS+SW	HR, SpO2, NIPP, NFCS	
Liaw 2010119	104	Taipei , USA	RCT, PG	HP	NNS, No intervention	PIPP	6.4[2.0]
Liaw 201170	165	Taiwan	RCT, PG	ĪMI	OS, NNS, No intervention	HR, NFCS	2.5[0.2]
Liaw 2012120	34	Taiwan	RCT, XG	HP	NNS, SW, No intervention	PIPP	7.0[5.0]
Lima 201329	64	Brazil	RCT, PG	VP	BF, NNS, No intervention	NIPS	
Lima 2017101	78	Brazil	RCT, PG	IMI	OS, NNS	HR, SpO ₂ , NIPS	0.8[0.2]
Lindh 2000156	56	Sweden	RCT, PG	VP	LA, Placebo	HR	3.4[0.4]
Liu 201071	105	Taipei	RCT, PG	VP	OS, NNS, No intervention	NIPS	3.0[0.6]
Liu 2015111	40	China	RCT, PG	HP	SS, No intervention	HR, SpO ₂	

Long 2003157	32	Northern Ireland	RCT, PG	VP	LA, Placebo	NFCS	6.9[1.2]
Ludington-Hoe 2005112	23	USA	RCT, XG	HP	SS, No intervention	HR, SpO ₂	22[11·4]
Marcatto 2011158	30	Brazil	RCT, PG	PICC	OS+LA, OS+Placebo (cream), LA+Placebo (water)	HR, NIPS	
Marin Gabriel 2013 ₁₅₉	127	Spain	RCT, PG	HP	OS, SS, OS+SS, BF+SS	HR, SpO ₂ , NIPS	
Marofi 2015160	50	Iran	RCT, PG	HP	M, No intervention	HR, SpO ₂ , PIPP	
Mathai 200672	70	India	RCT, PG	HP	OS, EBM, NNS, Placebo	DAN	1.9[0.01]
Milazzo 201173	47	USA	RCT, PG	AP	OS, No intervention	HR, SpO ₂ , NIPS	
Mirzarahimi 2013 ₁₂₁	60	Iran	RCT, PG	HP	NNS, No intervention	HR, SpO ₂ , PIPP	
Morrow 2010161	42	USA	RCT, PG	HP	SW, No intervention	NIPS	••
Mosayebi 2014162	64	Iran	RCT, XG	HP	SS, SS+SW	PIPP	7.3[3.7]
Nimbalkar 2013113	47	India	RCT, XG	HP	SS, No intervention	PIPP	
Noori Shadkam 2008163	220	Iran	RCT, PG	VP	OS+Placebo (cream), LA+Placebo (water)	NIPS	4.1
Obeidat 2015 ₃₀	128	Jordan	RCT, PG	HP	BF, No intervention	PIPP	5.8[0.3]
Ogawa 200574	50	Japan	RCT, PG	VP, HP	OS, Placebo	NFCS	
Okan 200775	93	Turkey	RCT, XG	HP	OS, Placebo	HR, SpO ₂ , NFCS	
Okan 2010114	107	Turkey	RCT, PG	HP	SS, BF+SS, Placebo	HR, SpO ₂ , NFCS	1.4[0.1]
Olsson 2016115	10	Sweden	RCT, XG	VP	SS, No intervention	HR, SpO ₂ , PIPP	6.6[4.7]
Ors 199976	102	Turkey	RCT, PG	HP	OS, EBM, Placebo	HR	1.4[1.6]
Ou-Yang 201377	123	Taiwan	RCT, PG	HP	OS, EBM, Placebo	HR, SpO ₂ , PIPP	
Overgaard 1999 ₇₈	96	Denmark	RCT. PG	HP	OS. Placebo	NIPS	
Ozdogan 201079	142	Turkey	RCT, PG	HP	OS (single, double dose), EBM (single, double dose), Placebo (double, single (dose)	NFCS	2.2[0.2]
Patel 2003164	10	Canada	RCT, XG	HP	P LA, Placebo F		2.8[1.4]
Peng 2018165	109	Taiwan	RCT, PG	HP	IP NNS+EBM, NNS+EBM+SW, No intervention F		13.1[6.6]
Ramenghi 199647	60	UK	RCT, XG	HP	IPOS (25%, 50%, sweetener), PlaceboH		0.3[0.2]
Ramenghi 199680	15	United Kingdom	RCT, XG	HP	OS, Placebo	HR	8.7[6.5]
Rawal 201881	63	India	RCT, PG	HP	OS, EBM, Placebo	HR, SpO ₂ , PIPP	3.1[0.7]
Rioualen 201840	102	France	RCT, PG	VP	OS, BF	NFCS	2.9[0.5]
Rogers 200682	33	USA	RCT, PG	BC	OS, Placebo	DAN	••
Rossi 2018166	120	Italy	RCT, PG	IMI, HP	M (Mozarts, Beethoven, heartbeat sounds), No intervention	HR, SpO ₂ , NIPS	
Saeidi 2011116	60	Iran	RCT, PG	IMI	SS, No intervention	SpO2, NIPS	
Sahoo 201383	160	India	RCT, PG	VP	OS, EBM, Placebo	HR, SpO ₂ , PIPP	3.3[0.8]
Sajedi 200684	40	Iran	RCT, PG	IMI	OS, Placebo	HR, NIPS	
Shabani 2016167	20	Iran	RCT, XG	AP	M, No intervention	HR, SpO ₂ , NFCS	
Shah 2017168	35	Australia	RCT, XG	HP	OS, M, OS+M	HR, SpO ₂ , PIPP	4.0[6.0]
Shu 2014169	50	Taiwan	RCT, PG	HP	SW, No intervention	HR, SpO2, PIPP, NIPS	1.9[1.0]
Shukla 2018170	100	India	RCT, PG	HP	OS, SS	PIPP	14.04[11.10]
Shukla 2018171	200	India	RCT, PG	HP	EBM, SS+EBM, SS+EBM+M, M+EBM	PIPP	8.2[7.4]
Simonse 201239	70	Netherlands	RCT, PG	HP	OS, BF, EBM	PIPP	
Singh 201731	80	India	RCT, PG	HP	BF, No intervention	HR, SpO ₂	l
Skogsdal 199746	120	Sweden	RCT, PG	HP	OS, EBM, No intervention	HR, SpO ₂	5.4[4.9]
Slater 201085	44	United Kingdom	RCT, PG	HP	OS, Placebo	PIPP	3.0[2.0]
Soliman 2016172	60	Egypt	RCT, PG	CPAP	LA, No intervention	PIPP	4.3[2.9]
Soltani 201837	161	Iran	RCT, PG	HP	OS, BF, SS, LA	NIPS	
Stevens 1999173	122	Canada	RCT, XG	HP	OS+NNS, NNS+placebo (water), No intervention	PIPP	
Stevens 1999174	106	Canada	RCT, XG	HP	LA, Placebo	HR, SpO ₂ , PIPP	4.1[0.6]
Stevens 2018175	236	Canada	RCT, PG	HP	OS (0.1 mL, 0.5 mL, 1.0 mL)+NNS	PIPP	8.3
	L					l	

Suhrabi 201486	90	Iran	RCT, PG	IMI	IMI OS (sucrose, glucose), No intervention		
Sujatha 2017176	155	India	RCT, PG	IMI	SW, OS+SW	SpO ₂ , NIPS	
Taddio 200887	240	Canada	RCT, PG	IMI, VP, HP	OS, Placebo	PIPP	0.04[0.01]
Taddio 2011177	321	Canada	RCT, PG	VP	VP OS+LA, LA+Placebo (water), OS+Placebo (cream)		
Thakkar 201688	180	India	RCT, PG	HP	OS, NNS, OS+NNS, No intervention	PIPP	
Tutag Lehr 201589	56	USA	RCT, PG	HP	OS, Placebo	NIPS	
Upadhyay 2004102	81	India	RCT, PG	VP	EBM, Placebo	HR, SpO ₂ , NFCS	8.8[5.0]
Uyan 2005103	62	Turkey	RCT, PG	HP	EBM (foremilk, hind milk), Placebo	HR	6.3[1.1]
Uzelli 201590	80	Turkey	RCT, PG	IMI	OS, No intervention	SpO2, NIPS	22.3[0.7]
Yilmaz 201191	120	Turkey	RCT, PG	HP	OS, EBM, NNS, No intervention	HR, NIPS	3.4[0.4]
Zargham- Boroujeni 2017 ₃₂	75	Iran	RCT, PG	VP	BF, No intervention	NIPS	
Zhu 201533	250	China	RCT, PG	HP	BF, M, BF+M, No intervention	NIPS	3.3[0.3]

PG = parallel groups, XG - crossover groups, RCT = randomised controlled trials, PG = parallel groups, XG = crossover groups, VP = venepuncture, HP = heel prick, IMI = IM injection, LP = lumbar puncture, PICC = PICC line insertion, CPAP = CPAP prongs insertion, BC = bladder catheterisation, SC = subcutaneous injection, VC = vaccination, OS = oral sugar, BF = breastfeeding, EBM = expressed breast milk, NNS = non-nutritive sucking, SS = skin-to-skin, SW = swaddling, LA = topical local anaesthetic, PCM = paracetamol, M = music

*Reported where available, or where available data could be converted to a mean and standard deviation for the study population using previously described methodology.1–3

1. Hozo S.P., Djulbegovic B, Hozo I. Estimating the mean and variance from the median, range, and the size of a sample. BMC Med Res Methodol. 2005;**5**,13

2. Wan X, Wang W, Liu J, Tong T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol. 2014;**14**:135

3. Bornstein M, Hedges L.V, Higgins J.P.T, Rothstein H. (2009) "Introduction to Meta-Analysis" Print ISBN:9780470057247 Copyright © 2009 John Wiley & Sons, Ltd

Supplementary Table 4: Panel's GRADE summary of evidence table for PICO questions discussed in Results

PICO: In neonates ≤ 28 days, which of the following is superior in reducing pain during routine procedures?	Studies	Neonates	Bias	Inconsistency	Indirectness	Imprecision	Summary	Certainty†
BF versus placebo/no intervention	12	991					BF is superior to placebo/no intervention**	⊕⊕⊕⊕
BF versus OS	8	670					BF is superior to OS**	@@ OO
BF versus EBM	3	136					BF is superior to EBM	@@@ ()
BF versus SS	2	160					BF is superior to SS**	⊕⊕⊕⊖
EBM versus placebo/no intervention	14	863					EBM is superior to placebo/no intervention **	⊕⊕⊕⊖
EBM versus OS	14	920					EBM is inferior to OS $\geq 10\%$.	@@@ O
OS versus placebo/no intervention	58	3948					OS is superior to placebo/no intervention**	@@@@
OS versus NNS	11	645					OS is superior to NNS	@@ OO
OS versus OS with NNS	10	837					OS is inferior to OS with NNS	@@@ ()
OS: concentration ≥24% versus <24% 1	6*	453					$OS \ge 24\%$ is superior to <24% solution	@@@ O
OS: concentration 24-25% versus 50%1	3*	110					OS 24-25% may not be inferior OS 50%	€000
OS: volume ≤2 mL versus >2 mL2	*						Volumes >2 mL do not increase efficacy	@@@ ()
Sucrose, glucose, dextrose, fructose versus sweetener3	*						None are clearly superior to the others	@@@ ()
SS versus placebo/no intervention	16	1054					SS is superior to placebo/no intervention**	⊕⊕⊕⊕
NNS versus placebo/no intervention	16	932					NNS is superior to placebo/no intervention **	@@@ ()
NNS versus NNS with OS	4	192					NNS is inferior to NNS with OS**	⊕⊕⊕⊕

BF: Breastfeeding; OS: Oral sugar; EBM: Expressed breastmilk; NNS: Non-nutritive sucking; SS: Skin-to-skin

Notes:

1. Oral sugar concentration: range = 5-50%, median: 25%. The concentrations directly compared varied. We grouped according to <24%, $\ge24\%$ and 50%.

2. Volume: range= 0.05-5 mL, median=2 mL

3. Sucrose (number of studies (#) = 52), glucose (#=33), dextrose (#=8), sweetener (#=2) fructose (#=1))

* No/few direct comparative studies, therefore indirect analysis across whole data set performed.

** Quantitative analysis of any one of the outcome measures supports conclusion with 95% confidence

† The GRADE framework also allows for "Other Considerations" to determine the overall certainty in effect estimate.

	Risk of bia	as		Certainty of	of conclusion u	sing GRADE	analysis
KEY	Not serious	Serious	Very serious	⊕⊕⊕⊕ High	⊕⊕⊕ ○ Moderate		⊕ ○○○ Very low

Supplementary Table 5. Summary of narrative synthesis findings with associated references showing superiority, equivalence or inferiority of the analgesic versus the comparator as described in the Results

	PICO	Analgesic versus Comparator					
Analgesic	Comparator	Superior	Equivalence	Inferior			
Breastfeeding	Placebo or no intervention	22,23,24,25,26,27,28,29,30,31,32,33					
Breastfeeding	Oral sugar	24,34,35,36,37	38,39	40			
Breastfeeding	Expressed breast milk	27,34		39			
Breastfeeding	Skin-to-skin	37,41					
Oral sugar ≥24%	Oral sugar <24%	42,43,44,45,46		47			
Oral sugar	Placebo or no intervention	24,42,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58, 59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75, 76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91	92,93,94,95, 96,97,98,99				
Oral sugar	Expressed breast milk	45,46,76,77,79,81,83,91,100	34,39,53,72,99				
Oral sugar	Non-nutritive sucking	91,101	61,64,70,88,92,98	58,71,72			
Expressed breast milk	Placebo or no intervention	45,53,76,77,81,83,91,99,102	27,46,72,79,103				
Skin-to-skin	Placebo or no intervention	43,94,104,105,106,107,108,109,110,111,112,113,114 ,115,116,	117				
Non-nutritive sucking	Placebo or no intervention	29,56,58,61,64,70,71,72,88,91,98,118,119,120,121	122				

Supplementary Table 6. Panel's GRADE summary of evidence table for PICOs not discussed in Results

	T	1	r –	r –	r –	-		T
PICO: In neonates ≤ 28 days, which of the following is superior in reducing pain during routine, acutely painful procedures?	Studies	Neonates	Bias	Inconsistency	Indirectness	Imprecision	Summary	Certainty†
BF versus swaddling	3	243					BF may not be inferior to swaddling	0 000
BF versus BF with music	1	126					BF is not inferior to BF with music	0000
Sugar versus skin to skin	4	561					Sugar may be inferior to skin-to-skin**	@ 000
Sugar versus LA	7	880					Sugar is superior to LA	$\Theta \Theta \Theta \Theta$
Sugar versus sugar with skin-to-skin	2	387					Sugar is inferior to sugar with skin-to-skin	0000
Sugar versus sugar with LA	4	335					Sugar is not inferior to sugar with LA	⊕⊕⊕⊖
Sugar versus sugar with music	2	115					Sugar is inferior to sugar with music	0000
Skin-to-skin versus swaddling	3	255					Skin-to-skin is no different than swaddling**	0 000
NNS versus swaddling	2	101					NNS is no different than swaddling	0 000
LA versus placebo/no intervention	11	656					LA is not superior to placebo/no intervention**	0000
LA versus LA with sugar	3	256					LA is not inferior to LA with sugar	⊕⊕⊕⊖
Swaddling versus placebo/no intervention	8	410					Swaddling is not superior to placebo/no intervention	0000
Swaddling versus swaddling with BF or NNS	2	197					Swaddling is not inferior to swaddling with BF or NNS	0 000
Music versus placebo/no intervention	6	487					Music is not superior to placebo/no intervention**	0000

BF = breastfeeding, LA = topical local anaesthetics, NNS = non-nutritive sucking. ** Quantitative analysis of any of the outcome measures supports conclusion with 95% confidence threshold

† The GRADE framework also allows for "Other Considerations" to determine the overall certainty in effect estimate.

	Risk of bias			Certainty of conclusion using GRADE analysis					
KEY	Not serious	Serious	Very serious	⊕⊕⊕⊕ High	⊕⊕⊕ ⊖ Moderate		⊕ ○○○ Very low		

Supplementary Table 7. Table counting the number of the 149 studies, which studied the following procedures, analgesics and outcome measures

Procedures	n	Analgesics	n	Outcome measures	n
Heel prick	88	Oral sugar	78	Heart rate	76
Venipuncture/cannula	40	Skin-to-skin	22	Transcutaneous oxygen saturation	49
IM/SC injection	19	Breast feeding	21	Premature infant pain profile (PIPP)	57
Arteripuncture	4	Expressed breast milk	19	Neonatal facial coding system (NFCS)	22
CPAP prongs insertion	1	Non-nutritive sucking	19	Neonatal infant pain scale (NIPS)	32
Urinary catheterisation	1	Topical local anaesthesia	13	Douleur Aigue du Nouveau-ne scale (DAN)	12
Lumbar puncture	1	Swaddling	15		I
		Music	9		
		Paracetamol	1		

Supplementary Table 8. Table of each component judged for Cochrane risk of bias for each study included in analysis

	Sequence Generation	Allocation concealment	Blinding of participants and personnel	Blinding of outcome assessors	Incomplete outcome data	Selective outcome reporting	Other sources of bias	Overall judgement of study risk of bias
Abad 199642								
Abad 200148								
Acharva 1998 ₁₃₀								
Acharya 200449								
Ahuja 200050								
Akcam 200451								
Akcam 200452								
Altun-Koroglu 201053								
Avdin 201922								
Badiee 2009131								
Basnet 201054								
Bauer 200455								
Beken 2014132								
Bellieni 200156								
Bellieni 200292								
Bellieni 2013133								
Bembich 2018 ₃₄								
Biran 2011134								
Blass 199957								
Brovedani 2007 ₃₈								
Bucher 1995135								
Bueno 2012100								
Butt 2000136								
Campos 1989137								
Carbaial 199958								
Carbaial 200259								
Carbajal 200323								
Cardoso 201493								
Castral 2008104								
Chiabi 2016a								
Codinietro 200824								
Collados-Gomez								
2018 ₁₃₈								
Cong 2009105								
Cong 2011106								
Cong 2012107								
Cook 201795								
Corbo 2000122								
DeBernardo 2019 ₁₃₉								
DeMelo 2017140								
Deshmukh 200240								
Dezhdar 201643								
Elserafy 2009								
Eriksson 1999								
Eriksson 200463								
Erkut 2017141								

Fallah 201741				
Field 1984118				
Gaibhive 2018 ₂₄				
Gao 2015117				
Gao 201864				
Gerull 2013142				
Gharebbaghi				
2007 ₆₅				
Gibbins 2002143				
Golestan 2007oc				
Gormally 2001				
Gormany 20019/				
Gradin 2004				
Grav 2000				
Gray 2000108				
Grav 200225				
Gray 201298				
Haouari 199544		 		
Harrison 200367				
Hasnemi 201626				
natamiBavarsad				
20102/ Up 2016				
<u>по 2010</u> 145				
HOISU 2011146				
Histen 201899				
Huang 2004147				
Jain 2000148				
Jatana 200345				
Johnston 199768				
Johnston 199969				
Johnston 2003109				
Johnston 2008149				
Kashaninia 2008110				
Kaur 2003150				
Kristoffersen				
2018151				
KurdahiBadr				
2017152				
Larsson 1998153				
Leite 2009 ₂₈	 			
Lemyre 2007154				
Leng 2016155			 	
Liaw 2010119				
Liaw 201170				
Liaw 2012120				
Lima 201329				
Lima 2017101				
Lindh 2000156				
Liu 201071				
Liu 2015111				
Long 2003157				
Ludington-Hoe				
2005112				
Marcatto 2011158				
Marin Gabriel				
2013159				
Marofi 2015160				
Mathai 200672				
Milazzo 201173				
Mirzarahimi				
2013121				
Morrow 2010161				
Mosayebi 2014 ₁₆₂				
Nimbalkar 2013113				
NooriShadkam				
2008163				
Obeidat 2015 ₃₀				
Ogawa 200574				
Okan 200775				
Okan 2010114				
Olsson 2016115				
Örs 199976				

Ou-Yang 201377				
Overgaard 199978				
Ozdogan 201079				
Patel 2003164				
Peng 2018165				
Ramenghi 199647				
Ramenghi 199680				
Rawal 201881				
Rioualen 201840				
Rogers 200682				
Rossi 2018166				
Saeidi 2011116				
Sahoo 201383				
Sajedi 200684				
Shabani 2016167				
Shah 2017168				
Shu 2014169				
Shukla 2018170				
Shukla 2018171				
Simonse 201239				
Singh 201731				
Skogsdal 199746				
Slater 201085				
Soliman 2016172				
Soltani 201837				
Stevens 1999173				
Stevens 1999174				
Stevens 2018175				
Suhrabi 201486				
Sujatha 2017176				
Taddio 200887				
Taddio 2011177				
Thakkar 201688				
Tutag Lehr 201589				
Upadhyay 2004102				
Uyan 2005103				
Uzelli 201590				
Yilmaz 201191				
Zargham-				
Boroujeni 201732				
Zhu 2015133				

Legend for Cochrane risk of bias assessment

breastfeeding versus placebo or no intervention for heart rate % SMD (95% CI) Study Weight 0.31 (-0.08, 0.70) Gajbhiye 201824 34.24 HatamiBavarsad 201827 -3.97 (-4.95, -2.98) 31.92 Leite 200928 -0.98 (-1.52, -0.44) 33.84 Overall(I-squared = 97.0%, p = <0.0001) -1.49 (-3.44, 0.46) 100.00 NOTE: Weights are from random effects analysis 4.95 -4.95 0 Note: P-value for test of standardised mean difference: 0.13

Supplementary Figure 1: Standardised mean differences and their confidence intervals for the comparison of

Supplementary Figure 2: Standardised mean differences and their confidence intervals for the comparison of breastfeeding versus placebo or no intervention for oxygen saturation

Supplementary Figure 3: Standardised mean differences and their confidence intervals for the comparison of breastfeeding versus placebo or no intervention for NIPS

Note: P-value for test of standardised mean difference: < 0.001

Abbreviations: NIPS=Neonatal Infant Pain Scale. CI=confidence interval. SMD=standardised mean difference

Supplementary Figure 4: Standardised mean differences and their confidence intervals for the comparison of breastfeeding versus oral sugar for PIPP

Note: P-value for test of standardised mean difference: 0.46

Supplementary Figure 5: Standardised mean differences and their confidence intervals for the comparison of breastfeeding versus oral sugar for NIPS

Note: P-value for test of standardised mean difference: 0.002

Abbreviations: CI=confidence interval, SMD=standardised mean difference, NIPS=Neonatal Infant Pain Scale

Supplementary Figure 6: Standardised mean differences and their confidence intervals for the comparison of breastfeeding versus skin-to-skin for NIPS

Note: P-value for test of standardised mean difference: 0.02

Abbreviations: CI=confidence interval. SMD=standardised mean difference. NIPS=Neonatal Infant Pain Scale

Supplementary Figure 7. Standardised mean differences and their confidence intervals for the comparison of oral sugar versus placebo or no intervention for heart rate

		%
Study	SMD (95% CI)	Weight
!		
Abad 199642	-1.10 (-2.07, -0.13)	3.52
Acharya 200449	-0.39 (-0.84, 0.06)	7.36
Ahuja 2000 ⁵⁰	-0.47 (-1.04, 0.09)	6.30
Bauer 200455	-1.35 (-2.06, -0.63)	5.08
Deshmukh 200260	-0.45 (-1.08, 0.17)	5.73
Gajbhiye 2018 ²⁴	0.06 (-0.33, 0.45)	7.91
Gao 201864	-0.56 (-1.18, 0.06)	5.82
Gharehbaghi 200765	0.33 (-0.18, 0.84)	6.78
Gormally 200197	0.02 (-0.58, 0.63)	5.92
Milazzo 2011 ⁷³	-0.13 (-0.71, 0.44)	6.21
Okan 2007 ⁷⁵	-0.12 (-0.62, 0.38)	6.89
Ou-Yang 2013 ⁷⁷	-0.12 (-0.55, 0.32)	7.53
Ramenghi 199680	-0.15 (-0.87, 0.56)	5.05
Rawal 2018 ⁸¹	-1.23 (-1.90, -0.57)	5.44
Sahoo 2013 ⁸³	-0.92 (-1.33, -0.50)	7.67
Yilmaz 201191	-0.25 (-0.76, 0.26)	6.79
Overall(I-squared = 62.3%, p = <0.0001)	-0.38 (-0.61, -0.16)	100.00
NOTE: Weights are from random effects analysis		
-2.07 0	2.07	

Note: P-value for test of standardised mean difference: 0.001 Abbreviations: CI=confidence interval, SMD=standardised mean difference

Supplementary Figure 8. Standardised mean differences and their confidence intervals for the comparison of oral sugar versus placebo or no intervention for PIPP

			%
Study		SMD (95% CI)	Weight
Bauer 2004 ⁵⁵	⊹ ∎-	-0.55 (-1.18, 0.08)	9.01
Bellieni 200156	- -	-0.08 (-0.75, 0.59)	8.89
Chermont 200994	+	-0.05 (-0.27, 0.17)	9.92
Eriksson 1999 ⁶²		-1.09 (-1.64, -0.55)	9.26
Gao 2018 ⁶⁴		-1.79 (-2.51, -1.06)	8.72
Gradin 200466		-0.87 (-1.56, -0.17)	8.81
Hsieh 2018 ⁹⁹	- 	-0.76 (-1.40, -0.12)	8.97
Rawal 2018 ⁸¹		-1.68 (-2.39, -0.97)	8.76
Sahoo 201383		-3.82 (-4.49, -3.14)	8.88
Slater 201085		-0.36 (-0.96, 0.24)	9.11
Taddio 2008 ⁸⁷	+	-0.13 (-0.50, 0.23)	9.68
Overall(I-squared = 93.0%, p = <0.0001)	\diamond	-1.00 (-1.58, -0.41)	100.00
NOTE: Weights are from random effects analysis			
-4.49	0	4.49	

Note: P-value for test of standardised mean difference: 0.001

Supplementary Figure 9. Standardised mean differences and their confidence intervals for the comparison of oral sugar versus placebo or no intervention for NIPS

			%
Study		SMD (95% CI)	Weight
Chermont 200994	+	-0.09 (-0.31, 0.13)	18.09
Milazzo 201173	*	-0.56 (-1.15, 0.02)	16.24
Suhrabi 201486	+	-1.69 (-2.28, -1.09)	16.17
TutagLehr 201589	+	-0.83 (-1.38, -0.28)	16.48
Uzelli 201590	*	-2.13 (-2.68, -1.57)	16.44
Yilmaz 201191	+	-0.85 (-1.38, -0.32)	16.59
Overall (I-squared = 92.3%, p <0.0001)	\diamond	-1.01 (-1.69, -0.32)	100.00
NOTE: Weights are from random effects analysis			
	-2.68 0 2	.68	

Note: P-value for test of standardised mean difference: 0.004

Abbreviations: CI=confidence interval, SMD=standardised mean difference, NIPS=Neonatal Infant Pain Scale

Supplementary Figure 10. Standardised mean differences and their confidence intervals for the comparison of oral sugar versus placebo or no intervention for NFCS

Chudu			%
Study		SMD (95% CI)	weight
Ahuja 2000 ⁵⁰	+	-0.52 (-1.09, 0.04)	16.52
Altun-Koroglu 201053	*	-0.84 (-1.42, -0.26)	16.39
Chermont 200994	٠	-0.11 (-0.33, 0.10)	18.92
Ogawa 2005 ⁷⁴	-	-0.42 (-0.98, 0.14)	16.55
Okan 2007 ⁷⁵	-	-0.27 (-0.77, 0.23)	17.07
Ozdogan 2010 ⁷⁹	*	-2.80 (-3.58, -2.02)	14.54
Overall (I-squared = 89.0%, p <0.0001)	\diamond	-0.77 (-1.36, -0.17)	100.00
NOTE: Weights are from random effects analysis			
-3	.58 0 3	.58	

Note: P-value for test of standardised mean difference: 0.01

Abbreviations: CI=confidence interval, SMD=standardised mean difference, NCFS= Neonatal Facial Coding System

Supplementary Figure 11. Standardised mean differences and their confidence intervals for the comparison of oral sugar versus placebo or no intervention for DAN

			%
Study		SMD (95% CI)	Weight
Akcam 2004 ⁵¹	*	-1.17 (-1.62, -0.71)	19.37
Basnet 2010 ⁵⁴	-	-1.13 (-1.73, -0.53)	16.96
Bellieni 200292	•	-0.37 (-1.01, 0.26)	16.41
Carbajal 1999 ⁵⁸	-	-1.93 (-2.61, -1.25)	15.66
Carbajal 200259	-	-0.28 (-0.89, 0.33)	16.73
Mathai 200672	-	-0.88 (-1.61, -0.14)	14.87
Overall (I-squared = 70.6%, p = 0.004)		-0.96 (-1.42, -0.50)	100.00
NOTE: Weights are from random effects analysis			
	-2.61 0 2	61	

Note: P-value for test of standardised mean difference: p <0.001

Abbreviations: CI=confidence interval, SMD=standardised mean difference, DAN= Douleur Aigue du Nouveau-né

Supplementary Figure 12. Standardised mean differences and their confidence intervals for the comparison of expressed breast milk versus oral sugar for heart rate

Supplementary Figure 13. Standardised mean differences and their confidence intervals for the comparison of expressed breast milk vs oral sugar for oxygen saturation

Supplementary Figure 14. Standardised mean differences and their confidence intervals for the comparison of expressed breast milk versus oral sugar for PIPP

Supplementary Figure 15. Standardised mean differences and their confidence intervals for the comparison of expressed breast milk versus oral sugar for NFCS

%

Note: P-value for test of standardised mean difference: 0.14

Abbreviations: CI=confidence interval, SMD=standardised mean difference, NCFS= Neonatal Facial Coding System

Supplementary Figure 16. Standardised mean differences and their confidence intervals for the comparison of nonnutritive sucking versus oral sugar for heart rate

Supplementary Figure 17. Standardised mean differences and their confidence intervals for the comparison of nonnutritive sucking vs oral sugar for oxygen saturation

Supplementary Figure 18. Standardised mean differences and their confidence intervals for the comparison of nonnutritive sucking versus oral sugar for NIPS

Note: P-value for test of standardised mean difference: 0.70

Abbreviations: CI=confidence interval, SMD=standardised mean difference, NIPS=Neonatal Infant Pain Scale

Supplementary Figure 19. Standardised mean differences and their confidence intervals for the comparison of nonnutritive sucking versus oral sugar for DAN

Note: P-value for test of standardised mean difference: 0.37

Abbreviations: CI=confidence interval, SMD=standardised mean difference, DAN= Douleur Aigue du Nouveau-né

Supplementary Figure 20. Standardised mean differences and their confidence intervals for the comparison of expressed breast milk versus placebo or no intervention for heart rate

Supplementary Figure 21. Standardised mean differences and their confidence intervals for the comparison of expressed breast milk vs placebo or no intervention for oxygen saturation

			%
Study		SMD (95% CI)	Weight
HatamiBavarsad 201827	-	1.23 (0.62, 1.84)	13.03
Jatana 200345	+	0.21 (-0.35, 0.77)	14.59
Ou-Yang 201377	*	0.40 (-0.03, 0.84)	19.15
Rawal 2018 ⁸¹	-	0.26 (-0.35, 0.87)	13.05
Sahoo 201383	+	0.63 (0.24, 1.02)	21.22
Upadhyay 2004 ¹⁰²		0.22 (-0.22, 0.65)	18.97
Overall (I-squared = 46.1%, p = 0.099)		0.48 (0.20, 0.75)	100.00
NOTE: Weights are from random effects analysis			
I -1.84 Note: P-value for test of standardised mean difference: <0.001	0 1.	.84	

Supplementary Figure 22. Standardised mean differences and their confidence intervals for the comparison of expressed breast milk versus placebo or no intervention for PIPP

%

Note: P-value for test of standardised mean difference: 0.004

Supplementary Figure 23. Standardised mean differences and their confidence intervals for the comparison of expressed breast milk versus placebo or no intervention for DAN

Note: P-value for test of standardised mean difference: 0.21

Abbreviations: CI=confidence interval, SMD=standardised mean difference, DAN= Douleur Aigue du Nouveau-né

Supplementary Figure 24. Standardised mean differences and their confidence intervals for the comparison of skin-to-skin versus placebo or no intervention for oxygen saturation

		%
Study	SMD (95% CI)	Weight
Johnston 2003 ¹⁰⁹	-0.15 (-0.50, 0.21)	28.86
Liu 2015 ¹¹¹	• 0.66 (0.03, 1.30)	21.18
Okan 2010114	0.78 (0.30, 1.26)	25.44
Saeidi 2011116	0.46 (-0.05, 0.97)	24.52
Overall (I-squared = 73.8%, p = 0.010)	0.41 (-0.06, 0.88)	100.00
NOTE: Weights are from random effects analysis		
Note: P-value for test of standardised mean difference: 0.090	0 1.3	

Supplementary Figure 25. Standardised mean differences and their confidence intervals for the comparison of skin-to-skin versus placebo or no intervention for NFCS

Note: P-value for test of standardised mean difference: 0.23

Abbreviations: CI=confidence interval, SMD=standardised mean difference, NCFS= Neonatal Facial Coding System

Supplementary Figure 26. Standardised mean differences and their confidence intervals for the comparison of nonnutritive sucking versus placebo or no intervention for heart rate

Supplementary Figure 27. Standardised mean differences and their confidence intervals for the comparison of nonnutritive sucking versus placebo or no intervention for oxygen saturation

%

Supplementary Figure 28. Standardised mean differences and their confidence intervals for the comparison of nonnutritive sucking versus placebo or no intervention for PIPP

Supplementary Figure 29. Standardised mean differences and their confidence intervals for the comparison of nonnutritive sucking versus placebo or no intervention for DAN

Abbreviations: CI=confidence interval, SMD=standardised mean difference, DAN= Douleur Aigue du Nouveau-né

Supplementary Figure 30. Standardised mean differences and their confidence intervals for the comparison of oral dextrose versus placebo or no intervention for heart rate

Supplementary Figure 31. Standardised mean differences and their confidence intervals for the comparison of oral glucose versus placebo or no intervention for heart rate

Supplementary Figure 32. Standardised mean differences and their confidence intervals for the com	parison of oral sucrose
versus placebo or no intervention for heart rate	
-	%

			70
Study		SMD (95% CI)	Weight
Abad 1996 ⁴²		-1.10 (-2.07, -0.13)	3.44
Acharya 200449	•	-0.39 (-0.84, 0.06)	16.17
Gajbhiye 2018 ²⁴	-	0.06 (-0.33, 0.45)	21.14
Gao 201864 -		-0.56 (-1.18, 0.06)	8.52
Gormally 200197		0.02 (-0.58, 0.63)	8.86
Milazzo 201173	-	-0.13 (-0.71, 0.44)	9.91
Okan 200775	-	-0.15 (-0.65, 0.35)	13.07
Ramenghi 1996 ⁸⁰		-0.15 (-0.87, 0.56)	6.32
Yilmaz 2011 ⁹¹		-0.25 (-0.76, 0.26)	12.58
Overall (I-squared = 0.0%, p = 0.47)	\diamond	-0.21 (-0.39, -0.03)	100.00
NOTE: Weights are from random effects anal	ysis		
-2.07	0	2.07	
Note: P-value for test of standardised mean difference: 0.02 Abbreviations: CI=confidence interval. SMD=standardised	23 mean		

difference

Supplementary Figure 33. Standardised mean differences and their confidence intervals for the comparison of oral dextrose versus placebo or no intervention for oxygen saturation

			%
Study		SMD (95% CI)	Weight
Rawal 2018 ⁸¹		- 1.05 (0.40, 1.70)	37.88
Sahoo 2013 ⁸³	-	0.52 (0.12, 0.92)	62.12
Overall (I-squared = 45.3%, p = 0.18)	\diamond	0.72 (0.22, 1.22)	100.00
NOTE: Weights are from random effects analysis			
Note: P-value for test of standardised mean difference: 0.01	-1.7 0 1	.7	

Supplementary Figure 34. Standardised mean differences and their confidence intervals for the comparison of oral glucose versus placebo or no intervention for oxygen saturation

		%
Study	SMD (95% CI)	Weight
p		
Deshmukh 2002 ⁶⁰	- 0.14 (-0.48, 0.76)	17.13
Jatana 2003 ⁴⁵	— 0.42 (-0.14, 0.99)	20.96
Okan 2007 ⁷⁵	-0.12 (-0.62, 0.38)	26.57
Ou-Yang 2013 ⁷⁷	0.19 (-0.24, 0.62)	35.35
Overall (I-squared = 0.0%, p = 0.56)	0.15 (-0.11, 0.40)	100.00
NOTE: Weights are from random effects analysis	-	
985 0 . Note: P-value for test of standardised mean difference: 0.26	985	

Supplementary Figure 35. Standardised mean differences and their confidence intervals for the comparison of oral sucrose versus placebo or no intervention for oxygen saturation

Supplementary Figure 36. Standardised mean differences and their confidence intervals for the comparison of oral dextrose versus placebo or no intervention for PIPP

Note: P-value for test of standardised mean difference: 0.07

Supplementary Figure 37. Standardised mean differences and their confidence intervals for the comparison of oral glucose versus placebo or no intervention for PIPP

Note: P-value for test of standardised mean difference: 0.003

Supplementary Figure 38. Standardised mean differences and their confidence intervals for the comparison of oral sucrose versus placebo or no intervention for PIPP

Supplementary Figure 39. Standardised mean differences and their confidence intervals for the comparison of oral sugar versus no intervention only for heart rate

		%
Study	SMD (95% CI)	Weight
Ahuja 2000 ⁵⁰	-0.55 (-1.11, 0.02)	14.27
Gajbhiye 2018 ²⁴	0.06 (-0.33, 0.45)	29.70
Gao 2018 ⁶⁴	-0.56 (-1.18, 0.06)	11.97
Gormally 200197	-0.01 (-0.62, 0.59)	12.45
Milazzo 2011 ⁷³	-0.13 (-0.71, 0.44)	13.93
Yilmaz 201191	-0.25 (-0.76, 0.26)	17.68
Overall (I-squared = 0.0%, p = 0.43)	-0.19 (-0.41, 0.02)	100.00
NOTE: Weights are from random effects analysis		
-1.18 0 Note: P-value for test of standardised mean difference: 0.078	1.18	

Supplementary Figure 40. Standardised mean differences and their confidence intervals for the comparison of oral sugar versus placebo only for heart rate

		%
Study	SMD (95% CI)	Weight
· · · ·		
Acharya 2004 ⁴⁹	-0.39 (-0.84, 0.06)	9.75
Ahuja 2000 ⁵⁰	-0.41 (-0.97, 0.15)	8.61
Bauer 2004 ⁵⁵ —	-1.35 (-2.06, -0.63)	7.17
Deshmukh 2002 ⁶⁰	-0.45 (-1.08, 0.17)	7.94
Gharehbaghi 200765	• 0.33 (-0.18, 0.84)	9.12
Gormally 200197	0.07 (-0.53, 0.67)	8.24
Ou-Yang 201377	-0.12 (-0.55, 0.32)	9.93
Ramenghi 1996 ⁸⁰	-0.15 (-0.87, 0.56)	7.13
Rawal 2018 ⁸¹ —	-1.23 (-1.90, -0.57)	7.59
Sahoo 2013 ⁸³	-0.92 (-1.33, -0.50)	10.08
Abad 1996 ⁴²	-1.10 (-2.07, -0.13)	5.20
Okan 2007 ⁷⁵	-0.12 (-0.62, 0.38)	9.24
Overall (I-squared = 67.9%, p <0.0001)	-0.45 (-0.74, -0.16)	100.00
NOTE: Weights are from random effects analysis		
-2.07 0	2.07	

Note: P-value for test of standardised mean difference: 0.002 Abbreviations: CI=confidence interval, SMD=standardised mean difference

51

Supplementary Figure 41. Standardised mean differences and their confidence intervals for the comparison of oral sugar versus no intervention only for oxygen saturation

Supplementary Figure 42. Standardised mean differences and their confidence intervals for the comparison of oral sugar versus placebo only for oxygen saturation

		%
Study	SMD (95% CI)	Weight
Acharya 200449	0.09 (-0.36, 0.53)	13.84
Ahuja 2000 ⁵⁰	0.31 (-0.25, 0.86)	10.67
Jatana 200345	0.42 (-0.14, 0.99)	10.59
Ou-Yang 2013 ⁷⁷	0.19 (-0.24, 0.62)	14.23
Rawal 2018 ⁸¹	1.05 (0.40, 1.70)	8.73
Sahoo 201383	0.52 (0.12, 0.92)	15.22
Abad 199642	-0.49 (-1.40, 0.42)	5.23
Deshmukh 2002 ⁶⁰	0.14 (-0.48, 0.76)	9.29
Okan 2007 ⁷⁵	-0.12 (-0.62, 0.37)	12.21
Overall (I-squared = 40.2%, p = 0.100)	0.26 (0.03, 0.49)	100.00
NOTE: Weights are from random effects analysis		
	1	
-1.7 0	1.7	
Note: P-value for test of standardised mean difference: 0.027		

Supplementary Figure 43. Standardised mean differences and their confidence intervals for the comparison of oral sugar versus no intervention only for PIPP

			%
Study		SMD (95% CI)	Weight
Bellieni 2001 ⁵⁶	•	-0.30 (-0.97, 0.38)	24.33
Eriksson 199962	+	-1.09 (-1.64, -0.55)	27.88
Gao 2018 ⁶⁴	(•	-1.79 (-2.51, -1.06)	23.06
Hsieh 201899	+	-1.00 (-1.66, -0.34)	24.72
Overall (I-squared = 65.8%, p = 0.033)	\diamond	-1.04 (-1.59, -0.48)	100.00
NOTE: Weights are from random effects analysis			
Note: Divolue for test of standardined mean difference: <0.004	-2.51 0	2.51	

Note: P-value for test of standardised mean difference: <0.001

Supplementary Figure 44. Standardised mean differences and their confidence intervals for the comparison of oral sugar versus placebo only for PIPP

Note: P-value for test of standardised mean difference: 0.001

Supplementary Figure 45. Standardised mean differences and their confidence intervals for the comparison of oral sugar versus placebo or no intervention with heart rate measured ≤ 1 minute after procedure commencement

Study	SMD (95% CI)	Weight
Abad 199642	-0.59 (-1.50, 0.33)	5.48
Acharya 2004 ⁴⁹	-0.39 (-0.84, 0.06)	22.93
Gao 2018 ⁶⁴	-0.60 (-1.22, 0.02)	12.00
Milazzo 2011 ⁷³	-0.13 (-0.71, 0.44)	14.05
Okan 2007 ⁷⁵	0.03 (-0.47, 0.53)	18.59
Ramenghi 199680	-0.11 (-0.83, 0.61)	8.98
Yilmaz 201191	-0.08 (-0.59, 0.42)	17.98
Overall (I-squared = 0.0%, p = 0.67)	-0.23 (-0.45, -0.02)	100.00
NOTE: Weights are from random effects analysis		
-1.5 0 ote: P-value for test of standardised mean difference: 0.034	1.5	
breviations: CI=confidence interval, SMD=standardised mean differen	ce	

Supplementary Figure 46. Standardised mean differences and their confidence intervals for the comparison of oral sugar versus placebo or no intervention with heart rate measured >1 minute after procedure commencement

			%
Study		SMD (95% CI)	Weight
Abad 199642		-0.56 (-1.48, 0.35)	4.52
Ahuja 2000 ⁵⁰		-0.47 (-1.04, 0.09)	7.27
Bauer 200455		-1.35 (-2.06, -0.63)	5.94
Deshmukh 200260		-0.45 (-1.08, 0.17)	6.66
Gajbhiye 2018 ²⁴		0.06 (-0.33, 0.45)	8.98
Gao 2018 ⁶⁴		-0.50 (-1.12, 0.11)	6.78
Gharehbaghi 200765		0.33 (-0.18, 0.84)	7.79
Gormally 200197	- *	0.02 (-0.58, 0.63)	6.87
Okan 2007 ⁷⁵		-0.14 (-0.64, 0.35)	7.90
Ou-Yang 2013 ⁷⁷	<u>.</u>	-0.12 (-0.55, 0.32)	8.58
Ramenghi 1996 ⁸⁰		-0.22 (-0.94, 0.50)	5.90
Rawal 2018 ⁸¹	•—	-1.23 (-1.90, -0.57)	6.33
Sahoo 201383	-	-0.92 (-1.33, -0.50)	8.73
Yilmaz 2011 ⁹¹		-0.40 (-0.91, 0.11)	7.77
Overall (I-squared = 64.4%, p <0.0001)	\Diamond	-0.40 (-0.64, -0.15)	100.00
NOTE: Weights are from random effects ana	alysis		
-2.06	0	2.06	

Note: P-value for test of standardised mean difference: 0.002 Abbreviations: CI=confidence interval, SMD=standardised mean difference

Supplementary Figure 47. Standardised mean differences and their confidence intervals for the comparison of oral sugar versus placebo or no intervention with oxygen saturation measured ≤1 minute after procedure commencement

%

Supplementary Figure 48. Standardised mean differences and their confidence intervals for the comparison of oral sugar versus placebo or no intervention with oxygen saturation measured >1 minute after procedure commencement

9 (95% CI) 9 (-1.40, 0.42) (-0.57, 0.70) (-0.25, 0.86) (-0.48, 0.76)	Weight 3.59 6.56 8.02
9 (-1.40, 0.42) (-0.57, 0.70) (-0.25, 0.86) (-0.48, 0.76)	3.59 6.56 8.02
(-0.57, 0.70) (-0.25, 0.86) (-0.48, 0.76)	6.56 8.02
(-0.25, 0.86) (-0.48, 0.76)	8.02
(-0.48, 0.76)	
	6.82
(-0.03, 0.76)	12.72
2 (-0.82, 0.38)	7.19
(-0.14, 0.99)	7.95
(-0.05, 1.11)	7.51
(-0.47, 0.52)	9.45
(-0.24, 0.62)	11.41
(0.40, 1.70)	6.35
(0.12, 0.92)	12.43
(0.10, 0.46)	100.00
	(0.12, 0.92) (0.10, 0.46)

Supplementary Figure 49. Standardised mean differences and their confidence intervals for the comparison of oral sugar versus placebo or no intervention with PIPP measured ≤1 minute after procedure commencement

-2.51 0 2.51

Note: P-value for test of standardised mean difference: 0.038

NOTE: Weights are from random effects analysis

Supplementary Figure 50. Standardised mean differences and their confidence intervals for the comparison of oral sugar versus placebo or no intervention with PIPP measured >1 minute after procedure commencement

			%
Study		SMD (95% CI)	Weight
Bauer 200455		-0.32 (-0.96, 0.31)	12.45
Bellieni 200156	+	-0.08 (-0.75, 0.59)	12.33
Chermont 200994	ł	-0.05 (-0.27, 0.17)	13.35
Eriksson 199962	÷	-1.09 (-1.64, -0.55)	12.70
Gradin 2004137	÷	-0.87 (-1.56, -0.17)	12.25
Hsieh 201899	+	-0.76 (-1.40, -0.12)	12.41
Rawal 2018 ⁸¹	•	-1.68 (-2.39, -0.97)	12.20
Sahoo 201383	•	-3.82 (-4.49, -3.14)	12.32
Overall (I-squared = 94.5%, p < 0.0001)	\diamond	-1.07 (-1.88, -0.26)	100.00
NOTE: Weights are from random effects analysis			
	-4.49 0 4	1.49	

Note: P-value for test of standardised mean difference: 0.010

Premature (=No) Gajbhiye 2018 ²⁴ Gharehbaghi 2007 ⁶⁵ Gormally 2001 ⁹⁷ Yilmaz 2011 ⁹¹ Subtotal (I-squared = 0.0%, p = 0.48) Premature (=Yes) Abad 1996 ⁴² Acharya 2004 ⁴⁹ Deshmukh 2002 ⁶⁰		
Gajbhiye 2018 ²⁴ Gharehbaghi 2007 ⁶⁵ Gormally 2001 ⁹⁷ Yilmaz 2011 ⁹¹ Subtotal (I-squared = 0.0%, p = 0.48) Premature (=Yes) Abad 1996 ⁴² Acharya 2004 ⁴⁹ Deshmukh 2002 ⁶⁰		
Gharehbaghi 2007 ⁶⁵ Gormally 2001 ⁹⁷ Yilmaz 2011 ⁹¹ Subtotal (I-squared = 0.0%, p = 0.48) Premature (=Yes) Abad 1996 ⁴² Acharya 2004 ⁴⁹ Deshmukh 2002 ⁶⁰	0.06 (-0.33, 0.45)	38.37
Gormally 2001 ⁹⁷ Yilmaz 2011 ⁹¹ Subtotal (I-squared = 0.0%, p = 0.48) Premature (=Yes) Abad 1996 ⁴² Acharya 2004 ⁴⁹ Deshmukh 2002 ⁶⁰	0.33 (-0.18, 0.84)	22.70
Yilmaz 2011 ⁹¹ Subtotal (I-squared = 0.0%, p = 0.48) Premature (=Yes) Abad 1996 ⁴² Acharya 2004 ⁴⁹ Deshmukh 2002 ⁶⁰ Gao 2018 ⁶⁴	0.02 (-0.58, 0.63)	16.08
Subtotal (I-squared = 0.0%, p = 0.48) Premature (=Yes) Abad 1996 ⁴² Acharya 2004 ⁴⁹ Deshmukh 2002 ⁶⁰ Gao 2018 ⁶⁴	-0.25 (-0.76, 0.26)	22.84
Premature (=Yes) Abad 1996 ⁴² Acharya 2004 ⁴⁹ Deshmukh 2002 ⁶⁰ Gao 2018 ⁶⁴	0.04 (-0.20, 0.29)	100.00
Abad 1996 ⁴² Control Control Control		
Acharya 2004 ⁴⁹	-1.10 (-2.07, -0.13)	5.20
Deshmukh 2002 ⁶⁰	-0.39 (-0.84, 0.06)	15.32
Gao 2018 ⁶⁴	-0.45 (-1.08, 0.17)	10.16
	-0.56 (-1.18, 0.06)	10.41
Milazzo 2011 ⁷³	-0.13 (-0.71, 0.44)	11.51
Okan 2007 ⁷⁵	-0.12 (-0.62, 0.38)	13.64
Ou-Yang 2013 ⁷⁷	-0.12 (-0.55, 0.32)	15.94
Ramenghi 1996 ⁸⁰	-0.15 (-0.87, 0.56)	8.43
Rawal 2018 ⁸¹	-1.23 (-1.90, -0.57)	9.39
Subtotal (I-squared = 35.4%, p = 0.14) 🛇	-0.40 (-0.64, -0.16)	100.00
NOTE: Weights are from random effects analysis		
	1	
-2.07 0 2.	.07	

Supplementary Figure 51. Standardised mean differences and their confidence intervals for the comparison of oral sugar versus placebo or no intervention for heart rate by prematurity status

Supplementary Figure 52. Standardised mean differences and their confidence intervals for the comparison of oral sugar versus placebo or no intervention for oxygen saturation by prematurity status

Study	SMD (95% CI)	% Weight
		Troigin
Premature (=No)		
Gajbhiye 2018 ²⁴	0.37 (-0.03, 0.76)	66.82
Jatana 200345	- 0.42 (-0.14, 0.99)	33.18
Subtotal (I-squared = 0.0% , p = 0.87)	0.39 (0.06, 0.71)	100.00
Premature (=Yes)		
Abad 199642	-0.49 (-1.40, 0.42)	6.80
Acharya 2004 ⁴⁹	0.09 (-0.36, 0.53)	15.95
Deshmukh 2002 ⁶⁰	0.14 (-0.48, 0.76)	11.39
Gao 2018 ⁶⁴	- 0.27 (-0.32, 0.87)	11.98
Milazzo 2011 ⁷³	-0.32 (-0.90, 0.25)	12.40
Okan 2007 ⁷⁵ —	-0.12 (-0.62, 0.37)	14.38
Ou-Yang 2013 ⁷⁷	0.19 (-0.24, 0.62)	16.32
Rawal 2018 ⁸¹ —	• 1.05 (0.40, 1.70)	10.79
Subtotal (I-squared = 46.8%, p = 0.068)	0.11 (-0.16, 0.39)	100.00
NOTE: Weights are from rendem effects applying		
NOTE: weights are from random effects analysis		
	I	
-1.7 0	1.7	

Supplementary Figure 53. Standardised mean di	ferences and their confidence intervals for the comparison of oral sugar
versus placebo or no intervention for PIPP by pr	ematurity status

		% Weight
Study	SMD (95% CI)	
Premature (=No)		
Chermont 2009 ⁹⁴	-0.05 (-0.27, 0.17)	20.87
Eriksson 199962	-1.09 (-1.64, -0.55)	19.93
Gradin 200466	-0.87 (-1.56, -0.17)	19.28
Sahoo 201383	-3.82 (-4.49, -3.14)	19.38
Taddio 200887	-0.13 (-0.50, 0.23)	20.54
Subtotal (I-squared = 96.6%, p <0.0001)	-1.16 (-2.22, -0.11)	100.00
Premature (=Yes)		
Bellieni 2001 ⁵⁶	-0.08 (-0.75, 0.59)	25.23
Gao 201864	-1.79 (-2.51, -1.06)	24.49
Hsieh 201899	-0.76 (-1.40, -0.12)	25.62
Rawal 2018 ⁸¹	-1.68 (-2.39, -0.97)	24.67
Subtotal (I-squared = 81.0%, p = 0.001)	-1.07 (-1.86, -0.28)	100.00
NOTE: Weights are from random effects analysis		
-4.49 0	4.49	

Supplementary Figure 54. Funnel plot (with pseudo 95% confidence limits) of studies for oral sugar versus placebo or no intervention using heart rate24, 42, 49, 50, 55, 60, 64, 65, 73, 75, 77, 80, 81, 83, 91, 97

Supplementary Figure 55. Funnel plot (with pseudo 95% confidence limits) of studies for oral sugar versus placebo or no intervention using oxygen saturation24, 42, 49, 50, 60, 64, 45, 73, 75, 77, 81, 83

Supplementary Figure 56. Funnel plot (with pseudo 95% confidence limits) of studies for oral sugar versus placebo or no intervention using Premature Infant Pain Profile (PIPP)55, 56, 62, 64, 66, 81, 83, 85, 87, 94, 99

Further reading panel of references for PICO questions deprioritised by the Neonatal Pain Guideline Group

130 Acharya AB, Bustani PC, Phillips JD, Taub NA, Beattie RM. Randomised controlled trial of eutectic mixture of local anaesthetics cream for venepuncture in healthy preterm infants. Arch Dis Child Fetal Neonatal Ed 1998; 78: F138–42.

131 Badiee Z, Torcan N. Effects of high dose orally administered paracetamol for heel prick pain in premature infants. Saudi Med J 2009; 30: 1450-53.

132 Beken S, Hirfanoğlu IM, Gücüyener K, et al. Cerebral hemodynamic changes and pain perception during venipuncture: is glucose really effective? J Child Neurol 2014; 29: 617–22.

133 Bellieni CV, Aloisi AM, Ceccarelli D, et al. Intramuscular injections in newborns: analgesic treatment and sex-linked response. J Matern Fetal Neonatal Med 2013; 26: 419–22.

134 Biran V, Gourrier E, Cimerman P, Walter-Nicolet E, Mitanchez D, Carbajal R. Analgesic effects of EMLA cream and oral sucrose during venipuncture in preterm infants. Pediatrics 2011; 128: e63–70.

135 Bucher HU, Moser T, von Siebenthal K, Keel M, Wolf M, Duc G. Sucrose reduces pain reaction to heel lancing in preterm infants: a placebo-controlled, randomized and masked study. Pediatr Res 1995; 38: 332–35.

136 Butt ML, Kisilevsky BS. Music modulates behaviour of premature infants following heel lance. Can J Nurs Res 2000; 31: 17–39.

137 Campos RG. Soothing pain-elicited distress in infants with swaddling and pacifiers. Child Dev 1989; 60: 781-92.

138 Collados-G.mez L, Ferrera-Camacho P, Fernandez-Serrano E, et al. Randomised crossover trial showed that using breast milk or sucrose provided the same analgesic effect in preterm infants of at least 28 weeks. Acta Paediatr 2018; 107: 436–41.

139 De Bernardo G, Riccitelli M, Sordino D, et al. Oral 24% sucrose associated with nonnutritive sucking for pain control in healthy term newborns receiving venipuncture beyond the first week of life. J Pain Res 2019; 12: 299–305.

140 De Melo G, Cardoso M. Pain in preterm newborns submitted to music and 25% glucose intervention. Revista da Rede de Enfermagem do Nordeste 2017; 18: 3.

141 Erkut Z, Yildiz S. The effect of swaddling on pain, vital signs, and crying duration during heel lance in newborns. Pain Manag Nurs 2017; 18: 328–36. 142 Gerull R, Cignacco E, Stoffel L, Sellam G, Nelle M. Physiological parameters after nonpharmacological analgesia in preterm infants: a randomized trial. Acta Paediatr 2013; 102: e368–73.

143 Gibbins S, Stevens B, Hodnett E, Pinelli J, Ohlsson A, Darlington G. Efficacy and safety of sucrose for procedural pain relief in preterm and term neonates. Nurs Res 2002; 51: 375–82.

144 Gradin M, Eriksson M, Holmqvist G, Holstein A, Schollin J. Pain reduction at venipuncture in newborns: oral glucose compared with local anesthetic cream. Pediatrics 2002; 110: 1053–57.

145 Ho LP, Ho SS, Leung DY, So WK, Chan CW. A feasibility and efficacy randomised controlled trial of swaddling for controlling procedural pain in preterm infants. J Clin Nurs 2016; 25: 472–82.

146 Holsti L, Oberlander TF, Brant R. Does breastfeeding reduce acute procedural pain in preterm infants in the neonatal intensive care unit? A randomized clinical trial. Pain 2011; 152: 2575–81.

147 Huang CM, Tung WS, Kuo LL, Ying-Ju C. Comparison of pain responses of premature infants to the heelstick between containment and swaddling. J Nurs Res 2004; 12: 31–40.

148 Jain A, Rutter N. Does topical amethocaine gel reduce the pain of venepuncture in newborn infants? A randomised double blind controlled trial. Arch Dis Child Fetal Neonatal Ed 2000; 83: F207–10.

149 Johnston CC, Filion F, Campbell-Yeo M, et al. Kangaroo mother care diminishes pain from heel lance in very preterm neonates: a crossover trial. BMC Pediatr 2008; 8: 13.

150 Kaur G, Gupta P, Kumar A. A randomized trial of eutectic mixture of local anesthetics during lumbar puncture in newborns. Arch Pediatr Adolesc Med 2003; 157: 1065–70.

151 Kristoffersen L, Malahleha M, Duze Z, et al. Randomised controlled trial showed that neonates received better pain relief from a higher dose of sucrose during venepuncture. Acta Paediatr 2018; 107: 2071–78.

152 Kurdahi Badr L, Demerjian T, Daaboul T, Abbas H, Hasan Zeineddine M, Charafeddine L. Preterm infants exhibited less pain during a heel stick when they were played the same music their mothers listened to during pregnancy. Acta Paediatr 2017; 106: 438–45.

153 Larsson BA, Tannfeldt G, Lagercrantz H, Olsson GL. Alleviation of the pain of venepuncture in neonates. Acta Paediatr 1998; 87: 774–79.

154 Lemyre B, Hogan DL, Gaboury I, Sherlock R, Blanchard C, Moher D. How effective is tetracaine 4% gel, before a venipuncture, in reducing procedural pain in infants: a randomized double-blind placebo controlled trial. BMC Pediatr 2007; 7: 7.

155 Leng HY, Zheng XL, Zhang XH, et al. Combined non-pharmacological interventions for newborn pain relief in two degrees of pain procedures: A randomized clinical trial. Eur J Pain 2016; 20: 989–97.

156 Lindh V, Wiklund U, H.kansson S. Assessment of the effect of EMLA during venipuncture in the newborn by analysis of heart rate variability. Pain 2000; 86: 247–54.

157 Long CP, McCafferty DF, Sittlington NM, Halliday HL, Woolfson AD, Jones DS. Randomized trial of novel tetracaine patch to provide local anaesthesia in neonates undergoing venepuncture. Br J Anaesth 2003; 91: 514–18.

158 Marcatto JO, Vasconcelos PC, Ara.jo CM, Tavares EC, Pereira e Silva Y. EMLA versus glucose for PICC insertion: a randomised triple-masked controlled study. Arch Dis Child Fetal Neonatal Ed 2011; 96: F467–68.

159 Mar.n Gabriel M., del Rey Hurtado de Mendoza B, Jim.nez Figueroa L, et al. Analgesia with breastfeeding in addition to skin-to-skin contact during heel prick. Arch Dis Child Fetal Neonatal Ed 2013; 98: F499–503.

160 Marofi M, Nikobakht F, Badiee Z, Golchin M. The effect of melody on the physiological responses of heel sticks pain in neonates. Iran J Nurs Midwifery Res 2015; 20: 405–08.

161 Morrow C, Hidinger A, Wilkinson-Faulk D. Reducing neonatal pain during routine heel lance procedures. MCN Am J Matern Child Nurs 2010; 35: 346–54, quiz 354–56.

162 Mosayebi Z, Javidpour M, Rahmati M, Hagani H, Movahedian A. The effect of kangaroo mother care on pain from heel lance in preterm newborns admitted to neonatal intensive care unit: a crossover randomized clinical trial. J Compr Pediatr 2014; 5: e22214.

163 Noori Shadkam M, Lofti M. Pain reducing in icteric newborns while venipuncturing: comparison of local anesthetic cream with orally glucose. Acta Med Iran 2008; 46: 58–62.

164 Patel A, Czerniawski B, Gray S, Lui E. Does topical amethocaine gel reduce pain from heel prick blood sampling in premature infants? A randomized doubleblind cross-over controlled study. Paediatr Child Health 2003; 8: 222–25.

165 Peng HF, Yin T, Yang L, et al. Non-nutritive sucking, oral breast milk, and facilitated tucking relieve preterm infant pain during heel-stick procedures: a prospective, randomized controlled trial. Int J Nurs Stud 2018; 77: 162–70.

166 Rossi A, Molinaro A, Savi E, et al. Music reduces pain perception in healthy newborns: a comparison between different music tracks and recoded heartbeat. Early Hum Dev 2018; 124: 7–10.

167 Shabani F, Nayeri ND, Karimi R, Zarei K, Chehrazi M. Effects of music therapy on pain responses induced by blood sampling in premature infants: a randomized cross-over trial. Iran J Nurs Midwifery Res 2016; 21: 391–96.

168 Shah SR, Kadage S, Sinn J. Trial of music, sucrose, and combination therapy for pain relief during heel prick procedures in neonates. J Pediatr 2017; 190: 153–58.e2.

169 Shu SH, Lee YL, Hayter M, Wang RH. Efficacy of swaddling and heel warming on pain response to heel stick in neonates: a randomised control trial. J Clin Nurs 2014; 23: 3107–14.

170 Shukla V, Chapla A, Uperiya J, Nimbalkar A, Phatak A, Nimbalkar S. Sucrose vs skin to skin care for preterm neonatal pain control-a randomized control trial. J Perinatol 2018; 38: 1365–69.

171 Shukla VV, Bansal S, Nimbalkar A, et al. Pain control interventions in preterm neonates: a randomized controlled trial. Indian Pediatr 2018; 55: 292–96. 172 Soliman H, Elsharkawy A, Abdel-Hady H. Does topical lidocaine reduce the pain associated with the insertion of nasal continuous positive airway pressure prongs in preterm infants?: a randomized, controlled pilot trial. Clin J Pain 2016; 32: 948–54.

173 Stevens B, Johnston C, Franck L, Petryshen P, Jack A, Foster G. The efficacy of developmentally sensitive interventions and sucrose for relieving procedural pain in very low birth weight neonates. Nurs Res 1999; 48: 35–43.

174 Stevens B, Johnston C, Taddio A, et al. Management of pain from heel lance with lidocaine-prilocaine (EMLA) cream: is it safe and efficacious in preterm infants? J Dev Behav Pediatr 1999; 20: 216–21.

175 Stevens B, Yamada J, Campbell-Yeo M, et al. The minimally effective dose of sucrose for procedural pain relief in neonates: a randomized controlled trial. BMC Pediatr 2018; 18: 85.

176 Sujatha S, Samson R, Amalraj C. Sundaresan. Sucrose and facilitated tucking for pain among neonates receiving vaccination, in Puducherry. Int J Pharm Clinl Res 2017; 9: 260–63.

177 Taddio A, Shah V, Stephens D, et al. Effect of liposomal lidocaine and sucrose alone and in combination for venipuncture pain in newborns. Pediatrics 2011; 127: e940–47.