Supplemental Material (Online Figures I – VI; Online Tables I - III)



Online Figure I. Venn-diagram representation of unique extracellular matrix proteins (ECM, GO category 0031012) that were identified in each of 2 fractions of 2 separate tissue-extraction protocols applied to mouse aortas. For details of the 2 protocols (P1 and P2) and how the 2 fractions (F1 and F2 of each protocol) were generated, see Methods. The total number of unique proteins identified in each fraction is indicated next to the fraction name. The numbers of proteins identified in more than 1 fraction are indicated in cells of the diagram.



**Online Figure II**. **Peptograph of Nidogen2 (NID2) peptides in mouse aortic extracts.** Aortic extracts of SR-uPA<sup>+/0</sup> (red) and SR-uPA<sup>0/0</sup> (blue) mice (n = 4 samples for both, each pooled from 3 aortas) were processed and analyzed using the PROTOMAP protocol. Briefly, the extracts were subjected to SDS-PAGE and the gels were cut into 22 slices, each corresponding to a molecular-weight range. After in-gel trypsin digestion, peptides were extracted and identified by tandem mass spectrometry. Horizontal bars in each peptograph portray the number of protein-specific peptides identified in each of the 22 gel slices (mean  $\pm$  SEM; n = 4). Gel-slice number is on the leftward y-axis; molecular weight of the gel slices (in kDa) is on the rightward y-axis. The x-axis indicates the total spectral counts for NID2-specific peptides in each gel slice.



**Online Figure III. Western blots of human carotid plaque extracts.** Paired protein extracts of 7 human carotid plaques were separated by SDS-PAGE and probed with antibodies to 3 basement-membrane proteins: (**A**) LAMA5; (**B**) HSPG2; (**C**) COL18A1. Each pair of samples includes extracts from a stable and a ruptured area of the same plaque. The volume of the extracts of sample 5 was insufficient for the COL18A1 analysis. (**A**, **B**) Two gels were run, each with paired samples. Size markers are in kDa. Molecular weights of intact proteins are: LAMA 5: 400 kDa; HSPG2: 468 kDa; COL18A1: 178 kDa.



**Online Figure IV. Immunohistochemical detection of basement-membrane proteins in stable human plaque segments.** Sections of a stable segment of a human carotid plaque were stained with antibodies directed at: (**B**) COL18A1 (Santa Cruz Biotechnology sc-3270, generated against human endostatin, a COL18A1 fragment); (**D**) HSPG2 (Abcam ab2501); (**F**) LAMA5 (rabbit anti-mouse LAMA5 serum from Dr. Lydia Sorokin). (**A**, **C**, **E**) Sections from same plaque as in (**B**, **D**, and **F**) are stained with corresponding control antibodies (see Methods). (**A**-**F**) hematoxylin counterstain. ca = calcified nodule; lu = lumen; m = media. Scale bars = 500 μm.



Online Figure V. Basement-membrane proteins detected in media, fibrous cap, and luminal endothelial layer of stable human plaque segments. Sections of stable segments of human carotid plaques were stained with antibodies directed at: (A-C) COL18A1; (D-F) HSPG2; (G-I), LAMA5. The same antibodies were used as in Figure VI. (A-I) hematoxylin counterstain. ca = calcified nodule; lu = lumen; m = media. Scale bars: (A, D, G) = 500 μm; (B, C, E, F, H, I) = 100 μm.



Online Figure VI. Immunohistochemical detection of HSPG2 in media and fibrous caps of stable and ruptured plaques. (A-I) Three ruptured plaques show faint staining in the fibrous cap tissue (A and B, D and E, G and H) with more intense staining in the media (A and C, D and F, G and I). (J-L) A stable plaque segment has strong staining in the cap (K), with fainter staining in the media (L). Antibody was from Boster Biological Technology; PB9277. cap= fibrous cap; lu = lumen; m = media. (A, G, H, and I) Spaces (\*) are sectioning artifacts. Scale bars: (A, J) = 200 µm; (B, C, E, F, H, I, K, L) = 50 µm, (D, G) = 400 µm.

| Cohort             | 1 (n = 6) | 2 (n = 6) | 3 (n = 5) |
|--------------------|-----------|-----------|-----------|
| Age                | 68±7      | 63±7      | 63±8      |
| Male sex (%)       | 67        | 100       | 100       |
| Caucasian (%)      | 100       | 100       | 100       |
| Hypertension (%)   | 100       | 100       | 100       |
| Hyperlipidemia (%) | 100       | 100       | 100       |
| Diabetes (%)       | 67        | 50        | 40        |
| Active smoker (%)  | 0         | 50        | 40        |
| Aspirin (%)        | 60        | 83        | 80        |
| Statin (%)         | 100       | 100       | 100       |
| ACE inhibitor (%)  | 17        | 67        | 80        |
| ARB (%)            | 17        | 17        | 20        |
| Metformin (%)      | 33        | 0         | 0         |
| Insulin (%)        | 33        | 0         | 0         |
| Warfarin (%)       | 50        | 0         | 20        |
| Clopidogrel (%)    | 17        | 17        | 20        |

Online Table I. Demographics and Clinical Features of Donors of Experimental Carotid Plaques

Cohort 1 = donors of first set of plaques, extracts used for the initial shotgun proteomics study. Cohort 2 = donors of second set of plaques; extracts used for the second ("validation") shotgun proteomics study. Cohort 3 = Donors of plaques from which adequate PROTOMAP data were obtained (includes 4 individuals from cohort 2 and 1 individual from cohort 1).

| Online Table II. Proteins detected by PROTOSORT tool with peptographs     |     |
|---------------------------------------------------------------------------|-----|
| showing altered fragmentation between ruptured and stable plaque segments | \$. |

| Proteins with increased fragmentation<br>in ruptured plaque segments | Proteins with increased fragmentation<br>in stable plaque segments |
|----------------------------------------------------------------------|--------------------------------------------------------------------|
| Ceruloplasmin                                                        | Laminin subunit beta 2                                             |
| Plasminogen                                                          | Supervillin                                                        |
| Integrin alpha-X                                                     |                                                                    |
| Angiotensinogen                                                      |                                                                    |
| Inter-alpha-trypsin inhibitor heavy chain H4                         |                                                                    |
| Lipopolysaccharide-binding protein                                   |                                                                    |
| Phosphatidylinositol-glycan specific<br>phospholipase D              |                                                                    |
| Coagulation factor V                                                 |                                                                    |
| Pigment epithelium-derived factor                                    |                                                                    |
| 6-phosphogluconate dehydrogenase                                     |                                                                    |
| Heparin cofactor 2                                                   |                                                                    |
| Phospholipase D3                                                     |                                                                    |
| Carbonic anhydrase 1                                                 |                                                                    |
| Ribosomal protein L8                                                 |                                                                    |
| Probable ATP-dependent RNA helicase DDX5                             |                                                                    |
| ATP binding cassette subfamily F. member 1                           |                                                                    |

| Protein | Total spectral counts | Spectral counts<br>in stable samples<br>(mean ± SD; n = 5) | Spectral counts<br>in ruptured samples<br>(mean ± SD; n = 5) | P-value     |
|---------|-----------------------|------------------------------------------------------------|--------------------------------------------------------------|-------------|
| ABI3BP  | 1317                  | 205 ± 112                                                  | 59 ± 35                                                      | 0.04        |
| ACAN    | 944                   | 157 ± 75                                                   | 32 ± 41                                                      | 0.02        |
| ACTN1   | 7330                  | 898 ± 364                                                  | 569 ± 354                                                    | 0.23        |
| AGRN    | 71                    | 3.4 ± 1.7                                                  | 11 ± 9                                                       | 0.15        |
| APP     | 104                   | 14 ± 5.2                                                   | 7.2 ± 8.7                                                    | 0.24        |
| CAPN2   | 81                    | 11 ± 8.1                                                   | 5 ± 5.3                                                      | 0.24        |
| CAST    | 795                   | 108 ± 73                                                   | 51 ± 53                                                      | 0.25        |
| COL14A1 | 3929                  | 291 ± 119                                                  | 474 ± 185                                                    | 0.14        |
| COL18A1 | 1758                  | 1107 ± 221                                                 | 651 ± 130                                                    | 0.20        |
| COL5A1  | 202                   | 19 ± 9.6                                                   | 22 ± 15                                                      | 0.73        |
| CPXM2   | 338                   | 39 ± 21                                                    | 28 ± 17                                                      | 0.43        |
| CRIP2   | 185                   | 22 ± 11                                                    | 15 ± 10                                                      | 0.32        |
| CTGF    | 48                    | 4.6 ± 2.1                                                  | 5 ± 3.8                                                      | 0.86        |
| DAG1    | 163                   | 26 ± 14                                                    | $6.2 \pm 8.7$                                                | 0.04        |
| DMD     | 345                   | 48 ± 22                                                    | 21 ± 19                                                      | 0.09        |
| ELN     | 368                   | 51 ± 20                                                    | 22 ± 24                                                      | 0.10        |
| FBLN2   | 1401                  | 201 ± 199                                                  | 70 ± 52                                                      | 0.21        |
| FBLN5   | 798                   | 113 ± 43                                                   | 47 ± 24                                                      | 0.29        |
| FLNA    | 20,460                | 2336 ± 872                                                 | 1756 ± 885                                                   | 0.38        |
| FMOD    | 1,404                 | 215 ± 23                                                   | 66 ± 50                                                      | 0.0007      |
| HAPLN1  | 807                   | 139 ± 83                                                   | 22 ± 25                                                      | 0.03        |
| HAPLN3  | 132                   | 22 ± 7                                                     | $4.4 \pm 6.0$                                                | 0.004       |
| HMCN1   | 177                   | 25 ± 15                                                    | 30 ± 28                                                      | 0.76        |
| HSPB1   | 868                   | 119 ± 26                                                   | 55 ± 28                                                      | 0.01        |
| HSPG2   | 8792                  | 1135 ± 467                                                 | 623 ± 366                                                    | 0.12        |
| ILK     | 442                   | 60 ± 36                                                    | 29 ± 23                                                      | 0.18        |
| ITGA1   | 234                   | 29 ± 16                                                    | 18 ± 15                                                      | 0.37        |
| ITGA3   | 73                    | 10 ± 3.6                                                   | $5.0 \pm 5.5$                                                | 0.2         |
| ITGA7   | 82                    | 15 ± 6.1                                                   | $1.2 \pm 0.7$                                                | 0.11        |
| ITGA8   | 187                   | 29 ± 15                                                    | 8.2 ± 8.9                                                    | 0.04        |
| ITGAV   | 362                   | 46 ± 22                                                    | 26 ± 14                                                      | 0.17        |
| LAMA2   | 344                   | $50 \pm 40$                                                | 19 ± 24                                                      | 0.21        |
| LAMA4   | 1004                  | 135 ± 118                                                  | 65 ± 51                                                      | 0.31        |
| LAMA5   | 3519                  | 561 ± 256                                                  | 142 ± 145                                                    | 0.02        |
| LAMB1   | 1167                  | 150 ± 108                                                  | 84 ± 57                                                      | 0.31        |
|         |                       |                                                            | Table continued                                              | l next page |

Online Table III. PROTOMAP quantification in stable and ruptured human plaque segments (from patient cohort 2) of proteins that were significantly decreased in ruptured plaque samples from patient cohort 1 (as measured by shotgun mass spectrometry) and are in GO category extracellular matrix.

Table continued from previous page

| Protein | Total spectral counts | Spectral counts<br>in stable samples<br>(mean ± SD; n = 5) | Spectral counts<br>in ruptured samples<br>(mean ± SD; n = 5) | P-value |
|---------|-----------------------|------------------------------------------------------------|--------------------------------------------------------------|---------|
| LAMB2   | 2424                  | 382 ± 152                                                  | 102 ± 82                                                     | 0.01    |
| LAMC1   | 3356                  | 443 ± 210                                                  | 228 ± 171                                                    | 0.15    |
| LGALS1  | 734                   | 114 ± 35                                                   | 32 ± 18                                                      | 0.003   |
| LMCD1   | 271                   | 39 ± 39                                                    | 15 ± 9.6                                                     | 0.26    |
| LMNA    | 3754                  | 223 ± 74                                                   | 528 ± 265                                                    | 0.06    |
| LOX     | 9                     | 1.8 ± 1.1                                                  | 0 ± 0                                                        | 0.01    |
| LOXL4   | 6                     | $0.6 \pm 0.8$                                              | 0.6 ± 1.2                                                    | 1.0     |
| LTBP1   | 1582                  | 248 ± 140                                                  | 68 ± 63                                                      | 0.047   |
| LTBP2   | 3474                  | 498 ± 326                                                  | 196 ± 142                                                    | 0.13    |
| LTBP4   | 1620                  | 262 ± 191                                                  | 62 ± 50                                                      | 0.08    |
| MATN2   | 96                    | 14 ± 12                                                    | $5.6 \pm 4.4$                                                | 0.25    |
| MFAP4   | 957                   | 156 ± 35                                                   | 36 ± 24                                                      | 0.0004  |
| MFGE8   | 2633                  | 348 ± 77                                                   | 178 ± 107                                                    | 0.03    |
| MYL6    | 1266                  | 195 ± 71                                                   | 58 ± 58                                                      | 0.02    |
| NID1    | 1373                  | 179 ± 105                                                  | 96 ± 77                                                      | 0.23    |
| NID2    | 1023                  | 129± 105                                                   | 76 ± 60                                                      | 0.40    |
| NOV     | 378                   | 64 ± 47                                                    | 12 ± 7.1                                                     | 0.06    |
| NPNT    | 36                    | $5.4 \pm 4.4$                                              | 1.8 ± 3.6                                                    | 0.24    |
| OGN     | 2359                  | 298 ± 56                                                   | 174 ± 96                                                     | 0.06    |
| OMD     | 147                   | 24 ± 17                                                    | $5.6 \pm 4.8$                                                | 0.07    |
| PFKP    | 186                   | 21 ± 5.7                                                   | 16 ± 14                                                      | 0.53    |
| PODN    | 179                   | 21 ± 10                                                    | 15 ± 13                                                      | 0.53    |
| PRELP   | 6815                  | 758 ± 266                                                  | 605 ± 253                                                    | 0.43    |
| RARRES2 | 15                    | $2.6 \pm 2.4$                                              | $0.4 \pm 0.4$                                                | 0.11    |
| RPL27   | 21                    | 2.0 ± 1.6                                                  | $2.2 \pm 2.5$                                                | 0.90    |
| RPS13   | 34                    | 1.6 ± 2.0                                                  | 5.2 ± 6.1                                                    | 0.30    |
| SBSPON  | 182                   | $32 \pm 7.6$                                               | 4.6 ± 5.2                                                    | 0.0004  |
| SOD3    | 650                   | 90 ± 9.2                                                   | 40 ± 14                                                      | 0.0004  |
| SPARC   | 48                    | 9.2 ± 5.1                                                  | $0.4 \pm 0.8$                                                | 0.009   |
| SPARCL1 | 307                   | 52 ± 36                                                    | 9.4 ± 13.6                                                   | 0.06    |
| TGFB1I1 | 432                   | 60 ± 19                                                    | 26 ± 19                                                      | 0.04    |
| TINAGL1 | 1098                  | 146 ± 51                                                   | 74 ± 30                                                      | 0.04    |
| VCAN    | 4794                  | 672 ± 155                                                  | 287 ± 184                                                    | 0.01    |
| VIM     | 8055                  | 693 ± 281                                                  | 918 ± 361                                                    | 0.36    |