
S1 Appendix: Background on optimal and adaptive1

pseudo-Bayesian design2

Alan R. Pearse, James M. McGree, Nicholas A. Som, Catherine Leigh, Paul Maxwell, Jay3

M. Ver Hoef, Erin E. Peterson4

2020-07-085

Notation for geostatistical models and experimental designs6

Geostatistical models (1), specifically, spatial stream network models (2), are a fundamental aspect of our7

work in experimental design for stream networks. Our utility functions which enable optimisation of exper-8

imental designs are derived from various matrices and theoretical aspects of these models. Here, we provide9

definitions of fundamental statistical elements of these models (Table 1).10

Moving average autocovariance models for stream networks11

As geostatistical domains, stream networks exhibit greater constraints than the conventional domain of 2D12

Euclidean space. The unique branching nature of stream networks and the unidirectional flow of water13

within these branches necessitates the development and use of special spatial covariance functions. This is14

what distinguishes stream network models and the design of experiments for stream network models from15

similar problems in geostatistics.16

Consider a stream network as a set of lines (stream segments) that branch upstream from the most down-17

stream segment on the network (outlet segment) to the most upstream segments on the network (headwaters).18

We assume that the branching is binary (i.e. three or more segments never branch upstream from the same19

confluence). Observations are represented by points on the network, which have two coordinate systems20

(3); one is the usual two-dimensional coordinate system, and the other is based on the network topology21

(i.e. branching structure and connectivity of segments). Note that separation distance between two locations22

along the network (e.g. stream distance) is the shortest distance between them when movement is confined23

to the network (4). If water flows from an upstream location to a downstream location, we refer to these24

1

Table 1: Definitions of statistical elements of spatial stream network models

Quantity Definition Additional notes
y Vector of the observed

data
Only the values observed from the dependent variable of interest
are referred to as ’the data’.

X The design matrix. The first column is a column of 1s for models containing an in-
tercept term. The other columns relate to covariate values at the
observed sites.

θ Vector of the model pa-
rameters

The vector θ is a general vector of parameters for a geostatistical
model, including both the covariance parameters and fixed effects
parameters. Note, however, that in many contexts it refers only
to the covariance parameters. A note will be made whenever this
vector also includes the fixed effects parameters.

β Vector of the fixed ef-
fects parameters

D(si, sj) Distance between the
sites si and sj

Distance can be measured in a number of ways. Euclidean dis-
tance is the most common measurement for classical geostatistics;
however, stream networks can also use hydrological distance.

Z Distance matrix be-
tween all sites in a de-
sign

This is a summetric matrix where each element Zij is some dis-
tance between sites xi and xj . When i = j, Zij = 0 by necessity.

Σ Covariance matrix on
the data

The elements Σij are covariances between pairs of sites xi and xj ,
depending only on D(si, sj) and θ in a covariance function. Σ(θ)
represents the case when θ is assumed to be known; Σ(θ̂), the case
when θ̂ must be estimated from the data.

β̂gls Vector of the esimated
fixed effects parame-
ters

The estimator is the generalised least squares (GLS) estimator,
which has the form β̂gls = (XTΣ−1X)−1(XTΣ−1y) This is a best
linear unbiased estimator (BLUE).

V ar(β̂gls) Covariance matrix of
the fixed effects

This matrix summarises the uncertainty and interdependences in
the estimates of β̂gls. It is defined as V ar(β̂gls) = (XTΣ−1X)−1.

sz ∈ S Prediction sites The set of all prediction sites is written as S.
Xs Design matrix for the

prediction sites
The first column is a column of 1s for models containing an in-
tercept term. The other columns contain values of the covariates
recorded at individual prediction sites.

V Covariance matrix on
the prediction sites

This is found with the pairwise distances between prediction sites
and θ in the covariance function.

C Covariance matrix be-
tween the observed and
prediction sites

This is found with the pairwise distances between observed and
prediction sites and θ in the covariance function.

ŷ(sz) Prediction at a predic-
tion site

The predicted value of the response variable at the prediction site
sz. This is determined using the best linear unbiased predictor
(BLUP; Cressie, 1993).

V ar(ŷ(sz)) Kriging variance at
prediction sites

Prediction uncertainty is expressed via kriging variance, which
in the universal kriging system is expressed as the diagonal ele-
ments of: V − CTΣ−1C + (Xs −XTΣ−1C)T (XTΣ−1X)−1(Xs −
XTΣ−1C).

2

locations as flow-connected, and we refer to two locations within the same network not connected by flowing25

water as flow-unconnected.26

Models for stream networks, based on moving average constructions, were initially described by Ver Hoef27

et al. (5) and Cressie et al. (6). The models summarized in Hoef and Peterson (2) extend this work and28

use a spatial moving-average approach to construct Gaussian random fields based on the network topology,29

rather than the usual two-dimensional coordinate system commonly used in geostatistics. These approaches30

yield random processes that are similar to typical geostatistical models; they can be described by a mean31

function that depends on the location within the network, and a second-order stationary covariance function.32

Traditional covariance functions parameterise the dependence between observations in terms of the Euclidean33

distance separating two locations, but this is less straightforward in the context of stream networks. Stream34

network covariance functions and the distance metrics they use may depend on flow connectivity. Details on35

these covariance functions are provided below.36

Using the moving average constructions, if a moving average function is non-zero only upstream of a location,37

it is called a “tail-up” model. The function must split at confluences as it goes upstream to maintain38

stationarity of variances, so some weighting of segments must occur. If a moving average function is non-39

zero only downstream of a location, it is called a “tail-down” model. Consider two pairs of sites that have the40

same stream distance between them, but one pair is flow-connected, and the other pair is flow-unconnected;41

in general the amount of autocorrelation will be different between them. Let ri and sj denote two locations42

on a stream network, and let h be the stream distance between them. Then the following models have been43

developed to describe different forms of covariance of the response at locations ri and sj .44

The moving average construction for tail-up models, as described by Ver Hoef et al. (5), is45

Cu(ri, sj |θu) =

 πi,jCt(h|θu) if ri and sj are flow-connected,

0 if ri and sj are flow-unconnected,
(1)

where Cu(ri, sj |θu) is the spatial autocovariance between ri and sj , u denotes a tail-up model, θu is the46

vector of covariance function parameters, Ct(h|θu) is the value of a covariance function based on h and47

θu, and a selected covariance model (e.g. exponential), and πi,j are weights to account for the branching48

characteristics of the stream and maintain variance stationarity. The weights reflect the relative shared flow49

among locations, and more details can be found in Ver Hoef and Peterson (2), including ways to create an50

additive function from values associated with stream segments, such as flow volume, a proxy for flow volume51

(e.g. basin area), or any other ecologically relevant variable.52

3

For this introduction we focus on the exponential stream-network covariance function because its geostatis-53

tical counterpart is frequently applied by practitioners, but there are many other useful covariance functions,54

and we encourage interested readers to explore them among the stream-network covariance model citations.55

For the exponential stream-network covariance function, Ct(h|θu) has the following form (5):56

Ct(h|θu) = σ2
u exp(−3h/αu), (2)

where σ2
u > 0 is an overall variance parameter (also known as the partial sill), αu > 0 is the range parameter,57

and θu = (σ2
u, αu)′. Via Equation (1), spatial autocorrelation is only permitted between flow-connected58

locations in the tail-up model.59

For tail-down models, spatial autocorrelation is permitted between both flow-connected and flow-unconnected60

locations, but we generally distinguish between the two cases. When two sites are flow-unconnected, there61

will always be at least one common confluence (i.e. a downstream confluence that receives water from each62

of the two upstream sites). Let b denote the longer of the two distances to the closest common downstream63

confluence, and a denote the shorter of the two distances. If two sites are flow-connected, again use h to64

denote their stream distance. Again, the only tail-down model we consider is the exponential, defined as65

follows:66

Cd(a, b, h|θd) =

 σ2
d exp(−3h/αd) if flow-connected,

σ2
d exp(−3(a+ b)/αd) if flow-unconnected,

(3)

where Cd(a, b, h|θd) is the spatial autocovariance between ri and sj , σ2
d > 0 is an overall variance parameter,67

αd > 0 is the range parameter, θd = (σ2
d, αd)′, and d denotes a tail-down model. We note, for the exponential68

model, that the flow-connected and flow-unconnected models are equivalent, and stress this is a unique69

property of the exponential form of tail-down covariance models (7). A full development and more detail70

regarding the suite of stream-network moving-average models can be found in Ver Hoef and Peterson (2).71

A mixed linear model combining tail-up and tail-down components is72

Y = Xβ + zu + zd + ε, (4)

where Y is the vector of random variables for an observable stream attribute at sampled locations, X is a73

design matrix with full column rank for the fixed effects, β contains fixed effects parameters, zu contains74

4

spatially-autocorrelated random variables with a tail-up autocovariance (e.g. Equation (2)), with var(zu) =75

σ2
uR(αu) and R(αu) is a correlation matrix that depends on the range parameter αu; zd contains spatially-76

autocorrelated random variables with a tail-down autocovariance (e.g. Equation (3)) such that var(zd) =77

σ2
dR(αd); and ε contains independent random variables with var(ε) = σ2

0I. When used for spatial prediction,78

this model is referred to as “universal” kriging (8), with “ordinary”" kriging being the special case where the79

design matrix X is a single column of ones (1). This yields a covariance matrix of the form80

var(Y) = Σ = σ2
uR(αu) + σ2

dR(αd) + σ2
0I. (5)

The expected utility81

In Bayesian and pseudo-Bayesian experimental design, an optimal design d∗ is found by maximising an82

expected utility function U(d) through the choice of design d from a set of possible designs D. The ex-83

pected utility function is specified to capture the goal of data collection, such as precise estimation of model84

parameters and accurate prediction of a response at unobserved locations.85

To define the expected utility, we first define the utility function denoted as U(d, θ, y) which depends on a86

vector of parameters from a geostatistical model θ ∼ p(θ) and the data we expect to observe under that87

model y ∼ p(y|θ, d). Note, however, that many pseudo-Bayesian utility functions do not depend on y and88

so in many cases the utility function can simply be written U(d, θ) (9). The utility function then specifies89

the aim of data collection. For example, one may be interested in the precise estimation of the parameters.90

In this case, we could define our utility function as the negative sum of the variances for each parameter91

estimate. We take the negative sum because we generally define utility functions such that they should be92

maximised. As the notation suggests, such a quantity depends on the design d, the data y and on θ through93

the likelihood of y. However, in reality, we do not know what data will be observed, and hence we cannot94

evaluate U(d, θ, y) directly to design experiments. Instead, we use prior information about θ and y to capture95

their joint distribution, and integrate U(d, θ, y) over this uncertainty. This leads to the following definition96

of the expected utility (10):97

U(d) =
∫
θ

∫
y

U(d, θ, y)p(y|θ, d)p(θ) dy dθ. (6)

This integral is slightly modified for pseudo-Bayesian utility functions U(d, θ) that do not depend on y.98

For these utility functions, the integral which gives the expected utility is simplified to an integral over the99

5

parameters θ such that100

U(d) =
∫
θ

U(d, θ)p(θ) dθ. (7)

Unfortunately, the above integrals are generally analytically intractable for most applications, meaning101

that they have no closed form solution. In practice, this is inconvenient but we can still approximate the102

expected utility. Monte Carlo integration (Algorithm 1) is commonly used for this purpose (11). For a103

utility function U(d, θ, y), Monte Carlo integration requires taking M draws from the prior θ(m) ∼ p(θ)104

and then the likelihood y(m) ∼ p(y|θ(m), d). For each m, the utility function is evaluated for θ(m), y(m)
105

to give U(d, θ(m), y(m)). For a utility function U(d, θ), the process is the same but we ignore y(m) ∼106

p(y|θ(m), d). The values of the utilities are then averaged such that U(d) ≈
∑M
m=1 U(d, θ(m), y(m))/M or107

U(d) ≈
∑M
m=1 U(d, θ(m))/M depending on whether the utility function depends on the parameters and the108

data or the parameters only. In order to accurately estimate U(d), we need large M , which usually means109

M ≥ 500.110

Algorithm 1 Algorithm for estimating the expected utility U(d) by Monte Carlo integration
1: Specify U(d, θ, y) or U(d, θ) as appropriate.
2: Specify a prior p(θ) and, if necessary, the likelihood p(y|θ, d).
3: Set M to be the total number of Monte Carlo draws to be used for approximating U(d).
4: for m = 1 : M # each Monte Carlo draw # do
5: Take θ(m) ∼ p(θ).
6: Take y(m) ∼ p(y|θ(m), d) if required.
7: Evaluate U(d, θ(m), y(m)) or U(d, θ(m)).
8: end for
9: Evaluate U(d) ≈

∑M
m=1 U(d, θ(m), y(m))/M or U(d) ≈

∑M
m=1 U(d, θ(m))/M as appropriate.

Searching for an optimal design111

In this section, we outline how we maximise the expected utility function over a set of possible designs112

(Algorithm 2). The use of optimisation algorithms such as exchange algorithms (12) is necessary because113

many design problems are impossible to solve analytically and are too large to efficiently solve numerically114

with a computer under a brute-force search scheme. If one wants to find an optimal design of size n and there115

are N sites to choose from, then the optimal design d∗ will exist somewhere among N choose n potential116

solutions. This number is exceedingly large for all but the smallest values of N . Therefore, an optimisation117

algorithm is used to greatly reduce the costs associated with the search for d∗ (12).118

In this work, we use a greedy exchange algorithm (Algorithm 2) to locate optimal designs (9,13). The119

6

greedy exchange algorithm works by optimising the choice of each of n sites one-by-one. Initially, a random120

design with n sites is proposed and becomes d0 = {s1, s2, ..., sn} (the initial design) and d∗ (the design which121

currently has the highest value of U(d)). From this point, we begin the coordinate exchange. Note that122

there are N − n candidate points not currently in d∗. The first site in d0 (s1) is then swapped out for each123

of the N − n candidate sites. The expected utilities of the resulting designs are recorded. If any designs124

have an expected utility larger than U(d∗), the design with the highest expected utility replaces d∗. Then125

we update our pool of candidate sites, and we begin to exchange the next site. Otherwise, the design reverts126

to d∗ and the next site in the design is exchanged for each candidate site. This process continues until we127

have exchanged all n sites. If d∗ changed at any point in this process (i.e. if we see any improvement in the128

design), we repeat the sequence of exchanges. This continues until we finally observe no improvement in the129

expected utility of d∗. We then exit the algorithm. The algorithm is called the greedy exchange algorithm130

because it only accepts improvements in the design and stops when no further improvement can be achieved.131

Algorithm 2 The greedy exchange algorithm
1: Set K, the number of searches from random starts. This is to mitigate against becoming trapped in

local maxima.
2: for k = 1 : K do
3: Initialise d0 as a randomly selected design with n of N points.
4: Set d∗ = d0
5: Evaluate U0 = U(d0) to initialise the search for designs
6: Store U∗ = U0; the expected utility of the global ‘best design’.
7: Temporarily store U∗ij = U∗ + ε (the expected utility of the ‘best-within-search’ design) for small ε.

(This is simply to force the while loop to iterate at least once.)
8: Initialise Uij = ∅. Uij will be used to store the expected utilities for designs evaluated during the

following search.
9: while U∗ij > U∗ # until there is no improvement # do

10: Update U∗ = U∗ij
11: for i = 1 : n # each point currently in the design # do
12: Find the N − n points not in d∗
13: for j = 1 : (N − n) # each point not in the design # do
14: Form dij by swapping out the ith point in the design for the jth point not in the design
15: Evaluate U = U(dij)
16: Define Uij = Uij ∪ U
17: end for
18: if max(Uij) > U∗ij then
19: Update d∗ = argmaxd∈DU(dij)
20: Update U∗ij = U(d∗)
21: else
22: Keep the previous d∗ and U∗ij .
23: end if
24: end for
25: end while
26: end for

The greedy exchange algorithm can be analysed to yield an approximate expression for the run-time. We first132

7

assume that estimating U(d) is the most time-consuming part of the algorithm and that any intermediate133

storage operations and data manipulation between evaluations of U(d) are inconsequential. Let us assume134

that it takes S seconds to evaluate U(d). The number of expected utilities that are calculated in the greedy135

exchange algorithm each time an optimal design is found (for each of K iterations, in Algorithm 2) is136

stochastic. However, the stochasticity is due to only a single step (the condition at Line 9, Algorithm 2)137

and the number of times the expected utility must be estimated is otherwise well-constrained. There are L138

iterations, and L is random. In every iteration of the greedy exchange, there are n× (N − n) designs to be139

evaluated. This process is repeated K times from K random starts, so the number of times the expected140

utility is estimated is K × L× n× (N − n) +K. The additional K evaluations are from the random starts,141

which must be evaluated. However, K extra evaluations of U(d) are unlikely to be of any consequence142

for calculating expected run-time, so we discard them. Altogether, the expected run-time for the greedy143

exchange algorithm is K × L× n× (N − n)× S seconds. However, some utility functions have large S and144

therefore expected runtimes may still be large. Therefore, we use parallel computing to further reduce the145

total runtime. Let C be the number of CPUs across which the greedy exchange algorithm is to be run. Then146

the expected runtime reduces to approximately (K × L× n× (N − n)× S)/C seconds.147

Utility functions for static optimal design148

In this section, we set out detailed notation and explanations of our utility functions. In our package, we149

have provided an off-the-shelf utility function for150

• Precision of covariance parameter estimation151

• Precision of fixed effect parameter estimation152

• Precision of estimation of both covariance and fixed effect parameters153

• Precision of predictions, and154

• Approximately evenly-spaced sites in the stream network.155

Our covariance parameter estimation utility is called CP-optimality and was used in both Falk et al. (9)156

and Som et al. (14). It is given by157

U(d, θ) = log det [I(d, θ)] , (8)

where I(d, θ) is the expected Fisher information for the covariance parameters. To compute the expected158

8

Fisher information, we use the restricted error maximum likelihood (REML) estimator (9,14). This means159

each element [Ii,j(θ, d)] is defined by160

Ii,j(θ, d) = 1
2tr
(
∂Σ
∂θi

P
∂Σ
∂θj

P

)
, (9)

where the matrix P in Equation 9 is defined as P = Σ−1−Σ−1X
(
XTΣ−1X

)−1
XTΣ−1. This utility function161

works because larger values of det[I(d, θ)] correspond to lower uncertainties on θ, as given by the elements162

of I(d, θ).163

Our fixed effects estimation utility is called D-optimality (9,14). This utility works on the same principle164

as CP-optimality, though it minimises the uncertainty in a different set of parameters. Formally, the utility165

function is166

U(d, θ) = log det [I(d, βgls)] , (10)

where I(d, βgls) = V ar(βgls, d)−1 = XTΣ−1X is the Fisher information for the fixed effects parameters.167

Note that this assumes the covariance parameters are known up to a prior. For cases when there is little168

information about the covariance parameters and it is advantageous to estimate them from the data, we use169

empirical D-optimality (ED-optimality, after Som et al. (14)). In this case, the criterion is modified from170

Equation 10 such that171

U(d, θ, y) = log det
[
I(d, β̂gls)

]
, (11)

where I(d, β̂) is the observed Fisher information for the fixed effects parameters. For the empirical D-172

optimality utility function, the vector θ includes the fixed effects β. These are needed to generate the data173

y from which ˆβgls are estimated. Though Som et al. (14) adjust the utility function with the addition of174

another quantity derived from the inverse Fisher information, we do not. Their reasoning for making this175

adjustment was to account for changes to the sampling distributions of the fixed effects when the covariance176

parameters are estimated from the data. However, since we are averaging over a set of prior draws for the177

covariance parameters, we are in effect constructing the sampling distribution of the fixed effects through178

simulation.179

A dual purpose utility function is also defined for improving the precision of both fixed effects and covariance180

parameter estimates at the same time. We call this CPD-optimality. Instead of considering the information181

9

matrices for the fixed effects and covariance parameters separately, we consider a combination of the two as182

a block diagonal matrix such that183

F =

D 0

0 C

 , (12)

where D = I(d, βgls) and C = I(d, θ). Again we define our utility function as the log-determinant of this184

matrix, which reduces to185

U(d, θ) = log [det (D) det (C)] = log [det (D)] + log [det (C)] . (13)

This is simply the sum of the two utility functions D- and CP-optimality.186

Our prediction utility is called K-optimality, where K is for kriging. It is the inverse sum of the kriging187

variances defined at a set of prediction sites sz ∈ S for z = 1, ..., Z where Z is the number of prediction sites.188

This utility function favours designs where the total uncertainty is small. When covariance parameters are189

known (15), this is190

U(d, θ) =
(∑
sz∈S

var (ŷ(sz, θ), d)
)−1

. (14)

We use the universal kriging system to estimate the kriging variances (1). When we need to empirically191

estimate the covariance parameters due to a lack of strong beliefs about them, we can use empirical kriging192

variances. In this situation, we get the empirical K-optimality function (EK-optimality), which is193

U(d, θ, y) =
(∑
sz∈S

v̂ar
(
ŷ(sz, θ̂), d

))−1

. (15)

The vector θ includes the fixed effects β because they are needed to generate y(m) ∼ p(y|θ(m), d) in Alg. 1.194

Note there is a parameter estimation step in this empirical utility, so it serves the dual purpose of prediction195

accuracy and parameter estimation (9).196

Two space-filling utilities are also provided in the package. Space-filling designs are used to construct designs197

with roughly equally spaced and unclustered sets of monitoring sites in space. The first space-filling utility198

function is the maximin utility function (16), which is199

10

U(d) = min
i 6=j

D(si, sj), (16)

where the distance D(si, sj) (Table 1) can be either Euclidean or hydrological distance (2). This utility200

function unsurprisingly favours configurations of sites that maximise the minimum distance among any two201

sites. The second is the modified maximin design criterion proposed by Morris and Mitchell (17). This is202

U(d) = −
(

w∑
i=1

(JiZi)p
)1/p

. (17)

In this utility function, w is the number of unique non-zero distances between pairs of points in a design. The203

vector Z contains w distance elements sorted from smallest to largest. The vector J contains the number of204

times each of these distances occur in one triangle (upper or lower) of the distance matrix for a given design.205

The parameter p is a weighting power which determines the weighting to be given to smaller distances. As206

p→∞, the contribution of the smallest non-zero distance Z1 to the utility will far outweigh the contribution207

of any other term in the sum and this utility will reduce to the maximin utility described earlier. Note that208

the value of p is arbitrary and user defined. Morris and Mitchell (17) recommend that p be set between209

p ∈ [20, 40] but any p > 1 is viable. Compared to the maximin utility function, this utility function has210

the advantage of being able to incorporate information about the distances between pairs of points in the211

design which are larger than the minimum distance, with a view to providing a more spatially balanced212

design where not only is the minimum distance between points large but that larger distances also increase213

accordingly. As a final note on these two utility functions, it can be seen that neither depend on θ or y.214

Therefore, no integration is needed to obtain the expected utility.215

Utility functions for adaptive design216

Adaptive designs differ from optimal designs because, instead of making a single decision about where to217

sample within a stream network, adaptive designs involve a series of decisions about where to sample that218

evolve over time as new data becomes available. We use a myopic design approach in SSNdesign, which219

means that we only look one step forward in the series of design decisions we have to make and try to220

make the best decision for the next timestep only. This is in contrast to backward induction, which involves221

enumerating every possible decision we could make in the future and selecting the series of decisions that,222

retrospectively, should lead to the best result (18).223

11

Adaptive designs account for the designs used and data collected at previous timesteps by modifying the224

expected utility function (Algorithm 3). Let t be a timestep with t = 0, 1, 2, ..., T for some total number225

of time periods T . At time period t, a total of t − 1 design decisions and datasets have been collected. In226

adaptive design, we leverage this information to improve our design. Therefore, our expected utility function227

can be written as U(d|d0:t−1, y0:t−1). That is, the utility of any design under consideration in the current228

time period depends on the designs and data from all previous time periods. To avoid continually refitting229

models to a potentially large number of data points (i.e. data from previous timesteps), we summarise the230

information obtained about θ from previous timesteps through a summary statistic Ot(d0:t, y0:t, θ). An231

example of such a summary statistic that we frequently use is the observed Fisher information about θ from232

previous time steps. Expected utility functions can then be interpreted as evaluating the information gain233

that is additional to what has been previous observed. Then, within this context, expected utility functions234

are optimised as described in Algorithm 2 for time period t.235

Algorithm 3 Algorithm for finding adaptive designs
1: Initialise d0 and y0
2: Estimate θ given y0 and d0 to form p(θ|d0, y0)
3: Obtain summary of model fit, e.g. O0(d0, y0, θ)
4: for t = 1 : T do
5: Find dt = maxd∈D U(d|d0:t−1, y0:t−1) where U(d|d0:t−1, y0:t−1) depends on all previous design decisions

through the statistic Ot−1(d0, y0, θ)
6: Collect new data yt in accordance with dt. If no data collection can be performed, simulate data

collection by generating yt from the data-generating model (p(y|θ, dt)), with assumed parameters θ
and the design under consideration dt.

7: Estimate θ given y0:t and d0:t to form p(θ|d0:t, y0:t)
8: Update the statistic Ot(d0:t, y0:t, θ)
9: end for

We have included three utility functions for adaptive design in our package:236

• Sequential CP-optimality, for adaptive covariance parameter estimation.237

• Sequential D-optimality, for adaptive fixed effects estimation.238

• Sequential ED-optimality, for adaptive fixed effects estimation with empirically estimated covariance239

parameters.240

In sequential CP-optimality, we define Ot(d0:t, y0:t, θ) to be the observed Fisher information matrix for the241

covariance parameters from a spatial stream network model fitted over the existing design. This leads to the242

following definition of sequential CP-optimality:243

U(d, θ|d0:t−1, y0:t−1) = log det [I(d, θ) +Ot−1(d0:t−1, y0:t−1, θ)] (18)

12

Note that, in practice, we cannot guarantee that it will always be possible to run this utility function244

(sequentialCPOptimality) because the observed Fisher information matrix for the covariance parameters245

is not always returned in objects of class glmssn.246

In sequential D-optimality and ED-optimality, we define Ot(d0:t, y0:t, θ) to be the observed Fisher information247

matrix for the fixed effects. We obtain this by fitting a stream network model over the data that have been248

collected using the existing design. The sequential D-optimality function is effectively the same as Equation249

18 where β is substituted in for θ. The sequential ED-optimality function is similar, except that it uses the250

observed Fisher information matrix for the fixed effects I(d, β̂) instead of the expected Fisher information251

matrix I(d, β) like sequential D-optimality. Therefore, the utility function is written as252

U(d, θ, yt|d0:t−1, y0:t−1) = log det
[
I(d, β̂) +Ot−1(d0:t−1, y0:t−1, θ)

]
. (19)

No special functions are defined as adaptive equivalents of K and EK-optimality. This is because the only253

appropriate quantity that might be used as Ot(θ) for K and EK-optimality is the sum or inverse sum of254

the kriging variances defined at the prediction sites. However, simply adding this quantity in the utility255

function would have no impact on the results because it would offset every calculation by the same amount.256

Instead, K and EK-optimality can both be used ‘as-is’ for adaptive designs. Each optimisation will still be257

conditioned on previous designs and observed data through any legacy sites in the design, as well as through258

the updated estimates and priors of parameters in the spatial stream network model.259

References260

1. Cressie N. Statistics for spatial data. Wiley, New York; 1993.261

2. Ver Hoef JM, Peterson EE. A moving average approach for spatial statistical models of stream networks.262

Journal of the American Statistical Association. 2010;105(489).263

3. Peterson EE, Ver Hoef JM, Isaak DJ, Falke JA, Fortin M-J, Jordan CE, et al. Modelling dendritic264

ecological networks in space: An integrated network perspective. Ecology Letters [Internet].265

2013;16(5):707–19. Available from: http://dx.doi.org/10.1111/ele.12084266

4. Dent CL, Grimm NB. Spatial heterogeneity of stream water nutrient concentrations over successional267

13

http://dx.doi.org/10.1111/ele.12084

time. Ecology [Internet]. 1999;80(7):2283–98. Available from: http://www.jstor.org/stable/176910268

5. Ver Hoef JM, Peterson EE, Theobald D. Spatial statistical models that use flow and stream distance.269

Environmental and Ecological Statistics. 2006;13:449–64.270

6. Cressie N, Frey J, Harch B, Smith M. Spatial prediction on a river network. Journal of Agricultural,271

Biological, and Environmental Statistics. 2006;11:127–50.272

7. Garreta V, Monestiez P, Ver Hoef JM. Spatial modelling and prediction on river networks: Up model,273

down model or hybrid? Environmetrics [Internet]. 2010;21(5):439–56. Available from: http://dx.274

doi.org/10.1002/env.995275

8. Le ND, Zidek JV. Statistical analysis of environmental space-time processes. New York, NY: Springer;276

2006. (Springer series in statistics).277

9. Falk MG, McGree JM, Pettitt AN. Sampling designs on stream networks using the pseudo-bayesian278

approach. Environmental and Ecological Statistics. 2014;21:751–73.279

10. Chaloner K, Verdinelli I. Bayesian experimental design: A review. Statistical Science. 1995;10(3):273–280

304.281

11. Mueller P. Simulation-based optimal design. Bayesian Statistics. 1999;6:459–74.282

12. Royle JA. Exchange algorithms for constructing large spatial designs. Journal of Statistical Planning283

and Inference. 2002;100(2):121–34.284

13. Evangelou E, Zhu Z. Optimal predictive design augmentation for spatial generalised linear mixed models.285

Journal of Statistical Planning and Inference. 2012;142(12):3242–53.286

14. Som NA, Monestiez P, Ver Hoef JM, Zimmerman DL, Peterson EE. Spatial sampling on streams:287

Principles for inference on aquatic networks. Environmetrics. 2014;25(5):306–23.288

15. Zhu Z, Stein ML. Spatial sampling design for prediction with estimated parameters. Journal of Agricul-289

tural, Biological, and Environmental Statistics. 2006;11(1):24–44.290

16. Pronzato L, Muller WG. Design of computer experiments: Space filling and beyond. Statistics and291

Computing. 2012;22.292

17. Morris MD, Mitchell TJ. Exploratory designs for computational experiments. Journal of Statistical293

14

http://www.jstor.org/stable/176910
http://dx.doi.org/10.1002/env.995
http://dx.doi.org/10.1002/env.995
http://dx.doi.org/10.1002/env.995

Planning and Inference. 1995;43(3):381–402.294

18. Mueller P, Berry DA, Grieve AP, Smith M, Krams M. Simulation-based sequential Bayesian design.295

Journal of Statistical Planning and Inference. 2007;137:3140–50.296

15

	Notation for geostatistical models and experimental designs
	Moving average autocovariance models for stream networks
	The expected utility
	Searching for an optimal design
	Utility functions for static optimal design
	Utility functions for adaptive design
	References

