Title: Scarless removal of large resistance island AbaR results in antibiotic susceptibility and increased natural transformability in *Acinetobacter baumannii*.

Authors: Anne-Sophie Godeux^{a,b}, Elin Svedholm^a, Agnese Lupo^c, Marisa Haenni^c, Samuel Venner^d, Maria-Halima Laaberki^{a,b,#,*}, Xavier Charpentier^{a,#}.

a. CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon , 69100, Villeurbanne, France

b. Université de Lyon, VetAgro Sup, 69280 Marcy l'Etoile, France.

c. Unité Antibiorésistance et Virulence Bactériennes, Université de Lyon - ANSES Site de Lyon, Lyon, France

d. Laboratoire de Biométrie et Biologie Evolutive, CNRS UMR5558, Université Claude Bernard Lyon 1, Villeurbanne, France # Contributed equally

* Correspondence to Maria-Halima Laaberki, maria-halima.laaberki@vetagro-sup.fr

SUPPLEMENTAL MATERIAL

Table S1: primers used in this study

Detailed protocol of chimeric PCR for mutation in A. baumannii

1

2 SUPPLEMENTARY MATERIALS

3 Table S1: primers used in this study

4

Genetic construct	Name*	Sequence 5' to 3'	Template; Annealing site			
Chromosomal modifications using overlap extension PCR						
comM::sacB_aacC4	mlo-2 (P1)	GCCTGGAATTGTCATCAACAGAACC	AB5075 and AYE genomic DNA; <i>amt</i> gene = 2kb upstream of the <i>comM</i> gene			
	mlo-3 (P2)	GGCCCAATTCGCCCTATAGTGAGTCGATTGCTGATGCTGTATGGTGGGG	AB5075 and AYE genomic DNA; 5' <i>comM</i> gene and adapter sequence reverse- complement to primer mazF-K7-F (bold and orange)			
	mlo-4 (P3)	GGGTTTGCTCGGGTCGGTGGCATATGCAATGAATCCTTGTCCATGTGGG	AB5075 and AYE genomic DNA; 3' <i>comM</i> gene and adapter sequence reverse- complement to primer mlo-1 (bold and blue)			
	mlo-5 (P4)	GCATGTCTTGCTGTGCGTGTTGC	AB5075 and AYE genomic DNA; <i>ABUW_3681</i> gene = 2kb downstream of the <i>comM</i> gene			
	mazF-K7-F (P5)	CGACTCACTATAGGGCGAATTGGGCCGCTTTCCAGTCGGGAAACCTG	pMHL-2 (Godeux et al., 2018); upstream <i>sacB</i> gene and adapter sequence (bold)			
	mlo-1 (P6)	CATATGCCACCGACCCGAGCAAACCCCGCCAGGGTTTTCCCAGTCACGAC	pMHL-2 (Godeux et al., 2018) ; dowstream <i>aacC4</i> gene and adapter sequence (bold)			
∆AbaR	mlo-6 (P7)	ACCGCCCCAACCAGTGCAATTG	AB5075 and AYE genomic DNA <i>; comM</i> at AbaR insertion locus (annealing with mlo-7 is underlined)			
	mlo-7 (P8)	CAATTGCACTGGTTGGGGGGGGGTTCACACCCCAAACCGGGTGAAATTAC	AB5075 and AYE genomic DNA <i>; comM</i> at AbaR insertion locus (annealing with mlo-6 is underlined)			
∆comM	asg-75 (P7')	AATTTCTAGTGCACGCCG	AB5075 and AYE genomic DNA; 5' <i>comM</i> gene (annealing with asg-76 is underlined)			

	asg-76 (P8')	CGGCGTGCACTAGAAATTCCAAACCGGGTGAAATTAC	AB5075 and AYE genomic DNA; 3' <i>comM</i> gene (annealing with asg-75 is underlined)		
Primers for control using colony PCR and for sequencing of the comM locus					
	mlo-80	CGGATCTTCGATGCTGGC	AbaR1 from AYE strain		
	mlo-84	GCAACGATGTTACGCAGC	AbaR1 from AYE strain		
	comM-For	CCACAATGGAACAAGAAGATGTCT	5' of the <i>comM</i> gene		
	comM-Rev	TTAAGAGTGATTACCTCGATAAGA	3' of the <i>comM</i> gene		
	mlo-29	TCATGAGCTCAGCCAATCGACTGG	End of ApraR cassette		
	asg-61	CCACAGAATGATGTCACG	5' of the aacC4 gene		
PCR product carrying the <i>rpoB</i> mutation as substrate for natural transformation					
	mlo-104	AAGATATCGGTCTCCAAGC	AB5075 genomic DNA; <i>rpoB</i> gene		
	mlo-105	AGTACGGCCTTCAACGTCAT	AB5075 genomic DNA; <i>rpoB</i> gene		

5 *as referred in Fig.1

'

10 Detailed protocol of chimeric PCR for mutation in A. baumannii

11 Two rounds of PCR are required to produce chimeric PCR products: a first PCR to add overlapping extensions to the DNA

12 fragments and a second to assemble the first DNA fragments.

13 **1. First PCR (Overlapping extension PCR)**

14 PCR mix:

15	PCR mix	25µL reaction
16	DNA template [20ng to 100ng/	μL] 1μL
17	Primer F 10µM	0.5µL
18	Primer R 10µM	0.5µL
19	PrimeSTAR premix (Takara)	12.5µL
20	H2O qsp 25µL	10.5µL
21		
22	PCR cycling conditions :	
23	Initial denaturation 98°C- 2 min	1.
24	Denaturation 98°C - 20 sec.	
25	Annealing 55 °C – 20 sec.	30 cycles
26	Extension 72°C – 40 min.	

 $27 \qquad \qquad {\sf Final \ extension \ 72^\circ C-5 \ min.}$

28

29 Then proceed to PCR purification after migration of the whole PCR reactions in buffered agarose gel stained with SYBR Safe

30 (Thermofisher). The bands at the correct size are excised from the gel above a blue-light transilluminator (this is critical) and

31 DNA extracted following instructions of the manufacturer (Omega Bio-Tek/VWR).

32 Alternatively, the PCR products are purified using magnetic beads following manufacturer's protocol (Ampure XP /Beckman

33 Coulter) after a direct DpnI digestion of the genomic DNA in the PCR mix.

The purified PCR products are then analyzed (5μ L) on agarose gel stained with ethidium bromide. Concentration should be at least $30ng/\mu$ L for each PCR products and a single band obtained.

36

37 2. Second PCR (assembly PCR)

38 This second round of PCR assembles the three PCR products with a ratio of 1/2/1 for PCR[P1 + P2] / PCR[P5 + P6] / PCR[P3

39 + P4] in the PCR mix using the P1 (forward primer) and P4 (reverse primer).

- 40 PCR mix:[DNA concentration for example]
- 41 PCR Assembly 50µL reaction 42 PCR[P1 + P2] [100ng/µL] 1 43 PCR[P5 + P6] [30ng/µL] 6 44 PCR[P3 + P4] [100ng/µL] 1 45 Primer P1 10µM 1 46 Primer P4 10µM 1 47 PrimeStar premix (Takara) 25 48 H2O 15

49 Note that the total amount of PCR products is close to 500ng for a 50µL reaction, this can be up to 800ng-1µg, without
50 exceeding a total of 10µL of first PCR products for a 50µL PCR reaction.

- 51
- 52 PCR cycling conditions :
- 53 Initial denaturation 98°C- 2'
- 54 Denaturation 98°C -20"
- 55 Annealing 55°C 20" 30 cycles
- 56 Extension 72°C 1' 30"
- 57 Final extension 72°C 5'

58 Then proceed to PCR purification either after migration in buffered agarose gel stained using SYBR Safe (Thermofisher)

59 followed by gel extraction (Omega Bio-Tek/VWR) or alternatively using Ampure XP beads (Beckman Coulter).