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Supplementary Methods: Estimating 𝑝(�⃗� |𝐴𝑠𝑓
𝜃 , �̂�) and B using a variant of the 

Baum-Welch algorithm: 

Learning from random walk: For each considered graph dimension, that belongs to one of 

the structural forms, we have estimated the transition matrix (𝐴𝑠𝑓
𝜃 ) using the rescaled basis 

set of that form. We then estimated, for each approximated transition matrix, the emission 

matrix B and the probability of the observations given these matrices, 𝑝(�⃗� |𝐴𝑠𝑓
𝜃 , �̂�), using 

the Baum-Welch algorithm. The Baum-Welch algorithm estimates both the emission matrix 

and the transition matrix, here, we assumed that the transition matrix is known and 

therefore did not estimate it. We adapted the matlab routine ‘hmmtrain’ such that the 

transition matrix is given and we estimated B and 𝑝(�⃗� |𝐴𝑠𝑓
𝜃 , �̂�).  

Simulations details: During our simulations, the agents saw 150 pairs of pictures within each 

block. When the correct underlying structure was of a community structure, we averaged 

our results over 20 simulations, while when it was hexagonal grid we averaged over 15 

simulations. 

Initialization of parameters: 

Hexagonal grid: 

𝐵𝑧=1(𝑜 = 1) = 1, 𝐵𝑧=1(𝑜 ≠ 1) = 0, 𝐵𝑧≠1(𝑜 = 1) = 0, 𝐵𝑧=𝑖(𝑜 = 𝑗) = 𝑝0 𝑖, 𝑗 ≠ 1           (1) 

                                                               𝑝0 = 
1

𝑁𝑝−1
                                                                        (2) 

Where z is a state and o is an observation, 𝑁𝑝 is the number of observations. 

Community structure: 

Because of the symmetry of the community graph structure, the first picture (observation) 

can be a connecting node (therefore will assign arbitrarily to state 1) or a ‘not connecting 

node’ and therefore assign arbitrary to state 2. As there are 2 connecting nodes in a 

community the initial condition to the emission matrix is: 

                                     𝐵𝑧=1(𝑜 = 1) =
2

𝑁𝑐
, 𝐵𝑧=2(𝑜 = 1) =

𝑁𝑐−2

𝑁𝑐
                                              (3) 

                𝐵𝑧=1(𝑜 ≠ 1) = 𝑝0
𝑁𝑐−2

𝑁𝑐
, 𝐵𝑧≠1(𝑜 = 1) =

2𝑝0

𝑁𝑐
, 𝐵𝑧=𝑖(𝑜 = 𝑗) = 𝑝0 𝑖, 𝑗 ≠ 1           (4) 

Where 𝑁𝑐 is the community size. 

The simulations were initiated in state 1.  

Learning from pairs (Expectation – Maximization, EM): Learning from pairs that are 

randomly sampled from the graph, instead of a random walk (in which each pair has a 

picture from the previous pair), results in a process which is HMM of length 2. Therefore, 



using the Baum-Welch is not relevant anymore. Instead, we estimated the emission matrix 

(B) and the likelihood, 𝑝(�⃗� |𝐴𝑠𝑓
𝜃 , �̂�), by the following EM algorithm:  

Given a structural form and a graph dimension the transition matrix is approximated as 

before (𝐴𝑠𝑓
𝜃 ). For each particular transition matrix, we calculated the following EM steps 

until convergence: 

(1) Expectation step:  

In the following, 𝑧  denotes the hidden states. 𝐵𝑠−1 is the estimation of the emission 

matrix from the previous EM step (where s is the step). 

The observation of each pair of pictures is independent from the previous pair, 

therefore the probability of the observations and hidden states is given by: 

 

                                𝑝(�⃗� , 𝑧 |𝐴𝑠𝑓
𝜃 , 𝐵) = ∏  𝑝(𝑂1

𝑛, 𝑂2
𝑛, 𝑧1

𝑛, 𝑧2
𝑛|𝐴𝑠𝑓

𝜃 , 𝐵)𝑛                                  (5) 

 

Where 𝑜1 
𝑛  (𝑜2

𝑛) is the first (second) observation in the n’s pair, and 𝑧1
𝑛 (𝑧2

𝑛) are the 

states of the first and second observation respectively. 

 

Lets define: 

𝛼𝑛(𝑧1
𝑛 = 𝑖, 𝑧2

𝑛 = 𝑗) ≡ 𝑝(𝑂1
𝑛, 𝑂2

𝑛, 𝑧1
𝑛 = 𝑖, 𝑧2

𝑛 = 𝑗|𝐴𝑠𝑓
𝜃 , 𝐵)

= 𝑝(𝑧1
𝑛 = 𝑖) ∙ 𝑝(𝑂1

𝑛|𝑧1
𝑛 = 𝑖, 𝐵) ∙ 𝑝(𝑧2

𝑛 = 𝑗|𝑧1
𝑛 = 𝑖, 𝐴𝑠𝑓

𝜃 )

∙ 𝑝(𝑂2
𝑛|𝑧2

𝑛 = 𝑗, 𝐵) =  
1

𝑁
𝐵𝑧1

𝑛(𝑜1
𝑛)𝐴𝑖𝑗𝐵𝑧2

𝑛(𝑜2
𝑛) 

(6) 

N is the number of nodes on the graph. Each pair is sampled randomly and uniformly 

therefore: 𝑝(𝑧1
𝑛) =

1

𝑁
. 𝐵𝑧𝑘

𝑛(𝑜𝑘
𝑛) = 𝑝(𝑂𝑘

𝑛|𝑧𝑘
𝑛) and       

                       𝐴𝑖𝑗 = 𝑝(𝑧2
𝑛 = 𝑖|𝑧1

𝑛 = 𝑗) = {   
1

6
    𝑖𝑓 𝑖&𝑗 𝑎𝑟𝑒 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠

0                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  
                                   (7) 

 and: 

log ( 𝑝(�⃗� , 𝑧 |𝐴𝑠𝑓
𝜃 , 𝐵) = ∑ log[𝑝(𝑂1

𝑛, 𝑂2
𝑛, 𝑧1

𝑛, 𝑧2
𝑛|𝐴𝑠𝑓

𝜃 , 𝐵)]𝑛 = ∑ log [𝛼𝑛(𝑧1
𝑛, 𝑧2

𝑛)]𝑛 =

∑ (−𝑙𝑜𝑔𝑁 + 𝑙𝑜𝑔𝐵𝑧1
𝑛(𝑜1

𝑛) + 𝑙𝑜𝑔𝐴𝑖𝑗 + 𝑙𝑜𝑔𝐵𝑧2
𝑛(𝑜2

𝑛))𝑛                                                       (8) 

The expected log likelihood of the data (�⃗� , 𝑧 ) given the current model parameters  

(𝐴𝑠𝑓
𝜃 ), the previous estimation of the parameters (𝐵𝑠−1) and the the distribution of 

the states (𝑧 ) conditioned on observation (�⃗� ) becomes:   

 

𝑄(𝐵, 𝐵𝑠−1) = ∑ 𝑝(𝑧 |�⃗� , 𝐴𝑠𝑓
𝜃 , 𝐵𝑠−1)log ( 𝑝(�⃗� , 𝑧 |𝐴𝑠𝑓

𝜃 , 𝐵)𝑧∈𝑍 =

∑ 𝑝(𝑧 |�⃗� , 𝐴𝑠𝑓
𝜃 , 𝐵𝑠−1)∑ log [𝛼𝑛(𝑧1

𝑛, 𝑧2
𝑛)]𝑛𝑧∈𝑍                                                                         (9) 

 

 



And the likelihood of the current estimation of B is: 

𝐿(𝐵𝑠−1) =  𝑝(�⃗� |𝐴𝑠𝑓
𝜃 , 𝐵𝑠−1) = ∏𝑝(𝑂1

𝑛, 𝑂2
𝑛|𝐴𝑠𝑓

𝜃 , 𝐵𝑠−1)

𝑛

= ∏∑𝛼𝑛
𝑠−1(𝑧1

𝑛 = 𝑖, 𝑧2
𝑛 = 𝑗)

𝑖,𝑗𝑛

 

 

 

 (10) 

Where  𝛼𝑛
𝑠−1(𝑧1

𝑛 = 𝑖, 𝑧2
𝑛 = 𝑗) = 𝑝(𝑂1

𝑛, 𝑂2
𝑛, 𝑧1

𝑛 = 𝑖, 𝑧2
𝑛 = 𝑗|𝐴𝑠𝑓

𝜃 , 𝐵𝑠−1)  

On each expectation step we calculated: 𝛼𝑛
𝑠−1(𝑧1

𝑛 = 𝑖, 𝑧2
𝑛 = 𝑗) and 𝐿(𝐵𝑠−1). 

 

(2) maximization step: 

 

We define a Lagrangian ,using Lagrange multiplier to satisfy the condition that ∑ 𝐵𝑖(𝑘)𝑘 =1: 

                                         �̂�𝜆 = 𝑄(𝐵, 𝐵𝑠−1) − ∑ 𝜆𝑖(∑ 𝐵𝑖(𝑘) − 1𝑘 )𝑖                                               (11) 

As we are maximizing in respect to B, we can keep only the following terms: 

�̃�𝜆 = ∑ 𝑝(𝑧 |�⃗� , 𝐴𝑠𝑓
𝜃 , 𝐵𝑠−1)∑ (𝑙𝑜𝑔𝐵𝑧1

𝑛(𝑜1
𝑛) + 𝑙𝑜𝑔𝐵𝑧2

𝑛(𝑜2
𝑛))𝑛𝑧∈𝑍 − ∑ 𝜆𝑖(∑ 𝐵𝑖(𝑘) − 1𝑘 )𝑖 =

∑ ∑ 𝑝(𝑧1
𝑛 = 𝑖|�⃗� , 𝐴𝑠𝑓

𝜃 , 𝐵𝑠−1)𝑛𝑖,𝑗 𝑙𝑜𝑔𝐵𝑖(𝑂1
𝑛) + 𝑝(𝑧2

𝑛 = 𝑗|�⃗� , 𝐴𝑠𝑓
𝜃 , 𝐵𝑠−1)𝑙𝑜𝑔𝐵𝑗(𝑂2

𝑛) −

∑ 𝜆𝑖(∑ 𝐵𝑖(𝑘) − 1𝑘 )𝑖                                                                                                                           (12) 

Maximizing in respect to 𝐵𝑖(𝑂1,2
𝑛 = 𝑘) gives: 

𝜕�̂�𝜆

𝜕𝐵𝑖(𝑘)
=

∑ (𝑝(𝑧1
𝑛=𝑖|�⃗� ,𝐴𝑠𝑓

𝜃 ,𝐵𝑠−1)𝛿(𝑜1
𝑛=𝑘)+𝑝(𝑧2

𝑛=𝑖|�⃗� ,𝐴𝑠𝑓
𝜃 ,𝐵𝑠−1))𝛿(𝑜2

𝑛=𝑘))𝑛

𝐵𝑖(𝑘)
− 𝜆𝑘                                      (13) 

 

For solving for 𝐵𝑖(𝑘) we define: 

 

�̃�𝑛(𝑖, 𝑗) ≡ 𝑝(𝑧1
𝑛 = 𝑖, 𝑧2

𝑛 = 𝑗|�⃗� , 𝐴𝑠𝑓
𝜃 , 𝐵𝑠−1) =

𝑝(𝑧1
𝑛(𝑖),𝑧2

𝑛(𝑗),�⃗� |𝐴𝑠𝑓
𝜃 ,𝐵𝑠−1)

𝑝(�⃗� |𝐴𝑠𝑓
𝜃 ,𝐵𝑠−1)

=

𝑝(𝑧1
𝑛=𝑖,𝑧2

𝑛=𝑗,𝑂1
𝑛,𝑂2

𝑛|𝐴𝑠𝑓
𝜃 ,𝐵𝑠−1) 𝑝(𝑂~𝑛|𝐴𝑠𝑓

𝜃 ,𝐵𝑠−1)

𝑝(�⃗� |𝐴𝑠𝑓
𝜃 ,𝐵𝑠−1)

=
𝛼𝑛

𝑠−1(𝑧1
𝑛=𝑖,𝑧2

𝑛=𝑗) 𝑝(𝑂~𝑛|𝐴𝑠𝑓
𝜃 ,𝐵𝑠−1)

𝑝(�⃗� |𝐴𝑠𝑓
𝜃 ,𝐵𝑠−1)

                                  (14) 

             Where: 

                                𝑝(𝑂~𝑛|𝐴𝑠𝑓
𝜃 , �̂�) = ∏ ∑ 𝛼𝑚(𝑧1

𝑚 = 𝑖, 𝑧2
𝑚 = 𝑗)𝑖,𝑗𝑚~𝑛                                        (15) 

 

Therefore: 



                           𝛾𝑛(𝑖) ≡ 𝑝(𝑧1
𝑛 = 𝑖|�⃗� , 𝐴𝑠𝑓

𝜃 , 𝐵𝑠−1) = ∑ �̃�𝑛(𝑖, 𝑗)𝑗                                        (16) 

  

Note that 𝛼𝑛
𝑠−1(𝑧1

𝑛 = 𝑖, 𝑧2
𝑛 = 𝑗) and 𝑝(�⃗� |𝐴𝑠𝑓

𝜃 , 𝐵𝑠−1) were calculated in the 

Expectation step. 

 Solving for 
𝜕�̂�𝜆

𝜕𝐵𝑖(𝑘)
= 0, plug in 𝛾𝑛

(𝑖) ≡ 𝑝(𝑧1
𝑛 = 𝑖|�⃗� , 𝐴𝑠𝑓

𝜃 , 𝐵𝑠−1) and normalizing gives: 

 

𝐵𝑖
𝑠(𝑘) =

∑ [𝛿(𝑜1
𝑛 = 𝑘)𝑇

𝑛=1 𝛾𝑛
1(𝑖) + 𝛿(𝑜2

𝑛 = 𝑘)𝛾𝑛
2(𝑖)]

∑ [𝛾𝑛
1(𝑖)𝑇

𝑛=1 + 𝛾𝑛
2(𝑖)]

 

(17) 

Therefore on each step we calculate 𝛾𝑛
(𝑖) given 𝛼𝑛

𝑠−1, and use equation (17) for the new 

estimation of the emission matrix (𝐵𝑠). 

These 2 steps repeat until convergence. We then estimate 𝑙𝑜𝑔 𝐿(𝐵) using the estimated B. 

 

Here, during our simulations the agents saw 150 pairs of pictures within each block. 

Initiation of B: 

Hexagonal grid: 

                           𝐵𝑧=1(𝑜 = 1) = 1, 𝐵𝑧=1(𝑜 ≠ 1) = 0, 𝐵𝑧≠1(𝑜 = 1) = 0, 

𝐵𝑧=2(𝑜 = 2) = 1, 𝐵𝑧=2(𝑜 ≠ 2) = 0, 𝐵𝑧≠2(𝑜 = 2) = 0, 𝐵𝑧=𝑖(𝑜 = 𝑗) = 𝑝0 𝑖, 𝑗 ≠ 1,2 

                             𝑝0 = 
1

𝑁𝑝−2
                                                                                                                  (18) 

 

Community structure: stayed as above. 

The results here are averaged over 30 simulations. 

Supplementary Note 1: Inference of second level hierarchy 

Our community-structure graph had a hierarchical structure, wherein communities are 

organised on a ring. We hypothesized that inference of the second order structure of a ring 

and transfer of this structure from day one to day two will allow participants to infer a 

missing link that closes the ring. We therefore introduced a missing link during the second 

day. Analysing the results of distance estimation, similarly to experiment one, did not reveal 

such an effect.  Inference of second order structure is harder than a first order structure; we 

therefore think that one day learning is not enough to reveal this effect. 



 

Supplementary Figure1: Learning from random walk - simulations 

Learning from random walk on hexagonal graphs, our agent was able to infer the correct 

structural form and size (upper panel, Y-axis is the inferred number of nodes in one grid 

dimension, averaged over 15 simulations). The agent determines correctly which of two 

pictures is closer to a target picture using the approximated transition matrix (lower panel, y- 

axis is the average fraction of correct responses, out of 60 questions in each block, over 15 

simulations). 

 

Supplementary Figure 2: Inference of correct structural form was immediate. 



Blue: probability of hexagonal structural form. Red: probability for community structural form. 

Agent learned from random walks.   

 

Supplementary Figure 3: Inference on larger and equal size graphs (49x49 graphs) 

As the graph sizes were not completely identical, we simulated 49 nodes hexagonal and 

community structure graphs to show that structural inference was not biased by graph size. 

Here the agents learned from random walks. The error bands are standard error of the mean. 

Upper panel: Probability of estimating distances correctly on Hexagonal graphs. Middle panel: 

inference of structural form (hexagonal correct). Lower panel: inference of structural form 

(community structure correct).  

Supplementary note 2: Border cells: 

Entorhinal cortex, the area in which grid cells exist, also has border cells. These cells are active 

when the animal is near a border 1. Here we show that changing the behavioural policy of the 

agent from random walk/ uniform over the graph, into a policy that ‘prefers’ staying near the 

borders results in transition matrix eigenvectors that both resemble grid (Supplementary 

Figure 4B) cells but also border cells (Supplementary Figure 4A). This suggests that border 

cells, similarly to grid cells, may be part of a basis set which represents tasks on translational 

invariants graphs (with borders). 



 

Supplementary Figure 4: Eigenvectors of a transition structure with a Policy of ‘prefer 

borders’ have EC border cells pattern. 

Here we simulated an agent that wishes to stay near a boundary; the agent probability to 

move to a node on the boundary was 15 times larger than to move out of the boundary. 

A. An example for an eigenvector with boundary cell pattern 

B. An example for an eigenvector with hexagonal grid pattern. 

 

Supplementary Note 3: Inspiration for the choice of basis set for graphs with community 

structure: 

Examples of informative eigenvectors of our community graph transition structure are shown 

on  Supplementary Figure 5A. It can be seen that the eigenvectors are divided into two types; 

one type encodes the communities and the other encodes connecting node identities. Closure 

inspection reveals a hierarchical representation: the eigenvectors that encodes the 

communities are not encoding it simply. Rather, as the communities are organized on a ring, 

the eigenvectors are a discretized sine wave such that each community is a node on the 

discretized sine. For better visualization, we have plotted a graph with a larger number of 

nodes (Supplementary Figure 5B). This observation led us to choose the basis set for 

community structure as described in the main text. In more details: each node is assigned a 

number (vector Vn), then a connecting nodes vector is determined as following: 

𝑉𝑐(𝑛) = 𝑒𝑥𝑝 (−
(𝑉𝑛 − 𝑁𝑛 ∙ 𝑁𝑐 − 0.5)2

2𝜎2
) 

If the node (n) does not belong to the last community. 𝑁𝑐 is the community number, 𝑁𝑛is the 

number of nodes in a community, 𝜎 the standard deviation of the Gaussian (here 𝜎 = 0.5). 

If the node belongs to the last community: 

𝑉𝑐0(𝑛) = 𝑒𝑥𝑝 (−
(𝑉𝑛𝑒𝑛𝑑 − 𝑁𝑎𝑙𝑙 − 0.5)2

2𝜎2
) 

𝑉𝑛𝑒𝑛𝑑 = 1: 𝑁𝑎𝑙𝑙 + 𝑁𝑛 where 𝑁𝑎𝑙𝑙  is the total number of nodes. Then: 

𝑉𝑐(1:𝑁𝑛) = 𝑉𝑐0(𝑁𝑎𝑙𝑙 + 1:𝑁𝑎𝑙𝑙 + 𝑁𝑛) 



𝑉𝑐(𝑁𝑛 + 1:𝑁𝑎𝑙𝑙) = 𝑉𝑐0(𝑁𝑛 + 1:𝑁𝑎𝑙𝑙) 

 

         

 
Supplementary Figure 5: Eigenvectors of community structure on a ring.  

A) Examples of eigenvectors of the transition structure of a five communities graph. Upper 

panels assign a community identity while the lower panel assign connective nodes identity 

B) Examples of eigenvectors of a transition structure of a larger graph with 20 communities. 

 

Supplementary note 4: Basis set for representing a hierarchical structure: 

In the main manuscript, we discussed mainly two structural forms; hexagonal grid and 

community structure. The idea of basis sets can be extended to any other structural form. 

Here we show that eigenvectors of hierarchical graph transition matrices have interesting 

patterns that encode the layer information on the hierarchical graph. Similar to abstract 

representation of connecting nodes and borders, abstract representation of the hierarchical 

graph layers can support the understanding of the semantic meaning of the layers and the 

node at the head of the hierarchy. 



 

Supplementary Figure 6: Hierarchical graph transition matrix eigenvectors that represent 

layers information: 

Here we show two examples of eigenvectors that represent the distance from the head node. 

Supplementary note 5: Human results in learning associations on the graph 

Participants' knowledge of the associations were much better than chance (tasks part 2 & 

part 3 p<<0.001) although the graphs were very large (35, 36 nodes) with a degree of six.  

Prior expectation over the structural forms affects learning, such that prior experience of a 

graph structure confers a slight advantage on even learning basic associations in a new graph 

of the same structure (Supplementary Figure 7). This in itself is evidence for the influence of 

prior structural knowledge (here during learning). This effect on learning cannot account for 

the performance in our distance estimation task (main text Figure 5) as this requires inference 

of transitions that are never observed. However, if this structural inference during learning 

were combined with an independent regularisation mechanism on the learnt representations 

(see main text Figure 4B), this may alleviate the requirement for structural inference during 

distance estimation. 

 



 

Supplementary Figure 7: Learning pairwise associations: (questions type 2 and 3 in each 

block), second day 

A) Pairwise associations’ knowledge, first experiment.  Upper panel trials 4-7, lower panel 

trials 1-3. Prior expectation over structural form effect learning. Error bars are SEM with 

average as the center, *** is for p<0.005 (one tailed ttest). Number of participants on each 

group is 30. 

B) Pairwise associations’ knowledge, second experiment. Upper panel trials 4-7, lower panel 

trials 1-3. Learning associations is affected by prior expectation over structural form at the 

beginning of the day but not later. Error bars are SEM with average as the center, * is for 

p<0.05 (one tailed ttest). Number of participants on each group is 20. 

 

 

 

 

 

 

 

 



 

 

Supplementary Figure 8: Correlations in task performance between day 1 and day 2 

A) Fraction of correct distance estimation in day 1 as a function of day 2. There is no significant 

correlation. 

B) Number of steps to the target during day 2 compared to day 1. No significant correlations. 

(D0 = 2  C = -0.09, D0 = 3 C= 0.16, D0 = 4 C = 0.04). 


