
Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

Review of “Transferring structural knowledge across cognitive maps in humans and models” 

 

This manuscript describes the results of a set of two behavioral studies in which human participants 

performed on a structure learning task whereby sequences of stimuli are presented such that the 

relation between stimuli are governed by distinct graph structures: either a hexagonal graph or one 

with community structure. On day 1 participants learn one graph structure, and on the 2nd day they 

are tested with another that is either concordant or distinct from the one they learned on the 1st day, 

therefore enabling the authors to test for transfer of structure knowledge between graphs. The 

authors also present a hidden markov model, in which the graph structure is encoded as an abstract 

basis set informed by the size of the graph. Which graph applies in a given context is then inferred, 

alongside graph size and the mapping between stimuli and graph nodes. The authors present evidence 

that participants perform better on the 2nd day on various knowledge tests of graph structure if they 

learned on the same structure (e.g. hex) compared to the wrong structure on the 1st day. This 

includes knowledge transfer for parts of the graph that they did not experience directly on the 1st day 

but could merely infer. The authors conclude that humans are capable of generalizing structure 

knowledge, including to unobserved state-trajectories. 

 

Overall, this manuscript describes a promising and interesting line of work about the extent to which 

humans are capable of learning structure in their environment, internalizing that structure in terms of 

a cognitive map, and applying that structure to new situations. In that sense, the manuscript provides 

insight into a novel and poorly understood aspect of human reinforcement-learning. 

 

I have some comments: 

 

(1) Overall the manuscript is very hard to read. For instance, different terms are used to describe the 

same phenomena in ways that are sometimes inconsistent. For example, the terms conjuctive vs 

abstract representation is used in Figure 2, but those terms are not described or discussed in the main 

text. I know what they are trying to show here, but it took me a while to try to understand what the 

figure was about. In figure 1, the way the two experiments are concatenated and the different tests 

are described is also confusing – so far as I can tell some tests were run on experiment 2 (e.g. 

navigation) and others only on experiment 1 e.g. distance estimation? But maybe I’m wrong here. I 

think clearly separating the descriptions of experiment 1 and 2 in the text and having separate figures 

for exactly what was done in both might help a lot. Trying to understand exactly what was done in 

experiment 1 and 2 took me as a reader a lot longer than it should have. The methods section also 

seems hastily written. Some parts of the methods are written in abbreviated form which gives the 

impression the authors didn’t have time to finish the manuscript before submitting it. There are also 

typos (e.g. participnats, smapling). Simple details are also missing -- .e.g. even minimal demographic 

details (mean age, gender) of participants are missing. The authors need to go through the 

manuscript and rewrite it to improve clarity and detail in presentation throughout. 

 

 

(2) The authors propose a HMM model as a way of solving this task. They hint that other model 

frameworks would fail on this task. For instance, in figure 2, they allude to an associative learning 

model that would fail to enable inference (presumably) and/or generalization. They also allude to the 

fact that a successor state representation learning model would also fail on this. I agree that this is 

the case. But, it would be nice to see clear examples of where and how such models would fail, and 

how the model the authors propose can clearly outperform these other models. This may be 



somewhat trivial, but it would be nice to outline why such models would fail more explicitly. Perhaps 

this would be mostly for didactic purposes – but I think it’s important to do so nonetheless, at 

minimum to improve clarity of presentation of the model, so the reader can understand what is 

different in what is being proposed here compared to the standard in the field. 

 

Furthermore, it is usually good practice to present competing models that even have a chance at 

succeeding on a task like this, in which there is some attempt at a model comparison against the 

human data. 

 

Model comparison notwithstanding, I think it is imperative that the authors try to link their specific 

proposed model to the actual human behavior more seriously. As it is, the authors present behavioral 

data supporting the idea that participants encode structure knowledge and are capable of using it in 

various ways. However, are there specific predictions that come from this model about HOW 

participants would be expected to perform on this task on a trial by trial or block by block basis? For 

instance over the course of learning, would the authors expect particular patterns in the behavior to 

evolve over time as participants are converging on the correct structure? If participants are given the 

wrong structural priors, are particular error patterns expected compared to if they had no structural 

priors whatsoever? What I’m trying to get at here is the need for a more serious attempt to examine 

the model vs human behavior and find situations where the model makes particular predictions that 

are confirmed in the data (or not). No model is perfect, so it would be equally interesting to see 

predictions that are not confirmed, as well as ones that are confirmed. 

 

(3) Relationship between performance on day 1 and day 2. The authors note that for the inference 

over unobserved links, only some participants could perform such an inference. This is not surprising 

as individual variation would be expected. However, it would be nice to see more careful consideration 

of the relationship between learning and performance on day 1 and day 2. Are the people who did the 

inference task well on day 2, also ones who performed well on day 1? In other words, if I haven’t 

learned well on day 1, I have no chance of showing structure knowledge on day 2. Getting some 

handle on what is the difference between people who do well on the task on day 2 compared to day 1 

would be super useful in that it could further support the authors’ claims – both for the inference 

specifically as well as for task performance more generally. Also, is there any way we can understand 

what the people who do poorly on the structure inference questions are doing? Is their behavior 

consistent with another cognitive strategy or are they just behaving randomly? 

 

 

 

Reviewer #2: 

Remarks to the Author: 

This paper presents a theoretical and experimental analysis of structural transfer in a graph learning 

task. The authors propose a model of structure learning that predicts transfer of structural knowledge, 

which they test in human participants. 

 

Overall, I thought this was an interesting paper, which contributes usefully to the literature on 

structure learning and transfer. The clarity could be improved and a more thorough empirical 

argument for the model needs to be made. 

 

Major comments: 

 

The description of the experiments needs more detail. I couldn't find any description of what the 

graphs were or how they were constructed. Some graphs are shown in Figure 1, but as I understand it 

the participants learned multiple graphs of each type, which aren't shown. 



 

The two experiments are in some sense symmetrical, really two conditions of a single experiment. I 

don't care about the fact that they are described as two different experiments, but what seems more 

important is the lack of symmetry in the analyses of the data. Why weren't the same analyses applied 

to both experiments? Have I misunderstood something about the setup that would preclude this? 

 

There's no direct comparison between the model and experimental data. Ideally we would see the 

same analyses applied to both model and human participants, plotted in the same way. There is 

already an indication in the figures that the model is much better than people at this task. The authors 

should address this mismatch. 

 

There are no comparisons with alternative models that could conceivably solve the same task. For 

example, Kemp & Tenenbaum (2008) propose a different (and much richer) generative model for 

graphs. Or within the class of models considered in this paper, what about alternative basis sets? Does 

the particular choice of basis set made here predict a distinctive pattern of generalization (compared 

to other choices)? It's also worth pointing out that the authors restricted the structural forms to only 

the classes that appeared in their experiment, whereas more generally the space is presumably much 

broader (as argued by Kemp & Tenenbaum). 

 

The authors have done a good job connecting their work to ideas in machine learning and 

neuroscience, but apart from Tolman there is very little discussion of relevant work in psychology. 

Below I've given a few references that explore relational/causal transfer. I'm not sure all of these 

citations are needed; I will leave this to the authors' discretion depending on how they want to discuss 

this research. 

- Halford et al. (1998), Cognitive Psychology 

- Honey & Watt (1998), JEP:ABP [this work stimulated a line of research on acquired relational 

equivalence] 

- Kemp et al. (2010), Cognitive Science 

- Lu et al. (2016), Cognitive Science 

- A large literature on analogical reasoning. For a review of the early work in this area, see Reeves & 

Weisberg (1994), Psychological Bulletin. 

 

Minor comments: 

 

p. 3: "a learning phase, following" -> "a learning phase. Following" 

 

Fig 3 caption: "that determined" -> "that is determined" 

 

p. 7: what statistical test is being reported for the data in Fig 4b? 

 

p. 8: why is the t-test one-tailed? Same question for all the other one-tailed tests reported in the 

paper. Sometimes the tests are two-tailed, with no explanation of why one-tailed vs. two-tailed is 

chosen. I think the default should be two-tailed. 

 

p. 8: how was the high-performing subset of participants identified? 

 

p. 8: "These effects cannot be driven by non-inferential approximations of graph distance". I don't 

think the relevant issue is about inference vs. non-inference, but rather about the generalization 

abilities of different models. If you parametrized a successor representation with a basis set that can 

generalize across graphs, then I see no reason why it couldn't in principle do this task. 

 



p. 16: "inferece" -> "inference" 

 

p. 17: "a basis sets" -> "a basis set" 

 

p. 17: "using standard interpolating method" -> "using a standard interpolating method" [I actually 

don't know what standard interpolation method applies to eigenvector resizing] 

 

p. 17: "Participnats" -> "Participants" 

 

p. 17: "taking from" -> "taken from" 

 

p. 17: why is "bank" capitalized? 

 

p. 18: "Madaresz" -> "Madarasz" 



Reviewers’ comments- blue 

Our response – black 

Text from revised manuscript – green 

 

Reviewers comments: 

 
Reviewer #1 (Remarks to the Author): 

 
Review of “Transferring structural knowledge across cognitive maps in humans and models” 

 
This manuscript describes the results of a set of two behavioral studies in which human 
participants performed on a structure learning task whereby sequences of stimuli are 
presented such that the relation between stimuli are governed by distinct graph structures: 
either a hexagonal graph or one with community structure. On day 1 participants learn one 
graph structure, and on the 2nd day they are tested with another that is either concordant 
or distinct from the one they learned on the 1st day, therefore enabling the authors to test 
for transfer of structure knowledge between graphs. The authors also present a hidden 
markov model, in which the graph structure is encoded as an abstract basis set informed by 
the size of the graph. Which graph applies in a given context is then inferred, alongside 
graph size and the mapping between stimuli and graph nodes. The authors present evidence 
that participants perform better on the 2nd day on various knowledge tests of graph 
structure if 

they learned on the same structure (e.g. hex) compared to the wrong structure on the 1st 
day. This includes knowledge transfer for parts of the graph that they did not experience 
directly on the 1st day but could merely infer. The authors conclude that humans are 
capable of generalizing structure knowledge, including to unobserved state-trajectories. 

 
Overall, this manuscript describes a promising and interesting line of work about the extent 
to which humans are capable of learning structure in their environment, internalizing that 
structure in terms of a cognitive map, and applying that structure to new situations. In that 
sense, the manuscript provides insight into a novel and poorly understood aspect of human 
reinforcement-learning. 

 
I have some comments:  

 
(1) Overall the manuscript is very hard to read. 

Thanks we agree.   We have made substantive changes to the structure of the 
manuscript.  We hope these changes clarify the logic of the modelling and therefore address 
some of the questions below, but we also think they make the manuscript much clearer and 
easier to read.   As well as this, we have addressed the particular suggestions below.  



 
The structure of the manuscript now runs as follows:  

We present two different ways to represent a cognitive map. The first relies on associative 
learning. This type of learning results in a conjunctive representation of the structure of the 
graph and the stimuli representation. We considered different models of such learning: 
learning the transition matrix, learning successor representation (SR) and a filtered version 
of the SR. We then consider a different type of representation, in which the structure of the 
task is represented abstractly and the associations between the abstract states and the 
stimuli are learnt.  

We show that simple associative models cannot account for inference of unobserved links 
while a filtered version of such representation can. We further show that transfer of abstract 
representation of the structure of the task also enables inference of unobserved links.  

This sets up the experimental portion of the manuscript. The two key questions are (1) can 
subjects infer links and (2) does this capacity transfer across graphs. Here we show that the 
prior structural knowledge participants have is crucial for their success in predicting the 
existence of unobserved links. This experiment leads us to the conclusion that abstract 
representation of the structure of the task exists in human cognition. This abstract 
representation allows participants to infer the unobserved links. 

We then present a second experiment that shows how abstract representation of the 
structure can lead to different learning and behavioural policies that are relevant to the 
abstract structural form.   

We hope that this clarifies the purpose of the modelling (more on this below).  We are not 
trying to fit individual data.  We are using modelling to make explicit the logic of the 
experiment.    

A large amount of text has changed in the manuscript to reflect this structural change. We 
will copy here the main additions: 

We added the following paragraphs in results: 

 

Associative representation 

Learning such graphs can be accomplished using different types of representations. 
One solution to such a problem is a conjunctive representation of the stimuli and their 
relationships; the relationships between the stimuli are encoded by the associations between 
the representations of the stimuli themselves (figure 2). An example of such representation is 
the Successor Representation (SR)25. Here the representation of each state (in our setup each 
stimulus defines a state) encodes the probability to reach any other states in the future.  
Using such a representation it is possible to determine whether two stimuli are neighbouring 
nodes on a graph and even to navigate on a graph.  

In : “Inferring unobserved trajectories” we have added the following paragraph (beginning 
of paragraph 3) : 

Simple associative models, such as learning the transition matrix between the pictures 
themselves or learning SR, cannot solve such a problem (Figure 4a). Following Stachenfeld et 



al2, we spectrally filtered the SR that is currently being learnt using its own eigen-
decomposition; we reconstructed the SR using the seven most informative eigenvectors only. 
Such filtration smooth over the unobserved links, which then allows the agent to answer such 
questions better than chance without the need of knowledge transfer (Figure 4a, p<<0.001 
one tailed ttest). 

In the same section, we have added another paragraph at the end: 

We then wanted to check whether humans solve such problems using transfer of 
abstract structural knowledge or whether they exploit a smoothed associative representation. 
If participants can solve the task without the need of prior knowledge it will imply that 
associative learning is enough, while if their performance depends on prior knowledge, we can 
conclude that humans do represent and transfer abstract structural knowledge. To test 
whether humans infer unobserved edges by using clever smoothing of noisy representation or 
whether an abstract knowledge is being transferred, we designed the following two 
experiments. 

 

We have changed and spilt figure 4 into: 

 

Figure 4: inference of unobserved links (Hexagonal graph) 

A) Inferring the existence of unobserved edges (links). Left – the task: The agents had to 
indicate which of two nodes (pictures) has smaller number of links to the target. With 
only observed links, the number of links to the target was identical. Right – red edges 
indicates missing links on the graph. For example, the two nodes that are marked with 
light blue have the same number of observed links to the target node (marked with 



dark blue circle), while the number of links that connect these two nodes to the target 
is different on the complete graph. 

B) When learning from pairs that were sampled randomly (not in succession) while some 
of the links (pairs) were never observed, simple associative models as learning 
transition matrix (DA) or simple SR (SR-online: learning using TD-SR28, SR-A: calculating 
SR from the learnt transition matrix) could not infer the existence of the unobserved 
links and solve the task (it in fact solves it worse than chance). Agents that use a filtered 
SR representation (SRreg) could answer these questions better than chance. Shadows 
are the standard errors. 

C) When learning from pairs that were sampled randomly (not in succession) while some 
of the links (pairs) were never observed), the basis set agent, that transfers abstract 
structural knowledge, was able to infer the structural form (Figure S2) and graph size 
correctly (upper panel). Further, the agent was able to infer the existence of links that 
were never observed and determined correctly, which of two pictures is closer to a 
target picture, according to the complete graph (green). The agent could do so even 
though the number of observed links between the two pictures and the target was 
identical (p(cor) corresponds to the average fraction of correct answers out of 40 
questions in each block). When the agent was forced to infer a community structure 
(red), it answered these questions worse than chance. Shadows are the standard 
errors. 

 

 

Figure 5: Transfer of structural knowledge allows inference of unobserved links (Hexagonal 
graph 

Participants had to indicate which of two pictures is closer to a target picture. 
Participants that reach the second day of our task with the correct prior expectation 
over the structural form performed significantly better in such task compared to 
participants with the wrong structural prior (left panel). (30 participants in each 
group). They were able to answer these questions significantly above chance even 
when there were links that were never observed, and they had to choose between two 



pictures with identical number of observed links to the target (right panel). Error bar: 
SEM. Colorcode: 𝐿𝑜𝑔10(𝑝𝑣𝑎𝑙𝑢𝑒) 

 

For instance, different terms are used to describe the same phenomena in ways that are 
sometimes inconsistent. For example, the terms conjunctive vs abstract representation is 
used in Figure 2, but those terms are not described or discussed in the main text. I know 
what they are trying to show here, but it took me a while to try to understand what the 
figure was about. 

We replaced the term ‘conjunctive representation’ with ‘associative representation’ and 
have added the paragraph as written above. 

In figure 1, the way the two experiments are concatenated and the different tests are 
described is also confusing – so far as I can tell some tests were run on experiment 2 (e.g. 
navigation) and others only on experiment 1 e.g. distance estimation? But maybe I’m wrong 
here. I think clearly separating the descriptions of experiment 1 and 2 in the text and having 
separate figures for exactly what was done in both might help a lot. Trying to understand 
exactly what was done in experiment 1 and 2 took me as a reader a lot longer than it should 
have. 

Thanks, we did have them separated in the original paper, but we can see where the confusion 
came from.   We have now made it completely explicit. We have added a table in the methods 
section that describes which tasks were done in each experiment and during each day. We 
have added the following sentence to the caption of figure 1: ‘Question type three was 
excluded from day 2 on experiment 1’. 

 
The tables: 
Table 1: Transferring of Hexagonal structure 

Task Name Day 1 Day2 

Learning phase Random walk Pairs 

Extending pictures 
sequences 

yes yes 

Can it be in the middle yes yes 

Navigation yes No 

Distance estimation yes yes 

 

Table 2: Transferring of Community structure 

Task Name Day 1 Day2 

Learning phase Random walk Random 

Extending pictures 
sequences 

yes yes 

Can it be in the middle yes yes 

Navigation yes Yes 

Distance estimation yes yes 

  



The methods section also seems hastily written. Some parts of the methods are written in 
abbreviated form which gives the impression the authors didn’t have time to finish the 
manuscript before submitting it. There are also typos (e.g. participnats, smapling). Simple 
details are also missing -- .e.g. even minimal demographic details (mean age, gender) of 
participants are missing. The authors need to go through the manuscript and rewrite it to 
improve clarity and detail in presentation throughout. 

We have rewrite the method section. Main additions: 
 
Successor Representation Model 

The successor representation is defined as: 

𝑆𝑅 = ∑

𝑡

𝛾𝑡𝐴𝑡 = 𝑖𝑛𝑣(𝐼 − 𝛾𝐴) 

Where A is the transition matrix, I is the identity matrix and 𝛾 is a discount factor. 

The SR can be updated within blocks, after updating the transition matrix online, or using TD 
learning28. After observing a transition at time step t+1 of 𝑠𝑡 ⟶ 𝑠𝑡+1the SR is updated 
according to: 

 

𝑆𝑅𝑡+1(𝑠𝑡+1, 𝑠′) = 𝑆𝑅(𝑠𝑡, 𝑠′) + 𝛼[𝐼(𝑠𝑡 = 𝑠′) + 𝛾𝑆𝑅(𝑠𝑡+1, 𝑠′) − 𝑆𝑅(𝑠𝑡, 𝑠′)] 

 

Where 𝛼 is the learning rate. We made the SR symmetrical at the end of each block. 

Spectral regularization (filtering the SR using its own eigendecomposition): 

We have calculated the eigendecomposition (using SVD) of the SR that has been learnt using 
TD. We then calculated the regularized SR by: 𝑆𝑅𝑠 = 𝑈𝑚𝑆𝑚𝑈𝑚

𝑇 , where 𝑈𝑚 is the matrix of 
the m=7 most informative eigenvectors of the symmetrised SR and 𝑆𝑚 is a diagonal matrix 
with the m=7 largest eigenvalues on its diagonal. The number of simulations for figure 4a is 
10. 

Behavioural experiments 

Participants:  We recruited 100 participants, 60 participants for experiment 1 (30 in each 
group) and 40 participants for experiment 2 (20 in each group). All participants are UCL 
students with an average age of 23.5. 

The study was approved by the University College London Research Ethics Committee 
(Project ID 11235/001). Participants gave written informed consent before the experiment. 

Graphs structure: 

Experiment 1: transfer of hexagonal structure: Each hexagonal graph consisted of 36 nodes 
and periodic boundary conditions as shown in Fig.1 



Experiment 2: transfer of community structure: Each graph consisted of five communities 
with seven nodes each. Within a community, each node was connected to all other nodes 
except for connecting nodes that were not connected to each other but were each 
connected to a connecting node of a neighbouring community (Fig. 1). Therefore all nodes 
had a degree of six, similarly to hexagonal graphs.  Our community-structure graph had an 
hierarchical structure, wherein communities are organised on a ring. We hypothesized that 
inference of the second order structure of a ring and transfer of this structure from day one 
to day two will allow participants to infer a missing link that closes the ring. We therefore 
introduced a missing link during the second day (see supplementary for the results). 

Experimental Procedures 

Participants learned two graphs with the same underlying structure but different stimuli 
during the first day. Stimuli were selected randomly, for each participant, from a bank of 
stimuli (separate bank for each graph). Each graph was learnt during four blocks (figure 1b; 
4 blocks for graph 1 followed by 4 blocks for graph 2). Participants could take short resting 
breaks during the blocks. They were instructed to take a longer resting break after 
completing learning the first graph. A third graph was learnt on the second day during seven 
blocks of the task. Data analysis is for all second day trials. 

Block structure: 

The structure of each experiment block in each experiment and day is outlined in Tables 1-2 
below (the order of tasks in a block corresponds to moving from the top to the bottom of 
the corresponding table). Next, we elaborate the various components of each block. 

Table 1: Transferring of hexagonal structure 

Task Name Day 1 Day2 

Learning phase Random walk Pairs 

Extending pictures 
sequences 

yes yes 

Can it be in the middle yes yes 

Navigation yes No 



Distance estimation yes yes 

  

Table 2: Transferring of Community structure 

Task Name Day 1 Day2 

Learning phase Random walk Random Walk 

Extending pictures 
sequences 

yes yes 

Can it be in the middle yes yes 

Navigation yes Yes 

Distance estimation yes yes 

Note: “Yes” and “No” refer to the inclusion of a task in an experimental block. 

Learning Phase: We used different protocols for the learning phases of experimental blocks 
as follows: 

1)   In the “Random walk” protocol participants learned associations between graph 
nodes by observing a sequence of pairs of pictures which were sampled from a 
random walk on the graph (successive pairs of pictures shared a common 
picture). Participants were instructed to ‘say something in their head’ in order to 
remember the associations. Hexagonal graphs included 120 steps of the random 
walk per block and community structured graphs included 180 steps per block 
(we introduced more pictures in the community graph condition as random 
walks on such graphs result in high sampling of transitions within a certain 
community and low sampling of transitions between communities). 

2)   in the “Pairs” protocol participants learned the associations between graph 
nodes by observing pairs of pictures. Each pair of pictures corresponds to two 
neighbouring nodes (i.e., an edge) on the graph. Some edges were excluded from 



the graph (“missing links”), otherwise, the pairs were sampled uniformly 
randomly according to a uniform distribution and independently across pairs. 
150 pairs were presented in each block (with repetition). 

The reason we used the “pairs” protocol for Day 2 of Exp. 1 is as follows:Exp.1 was designed 
to test participants’ ability to infer missing graph links (edges). However, a link that is 
constantly missing may lead to an inference of the existence of an obstacle rather than an 
unobserved link. We speculated that learning by sampling pairs of neighbouring nodes, 
instead of learning from pairs that are taken from random walks on the graph, would reduce  
this risk. Following the same reasoning, we excluded the navigation task (described below) 
during the second day of that experiment (hexagonal condition only), as navigation 
necessarily involves walks on the graph (See “Navigation” rows of Tables 1 and 2”).  

Extending pictures sequences: Given a target picture, which of two sequences of three 
pictures can be extended by that picture (a sequence can be extended by a picture only if it 
is a neighbour of the last picture in the sequence, the correct answer can be sequence 
1/sequence 2/ both sequences): 16 questions per block. (A picture could not appear twice in 
the same sequence, therefore, if the target picture is already in the sequence the correct 
answer was necessarily the other sequence). 

Can it be in the middle:Determine whether a picture can appear between two other 
pictures, the answer is yes if and only if the picture is a neighbour of the two other pictures. 
16 questions per block. 

navigation task: The aim – navigating to a target picture. Participants are informed that they 
are currently at the picture that appears on the left of the screen. They were asked to 
choose between two pictures that are associated with that picture or skip and sample again 
two pictures that are associated with the current picture (skip is counted as a step). On each 
step participants were instructed to choose a picture that they think has a smaller number 
of links to the target picture (according to their memory). Following their choice, the chosen 
picture appeared on the left and two new pictures, that correspond to states that are 
neighbours of the chosen picture, appear in the middle (Figure 1b). Once a participant  
selected a neighbour of the target picture, the target picture itself can appear as a picture 
that can be chosen. The game terminated when either the target was reached or 200 steps 
were taken (without reaching the target). In the latter case a massage  ‘ too many steps’ was 
displayed. On the first block, the number of links from the current picture to the target 
picture was shown on the screen. Participants played three games in each block. The 
starting distance (number of links) between the starting picture to the target was 2, 3 and 4. 

Distance estimation:Which of two pictures has the smallest number of links to a target 
picture: 45 questions per block. 

Statistical values 

All questions: p-value = 0.0068, t = 2.54, sd = 0.0547, ci = [0.0124 inf], d = 0.699 

Inference questions: p-value = 0.016, t = 2.19, sd = 0.066, ci = [0.0088 inf], d = 0.565 

One-tailed ttest, df = 58.  



Second experiment (Figure 6) 

Response Time (Learning pace): p-value = 0.003, t = 3.19, sd = 0.5, ci = [0.18, 0.83], d = 1.01 
(two-tailed, df = 38). 

Correct structural prior leads to faster navigation to the target: 

Number of steps to the target is two,    p-value = 0.005, t = -2.68, sd = 14.58, ci = [-inf,-4.6], d 
= 0.85. 

Number of steps to the target is three, p-value = 0.026, t = -2.02, sd = 14.85, ci= [-inf,-1.48], 
d = 0.63. 

Number of steps to the target is four,   p-value = 0.006, t = -2.6,   sd = 10.54, ci = [-inf, -3.04], 
d = 0.82.  

One-tailed ttest, df = 38.  

Choose connecting nodes: 

All answers: p-value = 0.03, t = 2.25, sd = 0.1, ci = [0.007,0.13], d = 0.71 (two-tailed, df = 38.) 

Incorrect answer: p-value = 0.006, t = 2.88, sd = 0.1, ci = [0.03,0.16], d = 0.91 (two-tailed, df 
= 38.) 

ci is the confidence interval and d is Cohen d’ (effect size). 

 

(2) The authors propose a HMM model as a way of solving this task. They hint that other 
model frameworks would fail on this task. For instance, in figure 2, they allude to an 
associative learning model that would fail to enable inference (presumably) and/or 
generalization.  I agree that this is the case. But, it would be nice to see clear examples of 
where and how such models would fail, and how the model the authors propose can clearly 
outperform these other models. This may be somewhat trivial, but it would be nice to 
outline why such models would fail more explicitly. Perhaps this would be mostly for 
didactic purposes – but I think it’s important to do so nonetheless, at minimum to improve 
clarity of presentation of the model, so the reader can understand what is different in what 
is being proposed here compared to the standard in the field. Furthermore, it is usually 
good practice to present competing models that even have a chance at succeeding on a task 
like this, in which there is some attempt at a model comparison against the human data. 

We are very thankful for this suggestion. We have changed the manuscript structure, as 
described above by adding different associative models and checking their success in 
inferring unobserved links.  We copied the relevant additions in our response to comment 
(1). 

Model comparison notwithstanding, I think it is imperative that the authors try to link their 
specific proposed model to the actual human behavior more seriously. As it is, the authors 
present behavioral data supporting the idea that participants encode structure knowledge 
and are capable of using it in various ways. 

However, are there specific predictions that come from this model about HOW participants 
would be expected to perform on this task on a trial by trial or block by block basis? For 



instance over the course of learning, would the authors expect particular patterns in the 
behavior to evolve over time as participants are converging on the correct structure? If 
participants are given the wrong structural priors, are particular error patterns expected 
compared to if they had no structural priors whatsoever? 

What I’m trying to get at here is the need for a more serious attempt to examine the model 
vs human behavior and find situations where the model makes particular predictions that 
are confirmed in the data (or not). No model is perfect, so it would be equally interesting to 
see predictions that are not confirmed, as well as ones that are confirmed. 

We disagree with this perspective, and hope that we can persuade the reviewer of our 
perspective.  We are not trying to make a model that predicts human behaviour 
quantitatively.  In order to make such a model, we would have to account for the failures of 
human memory;   For the attentional lapses;  for the speed of learning.  Etc. etc.   It would be 
a highly parameterised model.  In our view, such a model would not likely add any 
conceptual insight over and above the behavioural effects themselves.   

Instead, the purpose of our model is (as the reviewer states for the associative models 
above), illustrative and didactic.  It is a model that teaches us what the critical experiment is 
to perform.  It shows that we should test for inference, and transfer.  The modelling teaches 
us that any evidence of inference rules out simple SR associative models, and any evidence of 
transfer implies abstraction.    

This is the role of the modelling in this manuscript.  We understand that this is different from 
the role of modelling in other manuscripts that are, for example, trying to extract learning 
rates from human participants.  We believe modelling can play both roles, and we hope the 
reviewer can agree that the role it is playing in this manuscript is valuable.  

 

(3) Relationship between performance on day 1 and day 2. The authors note that for the 
inference over unobserved links, only some participants could perform such an inference. 
This is not surprising as individual variation would be expected. However, it would be nice to 
see more careful consideration of the relationship between learning and performance on 
day 1 and day 2. Are the people who did the inference task well on day 2, also ones who 
performed well on day 1? In other words, if I haven’t learned well on day 1, I have no 
chance of showing structure knowledge on day 2. Getting some handle on what is the 
difference between people who do well on the task on day 2 compared to day 1 would be 
super useful in that it could further support the authors’ claims – both for the inference 
specifically as well as for task performance more generally. 

We thank the reviewer for this suggestion. We agree that this would have been an 
interesting finding.  However, there is no evidence for such a correlation in the data. We 
have added the analysis to the supplementary information.    
 
Also, is there any way we can understand what the people who do poorly on the structure 
inference questions are doing? Is their behavior consistent with another cognitive strategy 
or are they just behaving randomly? 



To our understanding, they are performing randomly as their results are approximately 50%.  
We don’t have good suggestions for how to analyse this data to look for alternative 
cognitive strategies.   

 
Reviewer #2 (Remarks to the Author): 

 
This paper presents a theoretical and experimental analysis of structural transfer in a graph 
learning task. The authors propose a model of structure learning that predicts transfer of 
structural knowledge, which they test in human participants. 

 
Overall, I thought this was an interesting paper, which contributes usefully to the literature 
on structure learning and transfer. The clarity could be improved and a more thorough 
empirical argument for the model needs to be made. 

 
Thanks very much for these comments.  We have restructured the manuscript substantially, 
which we hope will make it clearer.   Both yourself and R1 raised issues with the modelling 
section.  In essence, the role of the model in the manuscript was not clear.   We have tried to 
clarify that by adding alternative models that do not abstract the graph structure.  This 
allows us to demonstrate in the modelling section what qualitative effects we need to show 
in the data.  In essence, we show that to demonstrate that graph structure is abstracted, it is 
not sufficient merely to show inference, we need to show inference and transfer.  That is, we 
need to show a difference in link inference between groups with different priors.  This is the 
role of the modelling in the paper (together with a suggestion of a brain-inspired mechanism 
for representing abstract structural knowledge) and we have tried to clarify this in the new 
manuscript.  
 
Below, you have made suggestions that we take a more quantitative approach to the 
behavioural modelling.  For reasons that we explain below, we have opted not to do this. We 
hope that you will agree with us that this is reasonable given the role of the modelling in the 
paper described in the previous paragraph.  The model is not intended to be a detailed 
model of subject behaviour (nor is it close to being one for reasons we give in response to 
your questions below).  Instead, the model serves to demonstrate the key qualitative tests 
that are required to demonstrate abstraction.   We then look for these qualitative effects in 
the data.  
 
 
Major comments: 

 
The description of the experiments needs more detail. I couldn't find any description of 
what the graphs were or how they were constructed. Some graphs are shown in Figure 1, 
but as I understand it the participants learned multiple graphs of each type, which aren't 
shown. 



We thank the reviewer for this comment. Figure 1 has been changed as well as the text in 
the beginning of the results. We rewrite the methods section and include a table that 
describes the tasks participants have done during each day on each experiment. 

 

Figure 1: Transfer of structural knowledge: Graph structures and experimental design. 

A)     Experimental design. Agents and participants learned graphs with underlying 
Hexagonal (left) or Community (right) structure. Each grey dot is a node on a graph and 
corresponds to a picture that was viewed by the participant (for example, a picture of an 
ice-cream). The lines are edges between nodes. Pictures of nodes that are connected by an 
edge can appear one after the other. The degree of all nodes in both graphs is six (a 
connecting node connects to one fewer nodes within a community to keep the degree six). 
Participants learned the graphs during two successive days. In both experiments, 
participants were segregated into two groups. Participants of one group learned graphs 
with the same underlying structure during both days while the other groups learned 
graphs with different underlying structures during the different days. Two graphs were 
learnt during day 1 and additional graph on day 2. 

we have added the following sentences at the end of the first paragraph in the result section: 
During the first day, participants learned two different graphs, with different pictures set 
but same structure, while during the second day participants learned a third graph with new 
pictures set (one group learned a graph with the same underlying  structure and the other 
group learned a graph with a different structure, figure 1). 
 
new experimental details in the method section: 
 

Behavioural experiments 



Participants:  We recruited 100 participants, 60 participants for experiment 1 (30 in each 
group) and 40 participants for experiment 2 (20 in each group). All participants are UCL 
students with an average age of 23.5. 

The study was approved by the University College London Research Ethics Committee 
(Project ID 11235/001). Participants gave written informed consent before the experiment. 

Graphs structure: 

Experiment 1: transfer of hexagonal structure: Each hexagonal graph consisted of 36 nodes 
and periodic boundary conditions as shown in Fig.1 

Experiment 2: transfer of community structure: Each graph consisted of five communities 
with seven nodes each. Within a community, each node was connected to all other nodes 
except for connecting nodes that were not connected to each other but were each 
connected to a connecting node of a neighbouring community (Fig. 1). Therefore all nodes 
had a degree of six, similarly to hexagonal graphs.  Our community-structure graph had an 
hierarchical structure, wherein communities are organised on a ring. We hypothesized that 
inference of the second order structure of a ring and transfer of this structure from day one 
to day two will allow participants to infer a missing link that closes the ring. We therefore 
introduced a missing link during the second day (see supplementary for the results).  

Experimental Procedures 

Participants learned two graphs with the same underlying structure but different stimuli 
during the first day. Stimuli were selected randomly, for each participant, from a bank of 
stimuli (separate bank for each graph). Each graph was learnt during four blocks (figure 1b; 
4 blocks for graph 1 followed by 4 blocks for graph 2). Participants could take short resting 
breaks during the blocks. They were instructed to take a longer resting break after 
completing learning the first graph. A third graph was learnt on the second day during seven 
blocks of the task. Data analysis is for all second day trials. 

 

Block structure: 

The structure of each experiment block in each experiment and day is outlined in Tables 1-2 
below (the order of tasks in a block corresponds to moving from the top to the bottom of 
the corresponding table). Next, we elaborate the various components of each block. 

 

Table 1: Transferring of hexagonal structure 

Task Name Day 1 Day2 

Learning phase Random walk Pairs 

Extending pictures sequences yes yes 

Can it be in the middle yes yes 

Navigation yes No 



Distance estimation yes yes 

 

Table 2: Transferring of Community structure 

Task Name Day 1 Day2 

Learning phase Random walk Random Walk 

Extending pictures sequences yes yes 

Can it be in the middle yes yes 

Navigation yes Yes 

Distance estimation yes yes 

Note: “Yes” and “No” refer to the inclusion of a task in an experimental block. 

Learning Phase: We used different protocols for the learning phases of experimental blocks 
as follows: 

1) In the “Random walk” protocol participants learned associations between graph 
nodes by observing a sequence of pairs of pictures which were sampled from a 
random walk on the graph (successive pairs of pictures shared a common picture). 
Participants were instructed to ‘say something in their head’ in order to remember 
the associations. Hexagonal graphs included 120 steps of the random walk per block 
and community structured graphs included 180 steps per block (we introduced more 
pictures in the community graph condition as random walks on such graphs result in 
high sampling of transitions within a certain community and low sampling of 
transitions between communities). 

2) in the “Pairs” protocol participants learned the associations between graph nodes by 
observing pairs of pictures. Each pair of pictures corresponds to two neighbouring 
nodes (i.e., an edge) on the graph. Some edges were excluded from the graph 
(“missing links”), otherwise, the pairs were sampled uniformly randomly according 
to a uniform distribution and independently across pairs. 150 pairs were presented 
in each block (with repetition).  

 

The reason we used the “pairs” protocol for Day 2 of Exp. 1 is as follows:Exp.1 was designed 
to test participants’ ability to infer missing graph links (edges). However, a link that is 
constantly missing may lead to an inference of the existence of an obstacle rather than an 
unobserved link. We speculated that learning by sampling pairs of neighbouring nodes, 
instead of learning from pairs that are taken from random walks on the graph, would reduce  
this risk. Following the same reasoning, we excluded the navigation task (described below) 
during the second day of that experiment (hexagonal condition only), as navigation 
necessarily involves walks on the graph (See “Navigation” rows of Tables 1 and 2”). 

 

Extending pictures sequences: Given a target picture, which of two sequences of three 
pictures can be extended by that picture (a sequence can be extended by a picture only if it 



is a neighbour of the last picture in the sequence, the correct answer can be sequence 
1/sequence 2/ both sequences): 16 questions per block. (A picture could not appear twice in 
the same sequence, therefore, if the target picture is already in the sequence the correct 
answer was necessarily the other sequence). 

Can it be in the middle:Determine whether a picture can appear between two other 
pictures, the answer is yes if and only if the picture is a neighbour of the two other pictures. 
16 questions per block. 

navigation task: The aim – navigating to a target picture. Participants are informed that they 
are currently at the picture that appears on the left of the screen. They were asked to 
choose between two pictures that are associated with that picture or skip and sample again 
two pictures that are associated with the current picture (skip is counted as a step). On each 
step participants were instructed to choose a picture that they think has a smaller number 
of links to the target picture (according to their memory). Following their choice, the chosen 
picture appeared on the left and two new pictures, that correspond to states that are 
neighbours of the chosen picture, appear in the middle (Figure 1b). Once a participant  
selected a neighbour of the target picture, the target picture itself can appear as a picture 
that can be chosen. The game terminated when either the target was reached or 200 steps 
were taken (without reaching the target). In the latter case a massage  ‘ too many steps’ was 
displayed. On the first block, the number of links from the current picture to the target 
picture was shown on the screen. Participants played three games in each block. The 
starting distance (number of links) between the starting picture to the target was 2, 3 and 4. 

 

Distance estimation:Which of two pictures has the smallest number of links to a target 
picture: 45 questions per block. 

Statistical values 

All questions: p-value = 0.0068, t = 2.54, sd = 0.0547, ci = [0.0124 inf], d = 0.699 

Inference questions: p-value = 0.016, t = 2.19, sd = 0.066, ci = [0.0088 inf], d = 0.565 

One-tailed ttest, df = 58.  

Second experiment (Figure 6) 

Response Time (Learning pace): p-value = 0.003, t = 3.19, sd = 0.5, ci = [0.18, 0.83], d = 1.01 
(two-tailed, df = 38). 

Correct structural prior leads to faster navigation to the target: 

Number of steps to the target is two,    p-value = 0.005, t = -2.68, sd = 14.58, ci = [-inf,-4.6], d 
= 0.85. 

Number of steps to the target is three, p-value = 0.026, t = -2.02, sd = 14.85, ci= [-inf,-1.48], 
d = 0.63. 

Number of steps to the target is four,   p-value = 0.006, t = -2.6,   sd = 10.54, ci = [-inf, -3.04], 
d = 0.82.  

One-tailed ttest, df = 38.  



Choose connecting nodes: 

All answers: p-value = 0.03, t = 2.25, sd = 0.1, ci = [0.007,0.13], d = 0.71 (two-tailed, df = 38.) 

Incorrect answer: p-value = 0.006, t = 2.88, sd = 0.1, ci = [0.03,0.16], d = 0.91 (two-tailed, df 
= 38.) 

ci is the confidence interval and d is Cohen d’ (effect size). 

 
The two experiments are in some sense symmetrical, really two conditions of a single 
experiment. I don't care about the fact that they are described as two different 
experiments, but what seems more important is the lack of symmetry in the analyses of the 
data. Why weren't the same analyses applied to both experiments? Have I misunderstood 
something about the setup that would preclude this? 

Thanks  - we very much agree that the logic of the conditions is symmetrical,  but we, at 
least, do not think that the analyses can be thought of symmetrically.   

The hex allows path inference.  The clusters, as we tested them,  do not.  It would have been 
possible to leave out links within a cluster.  We did not do this because we did not think this 
would be a compelling demonstration of link inference.  If we had done this, we could have 
done the symmetrical analysis, but to our minds, all of the conceptual interest would have 
been brought by the Hex condition.   

Similarly the clustered graph has connecting nodes that are qualitatively different from other 
nodes.  The existence of these nodes allows an analysis of behaviour that tests whether the 
structure of the graph is transferred (For example - connecting nodes are preferred even if 
they take the subject away from the target).  There is no equivalent to this analysis in the 
HEX graph.  

If the reviewer has suggestions for how we can perform symmetrical analyses, we are happy 
to try them.  

 
There's no direct comparison between the model and experimental data. Ideally we would 
see the same analyses applied to both model and human participants, plotted in the same 
way. There is already an indication in the figures that the model is much better than people 
at this task. The authors should address this mismatch. 

As described above, we hope to be able to persuade the reviewer that the role that the 
model currently performs in the manuscript is different to a quantitative model.   

In brief, we are not trying to make a model that predicts human behaviour quantitatively.  In 
order to make such a model, we would have to account for the failures of human memory;   
For the attentional lapses;  for the speed of learning.  Etc. etc.   It would be a highly 
parameterised model.  In our view, such a model would not likely add any conceptual insight 
over and above the behavioural effects themselves.   

Instead, the purpose of our model is illustrative and didactic.  It is a model that teaches us 
what the critical experiment is to perform.  It shows that we should test for inference, and 
transfer.  Critically, it shows that inference alone is not enough, and to demonstrate 
abstraction we need to show transfer.  



To highlight this, we have added new modelling to the manuscript, but it is perhaps not the 
modelling the reviewer was expecting.  Instead, we have added new models that do not 
abstract the graph structure away from the stimuli.  Amongst these models, there is one that 
can do link inference (self-filtered SR),  but there are none that can do transfer.  That is there 
are none that would show a difference between groups in our study.   

This is the role of the modelling in this manuscript.  We understand that this is different from 
the role of modelling in other manuscripts that are, for example, trying to extract learning 
rates from human participants.  We believe modelling can play both roles, and we hope the 
reviewer can agree that the role it is playing in this manuscript is valuable.  

 

The main changes are: 

Associative representation 

Learning such graphs can be accomplished using different types of representations. 
One solution to such a problem is a conjunctive representation of the stimuli and their 
relationships; the relationships between the stimuli are encoded by the associations between 
the representations of the stimuli themselves (figure 2). An example of such representation is 
the Successor Representation (SR)25. Here the representation of each state (in our setup each 
stimulus defines a state) encodes the probability to reach any other states in the future.  
Using such a representation it is possible to determine whether two stimuli are neighbouring 
nodes on a graph and even to navigate on a graph.  

In : “Inferring unobserved trajectories” we have added the following paragraph (beginning 
of paragraph 3) : 

Simple associative models, such as learning the transition matrix between the pictures 
themselves or learning SR, cannot solve such a problem (Figure 4a). Following Stachenfeld et 
al2, we spectrally filtered the SR that is currently being learnt using its own eigen-
decomposition; we reconstructed the SR using the seven most informative eigenvectors only. 
Such filtration smooth over the unobserved links, which then allows the agent to answer such 
questions better than chance without the need of knowledge transfer (Figure 4a, p<<0.001 
one tailed ttest). 

In the same section we have added another paragraph at the end: 

We then wanted to check whether humans solve such problems using transfer of 
abstract structural knowledge or whether they exploit a smoothed associative representation. 
If participants can solve the task without the need of prior knowledge it will imply that 
associative learning is enough, while if their performance depends on prior knowledge, we can 
conclude that humans do represent and transfer abstract structural knowledge. To test 
whether inference of unobserved edges is achieved by humans using clever smoothing of noisy 
representation or whether an abstract knowledge is being transferred, we designed the 
following two experiments. 

We have changed and spilt figure 4 into: 



 

Figure 4: inference of unobserved links (Hexagonal graph) 

A) Inferring the existence of unobserved edges (links). Left – the task: The agents had to 
indicate which of two nodes (pictures) has smaller number of links to the target. With 
only observed links, the number of links to the target was identical. Right – red edges 
indicates missing links on the graph. For example, the two nodes that are marked with 
light blue have the same number of observed links to the target node (marked with 
dark blue circle), while the number of links that connect these two nodes to the target 
is different on the complete graph. 

B) When learning from pairs that were sampled randomly (not in succession) while some 
of the links (pairs) were never observed, simple associative models as learning 
transition matrix (DA) or simple SR (SR-online: learning using TD-SR28, SR-A: calculating 
SR from the learnt transition matrix) could not infer the existence of the unobserved 
links and solve the task (it in fact solves it worse than chance). Agents that use a filtered 
SR representation (SRreg) could answer these questions better than chance. Shadows 
are the standard errors. 

C) When learning from pairs that were sampled randomly (not in succession) while some 
of the links (pairs) were never observed), the basis set agent, that transfers abstract 
structural knowledge, was able to infer the structural form (Figure S2) and graph size 
correctly (upper panel). Further, the agent was able to infer the existence of links that 
were never observed and determined correctly, which of two pictures is closer to a 
target picture, according to the complete graph (green). The agent could do so even 
though the number of observed links between the two pictures and the target was 
identical (p(cor) corresponds to the average fraction of correct answers out of 40 
questions in each block). When the agent was forced to infer a community structure 



(red), it answered these questions worse than chance. Shadows are the standard 
errors. 

 

 

Figure 5 Transfer of structural knowledge allows inference of unobserved links (Hexagonal 
graph 

Participants had to indicate which of two pictures is closer to a target picture. 
Participants that reach the second day of our task with the correct prior expectation 
over the structural form performed significantly better in such task compared to 
participants with the wrong structural prior (left panel). (30 participants in each 
group). They were able to answer these questions significantly above chance even 
when there were links that were never observed, and they had to choose between two 
pictures with identical number of observed links to the target (right panel). Error bar: 
SEM. Colorcode: 𝐿𝑜𝑔10(𝑝𝑣𝑎𝑙𝑢𝑒) 

 

There are no comparisons with alternative models that could conceivably solve the same 
task. For example, Kemp & Tenenbaum (2008) propose a different (and much richer) 
generative model for graphs. Or within the class of models considered in this paper, what 
about alternative basis sets? Does the particular choice of basis set made here predict a 
distinctive pattern of generalization (compared to other choices)? It's also worth pointing 
out that the authors restricted the structural forms to only the classes that appeared in their 
experiment, whereas more generally the space is presumably much broader (as argued by 
Kemp & Tenenbaum). 

Thanks again.  This is a similar point to the last.  We totally agree that the Kemp and 
Tenembaum models will perform the same way because they abstract the graph structure 
away from the stimuli.  We hope that we have now been clear that the point of the model 
is to demonstrate the empirical consequences of this abstraction.   The model is not an 
attempt to give detailed insight into the true mechanisms underlying human behaviour.   



Given that for the purpose at hand, the K&T model is the same as ours, we hope the 
reviewer agrees that it is not necessary to re-implement the model.   We have now made 
sure it is clearly stated in the manuscript that the K&T model would perform similarly.  

 

We have added the following sentences to the discussions: 

Generlizing structural knowledge in the form of structural forms have been suggested 
previously by Kemp et al. They have suggested a generative model for constructing a graph 
using general structural elements, each belonging to a different structural form9. As this 
model exploits abstract structural knowledge, we expect it to perform well on our tasks as 
well. Our choice of basis sets for representing structural knowledge is inspired both by 
spectral graph theory 13,20,32 but mainly by existing research on the hippocampal – 
entorhinal system. 

 
The authors have done a good job connecting their work to ideas in machine learning and 
neuroscience, but apart from Tolman there is very little discussion of relevant work in 
psychology. Below I've given a few references that explore relational/causal transfer. I'm not 
sure all of these citations are needed; I will leave this to the authors' discretion depending on 
how they want to discuss this research. 

- Halford et al. (1998), Cognitive Psychology -> added this citation 

- Honey & Watt (1998), JEP:ABP [this work stimulated a line of research on acquired relational 
equivalence]-> their experiments show imply that there is heirachical representation of 
abstract rule 

- Kemp et al. (2010), Cognitive Science – have added this citation 

- Lu et al. (2016), Cognitive Science (not sure I understand its relevant) 

- A large literature on analogical reasoning. For a review of the early work in this area, see 
Reeves & Weisberg (1994), Psychological Bulletin. 

 
Thanks for the suggestions – we have added most of them to our citation list. 

 
Minor comments: 

 
p. 3: "a learning phase, following" -> "a learning phase. Following" 

 
Fig 3 caption: "that determined" -> "that is determined" 

 
p. 7: what statistical test is being reported for the data in Fig 4b? 

 



p. 8: why is the t-test one-tailed? Same question for all the other one-tailed tests reported 
in the paper. Sometimes the tests are two-tailed, with no explanation of why one-tailed vs. 
two-tailed is chosen. I think the default should be two-tailed. 

We tried to stick to the statistical practice of performing 1-tailed t-tests when we were 
testing for effects that were greater than chance (so that only one effect would have been 
meaningful) and 2-tailed t-tests in other situations.  However, all of our effects survive 2-
tailed t-tests.  If the reviewer prefers that we report these numbers, we can happily do so.  
We think our current approach makes the hypotheses clearer.  
p. 8: how was the high-performing subset of participants identified? 

We didn’t do any tests that required a sub-division of the group. All of the tests were done on 
the whole group.  However, we noted in the text that the effects were driven by high-
performing subjects.  But we did not need a threshold or criterion because we did not 
hypothesize this clustering beforehand and we therefore tested the whole group together.  

 
p. 8: "These effects cannot be driven by non-inferential approximations of graph distance". I 
don't think the relevant issue is about inference vs. non-inference, but rather about the 
generalization abilities of different models. If you parametrized a successor representation 
with a basis set that can generalize across graphs, then I see no reason why it couldn't in 
principle do this task. 

This sentence refers to the difference between the groups. Difference between the groups 
imply transfer. We agree that using basis sets to parametrise SR should work as well, if the 
basis sets are already known. Actually, if we need to gamble what is happening in the 
hippocampus formation, we will gamble on that option. The point of our model was to 
introduce the basis sets as transferable representation of the abstract structural knowledge. 

 
p. 16: "inferece" -> "inference" 

 
p. 17: "a basis sets" -> "a basis set" 

 
p. 17: "using standard interpolating method" -> "using a standard interpolating method" [I 
actually don't know what standard interpolation method applies to eigenvector resizing] 

We added the method (matlab imresize) 

 
p. 17: "Participnats" -> "Participants" 

 
p. 17: "taking from" -> "taken from" 

 
p. 17: why is "bank" capitalized? 

 
p. 18: "Madaresz" -> "Madarasz" 



We thank the reviewer on all these comments. 
  

 



Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

The authors have revised the manuscript and it is now substantially improved. I have no further 

comments. 

 

 

 

Reviewer #2: 

Remarks to the Author: 

I'm happy with the changes that the authors have made in response to my comments. Just a few 

minor things: 

 

"massage" -> "message" 

 

How can some of the confidence intervals be bounded by infinity? 

 

"Such filtration smooth" -> "Such filtration smooths" 



 

Please see below our answers to reviewer 2 comments: 

 

1. Massage on page 23 was changed to message 

2. Smooth on page 9 was changed to smooths 

3. Confidence interval: the confidence intervals are bounded by infinity when we used 

one tailed ttest. Therefore, it means that one side of the distribution is entirely in the 

non-rejecting area of the NULL. We used one tailed ttest when we had a particular 

hypothesis regarding the sign of the effect. 

 

 

We thanks the reviewers for the comments on our manuscript. 

 

 

Thanks 

Shirley Mark 


