Supplementary Online Content

Costain G, Walker S, Marano M, et al. Genome sequencing as a diagnostic test in children with unexplained medical complexity. *JAMA Netw Open.* 2020;3(9):e2018109. doi:10.1001/jamanetworkopen.2020.18109

eFigure 1. Total Count of HPO Terms for the Proband Cohort (n=49), by Phenotype Category

eFigure 2. Total Number of Probands With at Least One HPO Term in a Phenotype Category

eFigure 3. Total Count of Clinical Genetic Tests in Each Category Performed in the Proband Cohort (n=49)

eFigure 4. Total Number of Probands With at Least One Test in a Clinical Genetic Test Category

eFigure 5. Mean Depth of Coverage of the Genome Sequencing Data

eFigure 6. Median Count of Features by HPO Category in the Diagnosed and Undiagnosed Subgroups

eTable 1. Individuals With Suspected or Partial Primary Diagnoses Known at the Time of Study Recruitment

eTable 2. Demographic and Clinical Features in the Proband Study Cohort **eTable 3.** Selected Variants of Uncertain Diagnostic Significance Identified in the Proband Study Cohort

This supplementary material has been provided by the authors to give readers additional information about their work.

eFigure 2. Total Number of Probands With at Least One HPO Term in a Phenotype Category

eFigure 3. Total Count of Clinical Genetic Tests in Each Category Performed in the Proband Cohort (n=49)

eFigure 4. Total Number of Probands With at Least One Test in a Clinical Genetic Test Category

eFigure 5. Mean Depth of Coverage of the Genome Sequencing Data

eFigure 6. Median Count of Features by HPO Category^a in the Diagnosed and Undiagnosed Subgroups

^aThe categories "Hematologic", "Immune System", "Connective Tissue", and "Endocrine / Metabolism" are not displayed because the median count was 0 in both subgroups.

Study ID	Sex	Gene	Condition (MIM # Phenotype)	IP	Variant Details (Zygosity) [Transcript]	Origin	Reasons for further genetic testing
CMC 02	М	-	Down syndrome (190685)	-	47,XY,+21	dn	Severity of developmental delays, seizure disorder, and feeding difficulties
CMC 23	F	HNF4A	Fanconi renotubular syndrome 4, with maturity-onset diabetes of the young (616026)	AD	c.187C>T / p.(R63W) (het) [NM_175914]	pat	Multiple major congenital anomalies
CMC 32	М	SOX5	Lamb-Shaffer syndrome (616803)	AD	c.928T>A / p.(C310S) (het) (NM_006940)	dn	Type I transferrin isoform profile, and variant not classified as pathogenic
CMC 43	М	KRAS	Noonan syndrome 3 (609942)	AD	c.40G>A / p.(V14I) (het) [NM_004985]	dn	Treatment-resistant hyperkinetic movement disorder
CMC 46	М	ATP6AP2	Mental retardation, X-linked, syndromic, Hedera type (300423)	XL	c.301-11_301-10delTT / p.(?) (hem) [NM_005765]	dn	Inflammatory bowel disease, and variant not classified as pathogenic
CMC 49	М	EDA	Ectodermal dysplasia 1, hypohidrotic, X- linked (305100)	XL	c.458G>A / p.(R153H) (hem) [NM_001005612]	mat	Multiple major congenital anomalies

eTable 1. Individuals With Suspected or I	Partial Primary Diagnoses Know	n at the Time of Study Recruitment
---	--------------------------------	------------------------------------

AD, autosomal dominant; dn, *de novo*; F, female; hem, hemizygous; het, heterozygous; IP, inheritance pattern; M, male; mat, maternal; MIM, Mendelian Inheritance in Man® (www.omim.org); pat, paternal; XL, X-linked

	Total (n=49)		Diagnos (n=	Diagnosed by GS (n=15)		No diagnosis by GS (n=34)	
	Number	(%)	Number	(%)	Number	(%)	
Male sex	29	(59.1)	7	(46.6)	22	(64.7)	ns
Clinical ES	33	(67.3)	9	(60.0)	24	(70.5)	ns
Positive family history ^b	6	(12.2)	3	(20.0)	3	(8.8)	ns
Parental consanguinity	5	(10.2)	2	(13.3)	3	(8.8)	ns
European/Caucasian ethnicity	26	(53.0)	8	(53.3)	18	(52.9)	ns
	Median	(range)	Median	(range)	Median	(range)	
Age in years	6.9	(0.6-17.8)	8	(4.5-17.8)	4.9	(0.6-13.2)	0.003
Coded HPO terms ^c	24	(6-58)	26	(11-45)	23	(6-58)	ns

eTable 2. Demographic and Clinical Features in the Proband Study Cohort

ES, exome sequencing; GS, genome sequencing; HPO, Human Phenotype Ontology; ns, not significant (p>0.05)

^aFisher's exact test for comparison of proportions, and Kruskal–Wallis test for comparison of medians. ^bFirst-degree relative with at least partial phenotypic overlap

[°]See text for details.

Study ID	Sex	Selected Features	Gene	Variant Details (Zygosity) [Transcript]	Origin	
Known disease genes						
CMC 01	F	Congenital microcephaly, GDD/ID, seizures	MED23	c.3957+5G>A (hom) [NM_015979]	mat/pat	
CMC 03	F	SMMCI	CDON	c.2674G>A / p.(G892S) (het) [NM_016952]	mat ^a	
CMC 04	М	GDD/ID, seizures, hypotonia, structural CNS anomalies	PLCB1	c.246+197G>A (hom) [NM_015192]	mat/pat	
CMC 07	F	GDD, hypotonia, structural CNS anomalies	KIF1A	c.4566-66C>T (het) [NM_004321]	dn	
CMC 28	М	GDD/ID, seizures, microcephaly, congenital anomalies	THOC2	c.623A>G / p.(N208S) (hem) [NM_001081550]	mat	
CMC 29	М	GDD, congenital heart disease	CTBP1	c.107G>A / p.(R36Q) (het) [NM_001328] ^b	dn	
CMC 31	М	Intracranial hemorrhage, congenital cataracts	JAM3	c.410-1G>A (het) [NM_032801]	mat	
				c.256+1260G>C (het) [NM_032801]	pat	
CMC 37	М	Potter sequence, GDD	POLA1	c.3835T>G / p.(F1279V) (hem) [NM 016937]	mat	
CMC 50	F	GDD, MCA	TLK2	c.532-1571_831+4del (het) [NM_006852] ^c	uk ^d	
Genes not yet associated with a Mendelian disorder						
CMC 04	М	GDD/ID, seizures, structural CNS anomalies	MAGEE1	c.877_984del / p.(293_328del) (hem) [NM 020932]	dn	
CMC 18	F	GDD, MCA, nystagmus	SF3B3	c.2012A>G / p.(N671S) (het) [NM 012426]	dn	
CMC 26	М	Severe achalasia	ANKRD13B	c.1761C>G / p.(D587E) (het) [NM 152345]	dn ^e	
CMC 32	М	Seizures, GDD, hypotonia, sensorineural hearing loss	DHRSX	c.643C>T / p.(L215F) (het ^f) [NM_145177]	mat ^e	

eTable 3. Selected Variants of Uncertain Diagnostic Significance Identified in the Proband Study Cohort

			DHRSY	c.541G>T / p.(V181F) (het ^f) [NM_145177]	pat ^e
CMC 33	М	Arthrogryposis, hypotonia	CAPRINI	c.1338A>T / p.(Q446H) (het) [NM_005898]	dn
CMC 34	М	Neurodegenerative disorder, aplastic anemia	KLHL12	c.1700A>T / p.(D567V) (het) [NM 001303051]	dn
CMC 41	М	Congenital right cerebral hypoplasia, GDD/ID	PLXNC1	c.1400C>A / p.(A467D) (het) [NM 005761]	dn

CNS, central nervous system; dn, *de novo*; F, female; GDD, global developmental delay; hem, hemizygous; het, heterozygous; hom, homozygous; ID, intellectual disability; M, male; mat, maternal; MCA, multiple congenital anomalies; pat, paternal; SMMCI, solitary median maxillary central incisor syndrome; uk, unknown

^aMother does not have features of SMMCI on exam. We questioned whether there could be a gene–environment interaction with another risk factor present in this family (maternal type 1 diabetes mellitus).

^bClinVar Accession Number: VCV000426724.2 (same patient).

°chr17:60628092_60637491del

^dNot inherited from mother.

^eVariant also present in similarly affected brother.

^fGene is within the pseudoautosomal region.