Copyright WILEY-VCH GmbH, 69469 Weinheim, Germany, 2020.

Supporting Information

for Adv. Sci., DOI: 10.1002/advs.202000621

Combining Battery-Type and Pseudocapacitive Charge Storage in $Ag/Ti_3C_2T_x$ MXene Electrode for Capturing Chloride Ions with High Capacitance and Fast Ion Transport

Mingxing Liang, Lei Wang, Volker Presser, * Xiaohu Dai, Fei Yu, * and Jie Ma*

Supporting Information

Combining Battery-type and Pseudocapacitive Charge Storage in Ag/Ti₃C₂T_x MXene Electrode for Capturing Chloride Ions with High Capacitance and Fast Ion Transport

Mingxing Liang^{1, 4§}, Lei Wang^{1, 4, 6§}, Volker Presser^{5, 6*}, Xiaohu Dai^{1, 4}, Fei Yu^{2*}, Jie

Ma^{1, 3, 4*}

¹ State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China

² College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, P.R. China

³ Research Center for Environmental Functional Materials, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, P.R. China

⁴ Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, P.R. China

⁵ INM – Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany

⁶ Department of Materials Science and Engineering, Saarland University, Campus D2 2, 66123 Saarbrücken, Germany

 $^{{}^{\}S}$ These authors contributed equally to this work.

^{*} Corresponding author

Jie Ma, E-mail: jma@tongji.edu.cn

Fei Yu, E-mail: f-yu@shou.edu.cn

Volker Presser, E-mail: volker.presser@leibniz-inm.de

Calculation method and equations

The Cl⁻-removal capacity (Cl⁻-RC), Cl⁻-removal rate (Cl⁻-RR) and energy consumption (EC) are calculated using following equations, respectively.

Cl⁻-RC (mg-Cl⁻/g-electrode)=
$$\frac{(C_0 - C_e) \times V \times 35.5 \times 1000}{m}$$
 (1)

Cl⁻-RR (mg-Cl⁻/g-electrode/min) =
$$\frac{Cl^{-}-RC}{t} \times 60$$
 (2)

EC (kWh/kg-Cl⁻) =
$$\frac{i \times \int v dt}{3600 \times (C_0 - C_e) \times V \times 35.5}$$
 (3)

Where the C_0 means the initial concentration of NaCl, mol/L; C_e represents the concentration of NaCl after charging, mol/L; V shows the volume of NaCl, L; m denotes the mass of Cl⁻ storage electrode, g; t signifies the desalination time, s; i and v expresses the current (A) and potential (V) during desalination process, respectively.

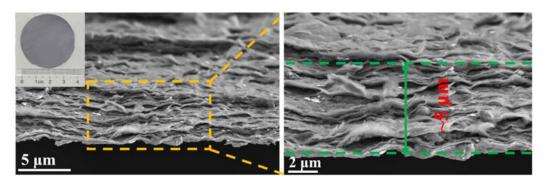
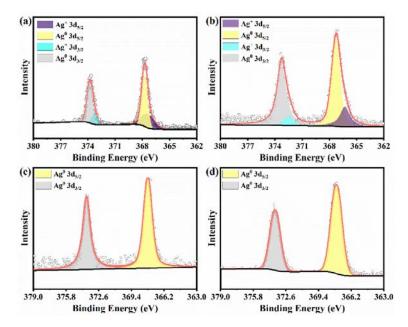



Figure S1. SEM images of $Ti_3C_2T_x/Ag-3$ hybrid (The inset: Digital photograph).

Figure S2. High-resolution Ag 3d XPS spectra of Ti₃C₂T_x/Ag hybrid: a) Ti₃C₂T_x/Ag-3, b) Ti₃C₂T_x/Ag-6, c) Ti₃C₂T_x/Ag-9 and d) Ti₃C₂T_x/Ag-12.

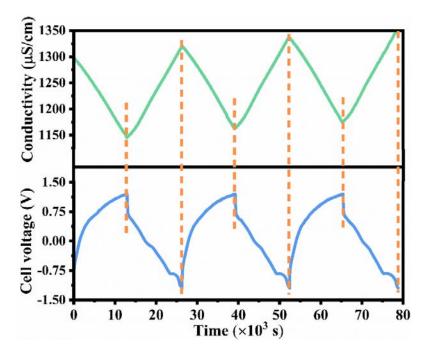


Figure S3. The conductivity (upper) and cell voltage change (lower) during the desalination process of $Ti_3C_2T_x/Ag$ -3 at 20 mA/g.

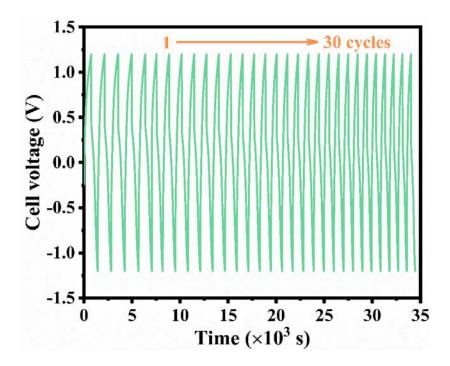


Figure S4. Potential curves of $Ti_3C_2T_x/Ag$ -3 electrode at 100 mA/g during 30 desalination cycles.

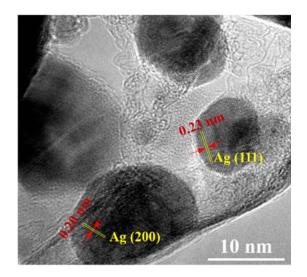


Figure S5. High-resolution TEM image of $Ti_3C_2T_x/Ag$ -3 electrode after a long-term

cycling.

Electrode materials	Weight percent of Ag ⁰ (wt%)	Weight percent of AgCl (wt%)	Weight percent of total Ag (wt%)
Ti ₃ C ₂ T _x /Ag-3	7.90	17.68	21.22
Ti ₃ C ₂ T _x /Ag-6	12.52	8.64	19.03
Ti ₃ C ₂ T _x /Ag-9	19.79	-	19.79
Ti ₃ C ₂ T _x /Ag-12	21.01	-	21.01

Table S1. The content of Ag and AgCl species in Ti₃C₂T_x/Ag hybrid (EDX measurement).

Operation	Weight percent of Ag ⁰ (wt%)	Weight percent of AgCl (wt%)	Weight percent of total Ag (wt%)
Before inverse- voltage washing	7.90	17.68	21.22
After inverse- voltage washing	17.21	6.18	21.86
After long-term cycling	19.63	1.90	21.06

Table S2. The content of Ag and AgCl species in $Ti_3C_2T_x/Ag-3$ hybrid after differentoperation (EDX measurement).