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Supplementary Figures 
 

 
Supplementary Figure 1 | Differences in NDVI among Landsat sensor before and after 

cross-sensor calibration. Landsat 7 NDVI compared with raw and cross-calibrated (a) Landsat 

5 NDVI and (b) Landsat 8 NDVI. Note that raw Landsat 5 NDVI was consistently lower than 

Landsat 7 NDVI, which was consistently lower than Landsat 8 NDVI (left columns). This can 

introduce an artificial positive trend in composite NDVI time series. This issue was obviated by 

further cross-sensor calibration using Random Forest machine learning algorithms (right 

columns). Each data point is an estimate of 15-day median NDVI computed from observations 

acquired during the years of overlap between pairs of sensors at each sampling site. Each 

sampling site contributes a single data point with the 15-day period selected at random from 

available periods during summers with at least five observations. The diagonal orange lines show 

1:1 relationships. 
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Supplementary Figure 2 | Summary of Landsat data availability from 1984 to 2016 

assessed using a random sampling sites in the Arctic. (a) Median number [black line] of 

cloud- and snow-free Landsat scenes acquired each summer (June through August). The 

availability of useable Landsat scenes increased though time with the launch of successive 

satellites. Shaded bands encompass 50% [dark gray] and 90% [dark gray] of sampling sites. (b) 

Histogram depicting availability of summer Landsat scene across all sampling sites and years.   
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Supplementary Figure 3 | Assessment of how estimates of maximum summer NDVI 

(NDVImax) are affected by the number of Landsat scenes available from a summer. 

Estimates of NDVImax increase asymptotically with scene availability when derived from raw 

(uncorrected) Landsat observations; however, estimates of NDVImax exhibit minimal change with 

scene availability when Landsat observations are corrected using site-specific information on 

land surface phenology. Intra-box lines denote median percent error among site x years that went 

into the analysis, while boxes encompass 50% of observations, and whiskers extend 1.5 times the 

interquartile range.  
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Supplementary Figure 4 | Illustration of approach for estimating annual Landsat 

maximum summer NDVI (NDVImax). (a) Seasonal progression of Landsat NDVI from June 

through August for a sampling site in the Arctic. Each point is a quality-controlled Landsat 5, 7, 

or 8 observation from 1985 to 2016. Each curve depicts the typical land surface phenology for a 

17-year period derived by fitting a cubic spline through all observations from that period. (b) 

Annual Landsat NDVImax (black point) was estimated using each summer observation (brown 

points) together with phenological information on the typical difference in NDVI between peak 

summer and the timing of each observation (blue lines). Specifically, the black point represents 

the median NDVImax estimated from all summer observation, while the error bar encompasses 

the full range of estimates.  
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Supplementary Figure 5 | Effects of sample size on estimates of Landsat NDVImax trends in 

the Arctic from 2000 to 2016. Trend metrics include (a) the relative change in mean Arctic 

NDVImax (%) and (b) the percentage of sites with a positive (“greening”) or negative 

(“browning”) trend in NDVImax (α = 0.10). Solid lines depict median estimates from 103 Monte 

Carlo simulations while error bands depict 95% confidence intervals (CI). Changes in the width 

of the 95% CIs are shown in panels (c) and (d). Each simulation not only used random subsets of 

sites, but also NDVImax time series generated with randomly permuted surface reflectance, cross-

sensor calibration models, phenological-correction parameters.  

  



Arctic greening and browning 

7 

 

 
Supplementary Figure 6 | Correlations between annual Landsat NDVImax [unitless] and the 

summer warmth index [SWI; °C] across the Arctic during recent decades. Mean 

Spearman’s correlation (rs) between annual NDVImax and SWI among sites within each 50 x 50 

km grid cell. Each grid cell shows the mean Spearman’s correlation (rs) between annual NDVImax 

and SWI among sites. Specifically, annual NDVImax was correlated with either current-year and 

two-year average SWI, and then reassessed after linearly detrending both NDVImax and SWI time 

series. Note that annual NDVImax was derived by averaging the annual time series from sites 

within each grid cell (50 x 50 km resolution). Each grid cell depicts the median correlation 

coefficient derived from 103 Monte Carlo simulations that randomly permuted both NDVImax and 

SWI timeseries.  
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Supplementary Figure 7 | Location of field sites that provide metrics of plant productivity 

that were compared with Landsat NDVImax. Field data sets include graminoid productivity 

(a), shrub ring-width (b), and ecosystem gross primary productivity estimated from 

measurements made by eddy covariance flux towers (c). The size of each shrub ring-width 

plotting symbol is proportional to the Spearman correlation (rs) between Landsat NDVImax and 

the ring-width index chronology at that location.  
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Supplementary Figure 8 | Graminoid productivity and Landsat NDVImax on Bylot Island. 

Time series (a) and scatter plot (b) of annual median graminoid aboveground net primary 

productivity [ANPP] and Landsat NDVImax [unitless] from 1990 to 2017 at long-term monitoring 

sites on Bylot Island in northern Canada. Lines (a) and points (b) depict medians and error bands 

(a) and bars (b) depict 95% confidence intervals derived from 103 Monte Carlo simulations. 

There were typically 12 quadrats harvested per year, but 11 quadrats in 1991, 2013, 2014, and 

2016. Quadrats were harvested at four subsites over this period. Annual median Landsat 

NDVImax was computed using data from these four subsites.  
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Supplementary Figure 9 | Summary of correlations between annual shrub growth and 

Landsat NDVImax. Frequency distribution of Spearman correlations (rs) between annual 

detrended Landsat NDVImax and shrub RWI chronologies. The correlation for each chronology 

represents the median rs of 103 Monte Carlo simulations. 
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Supplementary Figure 10 | Relationship between median annual Landsat NDVImax and 

ecosystem gross primary productivity (GPP) across 11 flux towers in the Arctic. Each point 

depicts medians computed over the number of years specified in white text within each point. 

Error bars represent 95% confidence intervals (CI) derived from 103 Monte Carlo simulations. 

The Spearman correlation (rs) also includes a 95% CI. Supplementary Table 12 provides 

additional details about each site.  
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Supplementary Tables 
 

Sensor 

 

Random Forest 

Out-of-Bag Evaluation 

 Cross-Validation 

r2 RMSE N sites  r2 RMSE Bias N sites 

Landsat 5  0.969 

[0.968, 0.970] 

0.036 

[0.035, 0.037] 

16,599  0.969 

[0.967, 0.971] 

0.036  

[0.035, 0.037] 

0  

[-0.001, 0.001] 

8,176 

Landsat 8 0.967 

[0.965, 0.968] 

0.033 

[0.033, 0.034] 

12,820  0.967 

[0.965, 0.969] 

0.033  

[0.032, 0.034] 

0  

[-0.001, 0.001] 

6,314 

 Supplementary Table 1 | Performance of Random Forest models used to cross-calibrate 

NDVI from Landsat 5 and 8 with Landsat 7. Model performance was nearly identical whether 

assessed using the Random Forest out-of-bag evaluation or external cross-validation. Evaluation 

criteria include the coefficient of variance (r2), root mean squared error (RMSE), and bias. Each 

metric is accompanied by a 95% confidence interval derived from Monte Carlo simulations (n = 

103). 
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 Period 

 

Domain 

 

Landsat NDVImax trend 

∆ NDVImax (unitless) ∆ NDVImax (%) tau 

1985-2016 Arctic 0.036 [0.034, 0.037] 7.3 [7.0, 7.7] 0.41 [0.40, 0.42] 

 High Arctic 0.007 [0.004, 0.010] 2.1 [1.4, 2.9] 0.14 [0.11, 0.17] 

 Low Arctic 0.034 [0.033, 0.036] 7.1 [6.7, 7.4] 0.36 [0.34, 0.38] 

 Oro Arctic 0.037 [0.036, 0.039] 6.0 [5.7, 6.3] 0.51 [0.49, 0.54] 

2000-2016 Arctic 0.019 [0.018, 0.020] 3.6 [3.4, 3.7] 0.53 [0.48, 0.57] 

 High Arctic 0.024 [0.021, 0.028] 8.0 [6.7, 9.3] 0.42 [0.38, 0.45] 

 Low Arctic 0.030 [0.029, 0.031] 6.0 [5.8, 6.1] 0.55 [0.52, 0.57] 

 Oro Arctic 0.011 [0.010, 0.012] 1.8 [1.6, 1.9] 0.63 [0.58, 0.67] 

Supplementary Table 2 | Changes in mean tundra greenness for the Arctic and each 

bioclimatic zone during recent decades. Trends in mean Landsat NDVImax (unitless) were 

assessed for the Arctic and each bioclimatic zone over two time periods (1985 to 2016 and 2000 

to 2016) using Theil-Sen slope estimators and Mann-Kendall trend tests. Each trend includes the 

total absolute and relative change and a tau statistic. Each metric is accompanied by a 95% 

confidence interval derived from 103 Monte Carlo simulations. 

  



Arctic greening and browning 

14 

 

Period Domain 
Number of 

sampling sites 

Percent of sampling sites  Ratio of  

Greening to 

 Browning Greening Browning No trend  

1985-2016 Arctic 21992 [21503, 22488] 37.3 [36.3, 38.4] 4.7 [4.4, 5.1] 58.0 [57.1, 58.7]  7.9 [7.1, 8.7] : 1 

 High Arctic 4801 [4594, 5010] 24.9 [23.1, 26.7] 6.2 [5.3, 7.2] 68.9 [67.4, 70.4]  4.0 [3.3, 4.9] : 1 

 Low Arctic 10894 [10603, 11185] 41.6 [40.4, 42.8] 3.8 [3.4, 4.3] 54.6 [53.6, 55.6]  10.9 [9.6, 12.5] : 1 

 Oro Arctic 6295 [6109, 6489] 39.4 [38.1, 40.8] 5.1 [4.7, 5.6] 55.5 [54.3, 56.6]  7.7 [6.9, 8.6] : 1 

2000-2016 Arctic 41886 [41402, 42357] 21.3 [20.8, 21.7] 6.0 [5.8, 6.3] 72.7 [72.3, 73.1]  3.6 [3.4, 3.8] : 1 

 High Arctic 6288 [6119, 6476] 11.4 [10.5, 12.5] 7.4 [6.7, 8.3] 81.1 [80.2, 82.1]  1.5 [1.3, 1.8] : 1 

 Low Arctic 18824 [18543, 19098] 21.3 [20.7, 21.8] 4.9 [4.6, 5.2] 73.8 [73.2, 74.4]  4.3 [4.0, 4.6] : 1 

 Oro Arctic 16771 [16507, 17038] 25.0 [24.4, 25.7] 6.6 [6.3, 7.0] 68.4 [67.7, 68.9]  3.8 [3.5, 4.0] : 1 

Supplementary Table 3 | Frequency of recent changes in tundra greenness among sampling 

sites in the Arctic and each bioclimatic zone. For each sampling sites, the Landsat NDVImax 

(unitless) trend was classified as greening, browning, or no trend based on the significance (α = 

0.10) of Mann-Kendall trend tests and direction of Theil-Sen slope from 1985 to 2016 and 2000 

to 2016. The percentage of sites with greening, browning, or no trend are summarized for the 

Arctic and each bioclimatic zone. Each metric is accompanied by a 95% confidence interval 

derived from 103 Monte Carlo simulations. 
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Number of 

sample sites 

Change in mean 

Arctic NDVI (%) 

Percent of sampling sites 

Browning Greening No trend 

102 3.51 [0.14, 6.43] 6.00 [2.00, 11.00] 21.00 [14.00, 30.00] 73.00 [63.00, 81.00] 

103 3.34 [2.38, 4.35] 6.00 [4.60, 7.50] 21.30 [18.80, 23.80] 72.70 [70.00, 75.40] 

104 3.38 [2.98, 3.77] 6.00 [5.50, 6.50] 21.30 [20.40, 22.20] 72.70 [71.90, 73.60] 

4x104 3.35 [3.18, 3.51] 6.00 [5.70, 6.30] 21.30 [20.80, 21.80] 72.70 [72.30, 73.10] 

Supplementary Table 4 | Effects of sample size on estimates of Landsat NDVImax trends in 

the Arctic from 2000 to 2016. Trend characteristics include the total relative change in mean 

Arctic NDVImax and the percentage of sites with a positive (“greening”), negative (“browning”), 

or no trend in NDVImax (α = 0.10). Each trend metric represents the median estimate from 103 

Monte Carlo simulations and is accompanied by a 95% confidence interval (CI). Note that each 

median trend metric is quite stable across a 400-fold range in sample size and that the width of 

each 95% CI asymptotically decreases. 
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Data Set Version Resolution Period Ref. 

Berkeley Earth 2018 1.0 x 1.0 ° 1850 – 2018 1 

Univ. York HadCRUT4 with UAH 2.0 5.0 x 5.0 ° 1979 – 2017  
2 

NASA GISS Surface Temp. Analysis 2018 2.0 x 2.0 ° 1880 – 2018 3, 4  
Univ. East Anglia Climate Research Unit 4.01 0.5 x 0.5 ° 1901 – 2016 5 

Univ. Delaware  5.01 0.5 x 0.5 ° 1900 – 2017 6 

 Supplementary Table 5 | Summary of air temperature data sets used in the analysis. 
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Period 

 

Domain 

 

SWI trend 

∆ °C tau 

1985-2016 Arctic 5.0 [4.9, 5.1] 0.61 [0.60, 0.63] 

 High Arctic 3.6 [3.3, 3.9] 0.46 [0.43, 0.50] 

 Low Arctic 5.1 [5.0, 5.3] 0.60 [0.58, 0.61] 

 Oro Arctic 5.6 [5.4, 5.8] 0.59 [0.56, 0.60] 

2000-2016 Arctic 2.5 [2.3, 2.7] 0.37 [0.33, 0.40] 

 High Arctic 2.6 [2.1, 3.1] 0.27 [0.18, 0.35] 

 Low Arctic 2.2 [1.9, 2.5] 0.30 [0.25, 0.33] 

 Oro Arctic 2.6 [2.3, 3.0] 0.40 [0.35, 0.47] 

Supplementary Table 6 | Changes in summer air temperatures for the Arctic and each 

bioclimatic zone during recent decades. Trends in the mean summer warmth index (SWI; °C) 

were assessed for the Arctic and each bioclimatic zone over two time periods (1985 to 2016 and 

2000 to 2016) using Theil-Sen slope estimators and Mann-Kendall trend tests. Each trend 

includes the total change and a tau statistic accompanied by 95% confidence intervals derived 

from 103 Monte Carlo simulations based on an ensemble of five temperature data sets. 
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Period Domain Spearman correlation (rs) between NDVImax and … 

current year SWI  two-year average SWI 

with trends detrended  with trends detrended 

1985-2016 Arctic 0.68 

[0.66,0.70] 

0.43 

[0.41,0.45] 

 0.86 

[0.85,0.88] 

0.72 

[0.69,0.75] 

 High Arctic 0.63 

[0.58,0.67] 

0.58 

[0.53,0.62] 

 0.73 

[0.69,0.77] 

0.65 

[0.58,0.72] 

 Low Arctic 0.61 

[0.58,0.63] 

0.31 

[0.27,0.34] 

 0.83 

[0.81,0.84] 

0.63 

[0.61,0.65] 

 Oro Arctic 0.69 

[0.66,0.71] 

0.40 

[0.36,0.45] 

 0.77 

[0.75,0.79] 

0.43 

[0.40,0.47] 

2000-2016 Arctic 0.76 

[0.73,0.78] 

0.39 

[0.33,0.46] 

 0.89 

[0.88,0.91] 

0.68 

[0.65,0.70] 

 High Arctic 0.75 

[0.69,0.80] 

0.78 

[0.72,0.85] 

 0.70 

[0.64,0.77] 

0.70 

[0.61,0.77] 

 Low Arctic 0.65 

[0.61,0.69] 

0.38 

[0.33,0.44] 

 0.84 

[0.78,0.88] 

0.51 

[0.46,0.56] 

 Oro Arctic 0.70 

[0.68,0.72] 

0.46 

[0.40,0.51] 

 0.88 

[0.85,0.92] 

0.52 

[0.50,0.57] 

Supplementary Table 7 | Correlations between annual mean tundra greenness (Landsat 

NDVImax; unitless) and summer air temperatures (SWI; °C) for the Arctic and each 

bioclimatic zone during recent decades. Spearman correlations (rs) were used to assess co-

variation between mean NDVImax and both current year and 2-year average SWI. Co-variation 

was also assessed after linearly detrending both NDVImax and SWI time series. Each correlation 

coefficient is accompanied by a 95% confidence interval derived from 103 Monte Carlo 

simulations. 
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Theme Variable Units Period Cadence Resolution Ref. 

Climate Summer warmth index °C 2000-2016 Annual 50 km Derived from 1, 2, 4, 

5, 6 

 Min. summer soil moisture mm 2000-2016 Annual 4 km 7 

Permafrost Active layer thickness cm 2003-2016 Annual 1 km 8 

 Soil temperature (1 m) °C 2003-2016 Annual 1 km 9 

 Permafrost extent % 2003-2016 Annual 1 km  10 

 Thermokarst vulnerability category ca. 2015 Single time -- 11 

Fire Burned area category 2001-2016 Annual 0.5 km 12 

Topography Elevation m ca. 2015 Single time 0.09 km 13 

 Slope ° ca. 2015 Single time 0.09 km Derived from 13 

 Aspect ° ca. 2015 Single time 0.09 km Derived from 13 

 Topographic roughness  unitless ca. 2015 Single time 0.09 km Derived from 13 

 Topographic position  unitless ca. 2015 Single time 0.09 km Derived from 13 

Biological Land cover  category 2015 Single time 0.30 km 14 

Supplementary Table 8 | Summary of environmental data sets used with random forest 

models to predict Landsat NDVImax trends from 2000 to 2016 at each sampling site. These 

geospatial data sets span the pan-Arctic domain. 
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NDVImax trend Sensitivity Specificity Balanced Accuracy 

Browning 65.6 [61.1, 69.9] % 79.6 [76.5, 82.3] % 72.6 [70.3, 74.5] % 

No trend 38.4 [33.4, 43.2] % 75.5 [71.7, 79.0] % 56.9 [54.6, 59.0] % 

Greening 62.3 [57.1, 66.9] % 78.1 [75.2, 80.9] % 70.2 [67.9, 72.5] % 

Supplementary Table 9 | Class-specific performance of Random Forest models used to 

predict the Landsat NDVImax trend from 2000 to 2016 at each sampling site. The Landsat 

NDVImax trend at each sampling site was classified as browning, no trend, or greening based on 

the direction and significance (α = 0.10) of trend evaluated using a Mann-Kendal Trend Test and 

Theil-Sen Slope. A Random Forest model was fit for each of the 103 Monte Carlo simulations 

after balancing the number of sampling sites in each trend class. The performance of each model 

was assessed by withholding a random 33.3% of data for cross-validation. The overall cross-

validated model classification accuracy was 55.4 [53.1, 57.5] %. The table summarizes the 

median and 95% confidence intervals for class-specific model sensitivity, specificity, and 

balanced accuracy derived from these simulations. 
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Observed 

NDVImax trend 

Predicted NDVImax trend 

Browning No trend Greening 

Browning 431 [394, 465] 153 [121, 183] 74 [55, 92] 

No trend 190 [160, 225] 252 [222, 281] 214 [178, 250] 

Greening 77 [60, 100] 170 [135, 207] 410 [371, 449] 

Supplementary Table 10 | Confusion matrix comparing observed and predicted Landsat 

NDVImax trends at sampling sites with predictions derived from Random Forest models. 

The Landsat NDVImax trend at each sampling site was classified as browning, no trend, or 

greening based on the direction and significance (α = 0.10) of trend evaluated using Mann-

Kendal Trend Test and Theil-Sen Slope. A confusion matrix was generated for each random 

forest model (103 Monte Carlo simulations) by withholding a random 33.3% of data for cross-

validation. The table summarizes the median [95% CI] number of sampling sites falling in each 

category.   
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Country Study area Genus Lat. Lon. rbar rs n yrs. n shrubs Ref. 

Canada Dempster Salix 67.045 -136.185 0.19 [0.17,0.22] 0.31 [0.05,0.55] 23 33 (19-41) 
15 

 Herschel Island Salix 69.57 -138.901 0.08 [0.05,0.10] 0.61 [0.41,0.75] 21 48 (20-67) 
15 

 Kluane Salix 61.214 -138.164 0.26 [0.24,0.27] 0.38 [0.23,0.53] 25 200 (56-297) 
15 

 Nowell Lake Alnus 68.536 -133.646 0.30 [0.27,0.32] -0.08 [-0.27,0.18] 21 32 (6-40) 
15 

Finland Enontekio Salix 68.628 24.79 0.54 [0.51,0.57] -0.12 [-0.33,0.04] 28 17 (16-17) 
16, 17 

 Arsuk Fjord Alnus 61.314 -48.109 0.47 [0.44,0.48] 0.30 [0.06,0.61] 16 25 (22-26) 
15 

Greenland Kangerlussuaq Betula 67.113 -50.326 0.28 [0.25,0.29] 0.61 [0.45,0.74] 18 30 (9-42) 
18 

 Kangerlussuaq Salix 67.113 -50.326 0.48 [0.47,0.50] 0.60 [0.39,0.78] 18 26 (9-32) 
19 

 Zackenberg Salix 74.466 -20.592 0.12 [0.10,0.14] 0.61 [0.48,0.74] 23 62 (18-87) 
15 

Russia Bovanenkovo Salix 70.394 68.436 0.67 [0.66,0.68] 0.33 [0.19,0.60] 24 27 (23-28) 
16, 17 

 Cherskii Alnus 68.742 161.414 0.56 [0.55,0.57] 0.60 [0.49,0.73] 18 58 (55-60) 
16, 17 

 Laboravaya Alnus 67.692 67.968 0.63 [0.62,0.65] 0.24 [0.03,0.44] 22 21 (20-24) 
16, 17 

 Laboravaya Salix 67.692 67.968 0.57 [0.55,0.58] 0.25 [0.03,0.48] 22 28 (26-29) 
16, 17 

 Mordy Yaha Salix 70.194 68.568 0.68 [0.66,0.68] 0.46 [0.30,0.59] 24 31 (29-33) 
16, 17 

 Varandei Salix 68.657 58.375 0.72 [0.70,0.73] 0.57 [0.43,0.78] 22 38 (36-38) 
16, 17 

 Yuribei Salix 68.837 70.322 0.63 [0.62,0.64] 0.29 [0.12,0.42] 28 74 (48-78) 
16, 17 

Sweden Staloluokta Salix 67.303 16.701 0.68 [0.66,0.69] 0.13 [-0.06,0.29] 27 17 (14-18) 
15 

USA Arctic Alaska Alnus 68.356 -159.914 0.38 [0.37,0.39] 0.73 [0.50,0.88] 15 90 (69-99) 
15 

 Noatak Alnus 67.992 -162.003 0.54 [0.53,0.55] 0.52 [0.39,0.67] 22 65 (29-74) 
20 

 Sagwon_N Alnus 69.016 -148.835 0.64 [0.62,0.65] 0.41 [0.18,0.63] 14 16 (9-17) 
21 

 Sagwon_N Salix 69.016 -148.835 0.59 [0.56,0.62] 0.32 [0.04,0.54] 13 20 (18-20) 
22 

 Sagwon_S Salix 68.729 -148.946 0.62 [0.61,0.64] 0.84 [0.72,0.93] 16 24 (9-28) 
23 

Supplementary Table 11 | Shrub sampling site locations, chronology inter-series 

correlations (rbar), sample sizes, and Spearman’s correlations (rs) between Landsat 

NDVImax and each shrub ring-width index chronology. Sample size includes the number of 

years of overlap between NDVI and shrub ring-width measurements (N Years) and the number 

of shrubs (N shrubs) that went into each chronology during these years. The number of shrubs in 

each chronology varied through time and thus the mean, min, and max sample sizes are 

provided. The rbar and rs include 95% confidence intervals derived from 103 Monte Carlo 

simulations. 
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Data Source Site Lat. Lon. Years NDVImax GPP Ref. 

AON Cherskii 68.514 161.531 2014-2016 0.74 [0.74,0.75] 348 [319,391] 24 

 Imnavait Fen 68.606 -149.311 2008-2018 0.64 [0.62,0.64] 209 [195,223] 25 

 Imnavait Ridge 68.607 -149.296 2008-2018 0.60 [0.59,0.60] 186 [175,198] 25 

 Imnavait Tussock 68.606 -149.304 2008-2018 0.65 [0.64,0.66] 210 [185,224] 25 

FLUXNET GL-NuF 64.131 -51.386 2008-2014 0.66 [0.66,0.67] 297 [268,312] 26 

 GL-ZaF 74.481 -20.555 2008-2011 0.61 [0.61,0.61] 318 [243,441] 27 

 GL-ZaH 74.473 -20.550 2000-2014 0.43 [0.42,0.43] 107 [98,114] 28 

 RU-Che 68.613 161.341 2002-2005 0.63 [0.62,0.63] 160 [127,245] 29 

 RU-Cok 70.829 147.494 2003-2013 0.66 [0.65,0.66] 343 [318,443] 30 

 US-Atq 70.470 -157.409 2003-2008 0.58 [0.55,0.59] 198 [194,205] 31 

 US-Ivo 68.487 -155.75 2004-2007 0.62 [0.62,0.64] 255 [236,296] 32 

Supplementary Table 12 | Characteristics of flux tower sites used to evaluate the 

relationship between Landsat NDVImax (unitless) and ecosystem gross primary productivity 

(GPP; g C m-2 yr-1). Estimates of median annual NDVImax and GPP are provided for each site 

with 95% confidence intervals derived from 103 Monte Carlo simulations. 
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Supplementary Methods 

Landsat data sets, processing, and analyses 

To characterize annual tundra greenness, we developed annual estimates of maximum summer 

normalized difference vegetation index (NDVImax) from 1985 to 2016 for sampling sites in 

Arctic tundra33 using 30 m resolution measurements of surface reflectance from the Landsat 

satellites (Landsat Collection 1)34, 35. Estimates of annual Landsat NDVImax are sensitive to 

multiple sources of uncertainty, including sensor calibration (± 3 to 7%)36, 37, systematic 

differences in NDVI among sensors38, 39, and the availability of summer measurements. We 

developed new approaches to cross-calibrate NDVI among sensors and model annual NDVImax 

using summer measurements in conjunction site-specific information on seasonal land surface 

phenology. Moreover, we ascertained how uncertainty in estimates of annual NDVImax time 

series affected subsequent aspects of the analysis using Monte Carlo simulations (n = 103). The 

following sections provide details regarding the Landsat data sets and processing.  

 

Landsat data sets 

We used measurements of land surface reflectance at 30 m resolution from 1985 to 2016 that 

were derived from Landsat 5, 7, and 8 by the United States Geological Survey (USGS) as part of 

the Landsat Collection 1 (Tier 1 and Tier 2) dataset. The USGS corrected Landsat 5 and 7 

measurements for atmospheric and terrain effects using the Landsat Ecosystem Disturbance 

Adaptive Processing System34 and corrected Landsat 8 measurements using the Landsat 8 

Surface Reflectance Code35. Landsat 5 was operational from 1984 to 2013, while Landsat 7 and 

8 have been operational from 1999 and 2013, respectively, to present. We accessed these 

Landsat data using the Python40 interface for Google Earth Engine41. 

 

Landsat sampling 

We extracted Landsat surface reflectance measurements for 50,000 terrestrial sampling sites 

spread randomly across the Arctic tundra. We included both Polar Arctic and Oro Arctic tundra33 

and partitioned terrestrial from aquatic areas using the Joint Research Center Global Surface 

Water dataset42. We buffered each sampling site by 50 m radius, yielding an approximate 3x3 

pixel window around each site. For each pixel within a buffer we then extracted all Landsat 5, 7, 

and 8 surface reflectance measurements that were acquired June through August (Julian Days 

152 – 243) between 1984 and 2016. This yielded 507 million multi-band measurements of land 

surface reflectance from these sampling sites. All together, we sampled 0.005% of the domain at 

an average density of one sampling site per 155 km2 of land area. On average, sites had a nearest 

neighbor that was 7.0 km away (minimum = 47 m and maximum = 314 km). The adequacy of 

this sample size is justified below in the Landsat NDVImax trend analysis section.   

 

Landsat quality control 

We took multiple steps to ensure that only high-quality clear-sky measurements were included in 

our analysis. First, we exclude observations (i.e., a pixel at a point in time) from scenes with high 

cloud cover (> 80%), spatial uncertainty (> 30 m), or solar zenith angle (> 60°). Second, we 

masked out observations that were identified as cloud, cloud shadows, water, or snow by the C 

Function of Mask (CFmask) algorithm43, 44. Third, we minimized potential errors associated with 

radiometric saturation, atmospheric correction, or residual water by excluding observations with 

unrealistically high (> 1) or very low (< 0.005) surface reflectance. Fourth, we excluded 
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observations that fell within the data gaps caused by failure of the Landsat 7 scan line corrector. 

Overall, we filtered out 72% of observations due to these issues.  

 

Cross-calibrating NDVI among Landsat sensors 

There are systematic differences in NDVI among Landsat 5, 7, and 8 (Supplementary Figure 1) 

and these differences must be addressed before assessing temporal trends in NDVI38, 39, 45. 

Failure to address these differences can introduced artificial positive trends into NDVI time-

series that are based on measurements from multiple Landsat sensors. Linear models have been 

developed to cross-calibrate Landsat 5 and 7 NDVI in boreal North America38, 45 and Landsat 7 

and 8 NDVI for the conterminous USA39, but we are unaware of existing models for cross-

calibrating Landsat 5, 7, and 8 in Arctic tundra. Following prior studies, we initially tried cross-

calibrating NDVI among sensors using linear regression, but observed a nonlinear relationship 

between Landsat 7 and 8. We therefore developed a machine learning approach to cross-calibrate 

NDVI from Landsat 5 and 8 with Landsat 7, which is a useful benchmark since it temporally 

overlaps with the other sensors.  

We cross-calibrated the sensors by first identifying the years when both Landsat 7 and 

Landsat 5/8 collected imagery at a sampling site. Second, we pooled NDVI measurements across 

those years and then computed 15-day moving median NDVI over the course of the growing 

season for each sensor and sampling site. Third, we excluded 15-day periods with fewer than 5 

measurements from both sets of sensors and then randomly selected one remaining 15-day 

period from each sampling site. We then used 2/3rds of these data to train Random Forest 

models46 that predicted Landsat 7 NDVI based on Landsat 5/8 NDVI. The models also account 

for potential seasonal and regional differences between sensors by including as covariates the 

midpoint of each 15-day period (day of year) and the spatial coordinates of each sampling site. 

We fit the random forest models using the ranger package47 in R48. As part of the Monte Carlo 

uncertainty analysis, we fit a separate random forest model to each of the 103 simulations.   

In addition to the out-of-bag error assessment performed internally by the Random 

Forest, we also cross-validated each model using the remaining 1/3rd of the data that was 

withheld from training. This holdout cross-validation involved predicting NDVI using the trained 

Random Forest model and then linearly regressing observed versus predicted NDVI. The models 

for calibrating Landsat 5 and 8 had high predictive capacity (r2 ≈ 0.97) and both low root mean 

squared error and bias (  
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Supplementary Tables 

Supplementary Figure 1). The performance of these models was similar to or exceeded 

that of cross-calibration models developed for other regions39, 45, 49. We therefore applied these 

models to cross-calibrate NDVI measurements at the full set of sampling sites. 

  

Modeling maximum summer NDVI using Landsat  

We sought to infer changes in tundra greenness using estimates of maximum summer NDVI 

(NDVImax) derived from the Landsat satellites. It is challenging to reliably estimate annual 

NDVImax using Landsat since these estimates are sensitive to the number of cloud- and snow-free 

observations (“useable observations”) acquired each summer. The annual number of useable 

summer observations increased from 1984 to 2016 at sites in the Arctic (Supplementary Figure 

2). There were typically few useable summer observations at each site during the 1980s and 

1990s, though observations became increasingly available during the 2000s following the 

launches of Landsat 7 and 8. Estimates of annual NDVImax typically increase asymptotically with 

the number of useable summer observations since this increases the likelihood that observations 

will have been acquired during peak summer greenness (Supplementary Figure 3). In other 

words, NDVImax is systematically underestimated when few observations are available. 

Consequently, the increase in useable summer observations introduces a spurious positive trend 

into NDVImax time series and this must be addressed before assessing long-term trends in 

NDVImax. The irregular timing of image acquisitions and overall low image availability make it 

challenging to compute not only NDVImax, but also time-averaged or integrated NDVI50. We 

therefore developed an approach to more reliably estimate NDVImax when few summer 

observations were available.  

We estimated annual Landsat NDVImax at sampling sites by combining annual summer 

observations with information on land surface phenology. Land surface phenology can be 

characterized based on seasonal changes in NDVI. The NDVI typically increases in spring as 

snow melts and plants begin leafing-out, reaches a maximum in the middle of summer following 

full plant community canopy development, and then declines in fall as leaves senesce and are 

shed51. For each site we quantified land surface phenology from spring through fall by predicting 

daily NDVI using flexible cubic splines fit to all quality-controlled Landsat observations. To 

account for potential shifts in land surface phenology during recent decades52, 53, we fit an 

individual cubic spline to observations from each 17-year period between 1985 and 2016 

(Supplementary Figure 4). The Landsat record is limited in much of the Arctic prior to the 2000s, 

thus using a 17-year window allowed us to pool measurements across this era of sparse 

observations when estimating annual NDVImax. As part of quality control, we iteratively removed 

observations with NDVI that differed by >100% from the corresponding daily prediction. We 

also excluded sites from 17-year periods if there were fewer than 30 useable observations. We fit 

the cubic splines using the smooth.spline function in R48 and characterized uncertainty in model 

fit by randomly varying the smoothing parameter (spar =0.68 - 0.72) and available observations 

as part of the Monte Carlo analysis. We interpret each cubic spline as representing the typical 

land surface phenology of the site 54 during the corresponding 17-year period. 

Landsat observations acquired during summer may not exactly coincide with the timing 

of peak summer greenness (NDVImax); however, it is possible to estimate annual NDVImax by 

combining these summer observations with site-specific information on land surface phenology 

(example in Supplementary Figure 4b). The phenological curves enabled us to determine the 

typical difference in NDVI between peak summer greenness and the day that each summer 
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observation was acquired (ΔNDVIDOY, vertical blue lines in Supplementary Figure 4b). The 

ΔNDVIDOY reflects the additional increase in NDVI that we would expect had a Landsat 

observation occurred during peak summer greenness instead of slightly earlier or later in the 

growing season. We then estimated annual NDVImax using each summer observation:  

 

(1)           NDVImax = NDVIDOY + ΔNDVIDOY  

 

where NDVIDOY is an observation of NDVI from a specific day during the summer. If multiple 

Landsat observation were available from a single summer, then we estimated overall NDVImax 

for that summer by computing the median of NDVImax predicted from each summer observation. 

While we focused on estimating inter-annual variability in NDVImax, our approach is akin to one 

presented by Melass and colleagues54, 55 who examined inter-annual variability in the start and 

end of the growing season in deciduous forest of eastern North America.      

We evaluated how estimates of annual NDVImax changed with the availability of growing 

season scenes using both phenologically-corrected and raw (uncorrected) Landsat observations. 

Here we define the ‘growing season’ for each site using the phenological curves to identify the 

seasonal period when daily NDVI was typically within 75% of NDVImax. We first selected site x 

years with at least 11 Landsat scenes acquired during a growing season. We then calculated 

observed NDVImax for each site x year; however, to guard against observations with spuriously 

high NDVI 51 we excluded the 10% of observations with the highest NDVI before computing 

NDVImax. Next, we repeatedly subsampled between one and ten Landsat observations from these 

site x years and for each subsample computed how phenologically-corrected and raw estimates 

of NDVImax differed from observed NDVImax. This allowed us to quantify how the percent error 

between observed and estimated NDVImax changed with scene availability both with and without 

our phenological correction (Supplementary Figure 3). This assessment showed that raw 

estimates of NDVImax increase asymptotically until there are at least seven Landsat scenes 

acquired during a summer, after which estimates of NDVImax change little with increasing scene 

availability. On the other hand, our phenologically-corrected estimates of NDVImax change little 

with increasing scene availability, though the uncertainty of the estimates decreases with 

increasing scene availability. Relative to raw data, the phenological correction slightly increased 

the spread of estimates when more than five scenes were available from a growing season, which 

occurred in about 9% of all site x years. These comparisons highlight that (1) estimates of annual 

NDVImax are sensitive to the number of available scenes and that (2) our phenological correction 

can provide less biased estimates of annual NDVImax when few Landsat scenes are available 

from a growing season.  

 

Landsat NDVImax trend analysis 

We assessed NDVImax trends during recent decades using Landsat observations from across the 

Arctic. Specifically, we evaluated NDVImax trends at individual sampling sites and after 

averaging NDVImax time series among sites within tundra bioclimatic zones and across the whole 

Arctic. Furthermore, we focused on NDVImax trends during two nominal periods (1985 to 2016 

and 2000 to 2016) that were chosen based on (1) the availability of Landsat imagery in the Arctic 

and (2) interest in assessing both long-term and near-term trends. We excluded sampling sites 

that were barren (mean NDVImax < 0.10, n = 4,112 sites) or had short measurement records (< 10 

years, n = 582 sites). We then evaluated each NDVImax time series for the presence of a 

monotonic trend using a rank-based Mann-Kendall trend test56, 57 and determined the slope of 
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each time series using a non-parametric Theil-Sen slope estimator58. The Theil-Sen slope 

estimator and Mann-Kendall trend test were sequentially implemented by the zyp.yuepilon 

function from the zyp package59 in R48. Temporal autocorrelation can inflate Mann-Kendall 

trend test statistics and increase the likelihood of detecting a trend when none is present60 and 

thus the zyp.yuepilon function first evaluates whether a time series exhibits temporal 

autocorrelation and if temporal autocorrelation is identified then the time series is pre-whiten 

before implementing the Mann-Kendall trend test60. The Theil-Sen slope estimator and Mann-

Kendall trend test are less sensitive to extreme values than simple linear regression and have 

been used in prior studies to assess NDVI trends at high-latitudes61, 62. The Landsat NDVImax 

trends are summarized for the Arctic and each bioclimatic zone in Supplementary Table 2 and 

Supplementary Table 3.  

To evaluate the adequacy of our sample size, we examined how estimates of two trend 

metrics varied as a function of sample size. Focusing on 2000 to 2016, we computed the change 

in mean Arctic NDVImax and the percentage of sites with positive, negative, or no trend (α = 

0.10) using sample sizes ranging from 102 to 4x104 sites. Specifically, we used samples sizes 

from 102 to 103 sites at intervals of 102 sites and then from 103 to 4x104 sites at intervals of 103 

sites (n = 49 bins total). For each Monte Carlo simulation (n = 103), we computed these trend 

metrics using random subsets of sites for each of the 49 sample size bins. We then computed the 

median and 95% confidence interval (CI) of each trend metric for every sample size bin. This 

analysis revealed minimal differences in trend estimates across a 400-fold range in sample size 

(Supplementary Table 4, Supplementary Figure 5). For instance, we estimated that the median 

increases in mean Arctic NDVImax was 3.51%, 3.38%, or 3.35% whether based on 102, 104, or 

4x104 sample sites. Moreover, we estimated that the median percentage of sites with a positive 

NDVImax trend (α = 0.10; greening) was 21.00%, 21.30%, and 21.30% based on 102, 104, or 

4x104 sampling sites, while the median percentage of sites with a negative NDVImax trend 

(browning) was 6.00% across all sizes. The width of the 95% CIs associated with these trend 

metrics asymptotically shrank lead to about a 0.5% change between 104 and 4x104 sampling sites 

(Supplementary Figure 5c,d). This analysis illustrates the sample size is adequate for drawing 

robust inference about recent changes in tundra greenness across the Arctic.  

 

 

Air temperature data sets, processing, and analyses 

We acquired and pre-processed five global gridded temperature data sets (Supplementary Table 

5) and then, for the Arctic region, derived the summer warmth index (SWI) as a metric of 

cumulative summer heat load63. Three data sets provided estimates of monthly mean air 

temperature (Tavg; °C) and two data sets provided estimates of monthly Tavg anomaly relative to a 

climatological baseline (1951-1980 for NASA GISS and 1981-2010 for UY HadCRUT4 with 

UAH). Each data set was publicly available online and provided data for at least the period from 

1979 to 2016. We clipped data sets to the Arctic domain33 and projected each to Lambert 

Azimuthal Equal Area on a 50-km grid using bilinear interpolation. For the two monthly Tavg 

anomaly data sets, we estimated absolute monthly Tavg by adding a monthly climatological 

baseline derived from the ensemble average of the three absolute Tavg data sets. We then derived 

and applied a common mask that only kept grid cells with non-missing data from every data set. 

Next, we computed the annual SWI as the sum of monthly Tavg exceeding 0 °C. The SWI is 

commonly used as an indicator of cumulative heat load in the Arctic49, 63, 64 and is analogous to 

growing-degree days, but computed using monthly rather than daily temperature data. 
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 Each temperature dataset was constructed using different collections of climate station 

observations and analytical techniques1, 2, 4, 5, 6, thus temporal trends in SWI and correlations 

between SWI and NDVImax are influenced by the specific temperature data set used in the 

analysis. To account for uncertainty in trends and correlation stemming from the climate data 

sets, we generated 103 synthetic domain-wide rasters of SWI for each year from 1984 to 2016. 

For each grid cell of every synthetic raster, we assigned a value for SWI that was randomly 

selected from the corresponding grid cell of one of the five temperature data sets. Consequently, 

each synthetic raster was built using a randomized assortment of grid cell values from the five 

temperature data sets. We then used this collection of synthetic SWI rasters to assess temporal 

trends in SWI as well as correlation between SWI and NDVImax (as described below).  

 

Trends in summer air temperatures 

We assessed changes in Arctic summer temperatures using the synthetic SWI raster data sets 

(described above) and non-parametric trend tests in a Monte Carlo uncertainty framework. 

Specifically, for each of the 103 synthetic SWI data sets, we evaluated SWI trends from 1985 to 

2016 and 2000 to 2016 using non-parametric Mann-Kendall and Theil-Sen tests as implemented 

by the zyp.yuepilon function from the zyp package59 in R48. We assessed SWI trends for each 

grid cell and Landsat sampling site, as well as after averaging SWI among grid cells in each 

bioclimatic zone and across the Arctic domain. We report the median change across all 

simulations as our best estimate of each trend and a 95% confidence interval computed from the 

2.5th and 97.5th percentiles of these simulations. Changes mean SWI for the Arctic and each 

bioclimatic zone are given in Supplementary Table 6.  

 

Temporal correspondence between Landsat NDVImax and summer temperatures 

We assessed the temporal correspondence between annual Landsat NDVImax and summer air 

temperatures (SWI) from 1985 to 2016 and 2000 to 2016 at multiple spatial scales. We evaluated 

the direction and strength of correspondence between NDVImax and SWI using rank-based 

Spearman’s correlations (rs) in a Monte Carlo uncertainty framework. Specifically, we computed 

NDVImax - SWI correlations for individual sampling sites and after averaging mean-centered 

NDVImax and SWI time series among sites within tundra bioclimatic zones and across the Arctic. 

Tundra greenness (NDVImax) could depend on summer temperatures over multiple years so we 

correlated NDVImax with current and 2-year average SWI. The strength of NDVImax - SWI 

correlations could also be influenced by underlying trends in both time series (e.g., warming and 

greening) thus we derived correlations using both original and linearly detrended time series. 

Moreover, uncertainty in estimates of NDVImax and SWI could influence their temporal 

covariation. We therefore derived 103 simulations of every correlation, with each simulation 

based on randomly permutated estimates of NDVImax and SWI. We present the median rs of all 

simulations as our best estimate for each NDVImax - SWI correlation and report a 95% 

confidence interval derived from the 2.5th and 97.5th percentile of all rs simulations. The 

NDVImax – SWI correlations for each zone are summarized in Supplementary Table 7 while 

spatial patterns of these correlations are summarized in Supplementary Figure 6.  

 

 

Comparisons among Landsat NDVImax and plant productivity measurements 
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We assessed the utility of Landsat NDVImax as an indicator of tundra plant productivity using 

field measurements from across the Arctic. We compared Landsat NDVImax against 

measurements of graminoid aboveground net primary productivity (ANPP; dry matter m-2 yr-1) 

and shrub ring-width indices (RWI; unitless), as well as estimates of ecosystem gross primary 

productivity (GPP; g C m-2 yr-1) derived from flux towers. We describe the data sets and specific 

comparisons in greater detail below, but in each case, we assessed the direction and strength of 

association between satellite and field measurements using rank-based Spearman’s correlations 

(rs) evaluated in a Monte Carlo framework that incorporated uncertainty in NDVImax and field 

measurements. Together, these field datasets span six countries (Canada, Finland, Greenland, 

Russia, Sweden, and USA) and several important plant functional types in the tundra biome 

(Supplementary Figure 7). 

 

Landsat NDVImax vs. graminoid productivity 

We assessed the temporal correspondence between annual Landsat NDVImax and graminoid 

ANPP from 1990 to 2017 on Bylot Island in northern Canada (Supplementary Figure 7a)65. 

Graminoid ANPP has been measured since 1990 in a moss-covered wetland fen that is 

dominated by grasses and sedges (e.g., Dupontia fisheri, Carex aquatilis, Eriophorum 

Scheuchzeri). This long-term monitoring is part of a project focused on Arctic food chains and 

provides, to our knowledge, the longest annual record of plant productivity in the tundra biome65, 

66, 67. The long record and spatially-extensive sampling during peak summer make these field 

data particularly valuable for evaluating remote sensing indicators of plant productivity68. 

Graminoid ANPP was quantified each year by clip harvesting live graminoid 

aboveground biomass (AGB) from quadrats (20 x 20 cm) that were randomly positioned across 

several subsites in the wetland. The harvests occurred when graminoid AGB reached a maximum 

in mid-August (Julian day = 226 ± 2 days; mean ± SD) and thus provide an estimate of ANPP 

given annual turn-over of graminoid AGB66. There were typically 12 quadrats harvested per year 

(but 11 quadrats in 1991, 2013, 2014, and 2016), with six quadrats harvested at each of two 

subsites (n = 332 quadrats total across years). One subsite was continually measured over the 28-

year period; however, the second subsite was measured once in 1990, moved to a nearby location 

for measurements in 1991 and 1992, and then moved again in 1993 after which the location 

remained the same.  

We examined the temporal correspondence between annual median landscape Landsat 

NDVImax and graminoid ANPP from 1990 to 2017 using Spearman’s correlations (rs) in a Monte 

Carlo uncertainty framework (n = 103 simulations). This involved extracting and quality-

screening all Landsat summer observations from a 100 m radius area around each subsite and 

then averaging spectral measurements from each Landsat scene. For each simulation, we first 

estimated annual median NDVImax across subsites after (1) computing NDVI with randomly 

permuting red and NIR reflectance, (2) cross-calibrating NDVI among sensors using a randomly 

selected Random Forest model and (3) fitting phenological curves with randomly permuted 

parameters. Second, we estimated annual median ANPP using data from a random subset (90%) 

of quadrats each year. Lastly for each simulation, we computed the correlation between annual 

median NDVImax and ANPP using data from a random subset (90%) of years from 1990 to 2017. 

The annual median ANPP time series was temporally autocorrelated over a two-year period (rlag1 

= 0.64 and rlag2 = 0.66, P < 0.05) and thus we chose to compare annual median ANPP with 

NDVImax from not only the concurrent year, but also averaged over the current and two prior 

years, as well as just the two prior years. We present the median rs as our best estimate of each 
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correlation and a 95% confidence interval derived from the 2.5th and 97.5th percentiles of the 103 

Monte Carlo simulations.  

 

Landsat NDVImax vs. shrub growth 

We assessed the temporal correspondence between annual Landsat NDVImax and 22 shrub ring-

width index (RWI) chronologies from sites located in six Arctic countries (Supplementary Figure 

7b). These shrub RWI chronologies are a proxy for interannual variability in shrub productivity 

and in some cases may co-vary with broader plant community productivity69. We used new and 

archived annual ring-width measurements from independent projects16, 17, 21, 22, 23, 70, 71, including 

measurements previously collated as part of the ShrubHub shrub ring database15. The data set 

included annual ring-width measurements for alder (Alnus spp.), willow (Salix spp.), and birch 

(Betula spp.), which are genera of tall deciduous shrubs that are widespread across much of the 

circumpolar Oro Arctic and Low Arctic72.  

Sample collection and measurement protocols differed among projects, but each project 

ultimately generated annual shrub ring-width measurements. Sampling occurred between c. 2005 

and 2017, and typically involved harvesting the largest shrubs found in a study area, though one 

project harvested shrubs along transects71. Several projects recorded the location of every stem or 

transect sampled in a study area16, 17, whereas most recorded one or several general sampling 

locations. Shrubs were harvested near the root collar and then one or more discs was cut from the 

bottom of each stem. Each disc was sanded, some discs were stained, and then the width of each 

growth ring was measured along one or multiple radii using either a stereo-microscope and 

sliding stage or a digital camera and imaging software. Each ring-width series was then cross-

dated to assure that growth rings were ascribed the proper calendar year. Additional details 

regarding sample collection and measurement protocols can be found in the references cited 

above. Overall, we drew on 54,374 cross-dated measurements of annual ring-widths from 1,348 

shrubs (17 to 297 shrubs per study area). 

We constructed median shrub ring-width index (RWI) chronologies for each shrub 

genera at every sampling site (n = 22 chronologies). First, we minimized the effects of juvenile 

growth by excluding the initial five years of measurements16 and then averaged ring-width 

measurements made along multiple radii of an individual shrub. Second, we removed potential 

age-related biological growth trends and standardized the magnitude of growth among individual 

shrubs. This was accomplished by fitting a flexible cubic spline to each time series and then 

dividing observed ring-width in year t by the ring-width predicted for year t by the spline73. We 

fit each spline using the ffcsaps function from the dendrochronological program library in R 

(dplR)74. To account for uncertainty in this process, we randomly varied spline flexibility and 

moving-window length as each spline was fit. Consequently, each spline removed 45-55% of the 

variance over a 15-25 year moving window, thus preserving high-frequency interannual 

fluctuations in growth while removing low-frequency (i.e., multi-decadal) growth trends. Lastly, 

for each simulation we generated a genus-specific shrub RWI chronology at each sampling site 

by computing annual median RWI using data from a random subsample (90%) of shrubs.   

We also constructed annual Landsat NDVImax time series to compare against the shrub 

RWI chronologies. This first involved extracting and quality-screening all Landsat summer 

observations from a 100 m radius area around each geotagged sampling location in a study area. 

For each simulation, we estimated annual NDVImax for every sampling location by computing 

NDVI with randomly permuting red and NIR reflectance, (2) cross-calibrating NDVI among 

sensors using a randomly selected random forest model and (3) fitting phenological curves with 



Arctic greening and browning 

32 

 

randomly permuted parameters. We then detrended the annual NDVImax (NDVImax-dt) timeseries 

for each sampling location using flexible splines (as above) and computed annual median 

NDVImax-dt across sampling locations in each study area. Lastly, for each simulation we 

computed the Spearman correlations (rs) between annual median NDVImax-dt and each shrub RWI 

chronology. We present the median rs for each site as our best estimate of the relationship and a 

95% confidence interval derived from the 2.5th and 97.5th percentiles of the 103 Monte Carlo 

simulations.  

 

Landsat NDVImax vs. ecosystem productivity 

We assessed the spatial correspondence between median annual Landsat NDVImax and ecosystem 

GPP across 11 flux towers located in Arctic tundra of Greenland, Russia, and the USA 

(Supplementary Figure 7, Supplementary Table 12). Four of the flux towers were part of the 

Arctic Observing Network (AON)24, 25 and seven of the flux towers were part of the FLUXNET 

Network (FLUXNET2015 CC-BY-4.0 February 2020)75. The net land-atmosphere CO2 

exchange (i.e., net ecosystem exchange [NEE]) was measured at each site using the eddy 

covariance technique, which involves coupling measurements of atmospheric CO2 

concentrations and meteorological conditions from instruments mounted on towers. Both AON 

and FLUXNET then estimated GPP and ecosystem respiration (Reco) by partitioning NEE (NEE 

= GPP – Reco) using modeled relationships between Reco and nighttime temperatures76. We 

acquired annual gap-filled estimates of GPP from FLUXNET and half-hourly gap-filled 

estimates of GPP from AON that we aggregated to an annual time step (g C m-2 yr-1).  

We assessed the spatial correspondence between median annual NDVImax and GPP across 

11 flux tower sites using Spearman’s correlations (rs) in a Monte Carlo uncertainty framework (n 

= 103 simulations). We chose to examine the relationship across rather than within sites because 

the annual GPP time series at each site was relatively short (mean = 7.7 years, SD = 3.7 years). 

Each simulation involved randomly permuting NDVImax and GPP data sets before computing the 

correlation between these metrics.  

To propagate uncertainty in annual estimates of GPP into our analysis, we constructed 

distributions of annual GPP for each site x year and then randomly drew from these distributions 

during each simulation. The FLUXNET data included uncertainty estimates for annual GPP at 

each site that were provided as the 5th, 16th, 25th, 50th, 75th, 84th, and 95th distribution percentiles 

of a bootstrap analysis that applied varying friction velocity (u*) thresholds to delineate well 

mixed from poorly mixed atmospheric conditions. We constructed a distribution of annual GPP 

for each site x year by linearly interpolating between the distribution percentiles provided with 

the data set. The AON data set relied on a fixed u* threshold (0.1 m s-1) and did not include 

uncertainty estimates, thus we constructed a distribution of annual GPP for each site x year by 

relying on uncertainty derived from the FLUXNET data. Specifically, for each FLUXNET site x 

year we computed the ratios of GPP at the 50th percentile to GPP at every other percentile 

(‘uncertainty fraction) and then computed the median uncertainty fraction for each percentile 

across all site x years. We then generated synthetic distributions of annual GPP for each AON 

site x year by multiplying annual GPP by the vector of median uncertainty fractions. Overall, this 

process yielded distributions of annual GPP for every site x year in both the FLUXNET and 

AON data sets.  

To propagate uncertainty in annual estimates of NDVImax into our analysis, we generated 

103 time series of annual NDVImax from 1985 to 2017 for each flux tower site. We first extracted 

and quality-screened all Landsat summer observations from a 100 m radius area around each flux 
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tower site and then averaged spectral measurements from each Landsat scene. Next, we 

estimated annual NDVImax for each site by (1) computing NDVI with randomly permuting red 

and NIR reflectance, (2) cross-calibrating NDVI among sensors using a randomly selected 

random forest model and (3) fitting phenological curves with randomly permuted parameters. 

For each simulation, we computed median annual NDVImax and GPP by site using data 

from a random subset (90%) of years and annual GPP randomly drawn from its corresponding 

distribution. We then computed the correlation between median annual NDVImax and GPP. We 

present the median rs as our best estimate of the relationship and a 95% confidence interval 

derived from the 2.5th and 97.5th percentiles of the 103 Monte Carlo simulations.  

 

Supplementary Discussion 

Relationship between Landsat NDVImax and graminoid productivity 

We found that inter-annual variability in Landsat NDVImax and graminoid ANPP were positively 

correlated at a long-term field monitoring site in northern Canada. Furthermore, we found that 

annual graminoid ANPP was autocorrelated over the preceding two years and that the NDVImax – 

ANPP relationship was strongest if NDVImax was averaged over the preceding two years. These 

findings suggest that annual graminoid ANPP partially depends on conditions during previous 

growing seasons. The lagged relationships could reflect the importance of non-structural 

carbohydrates and nutrients acquired in previous years, which are temporarily stored in below-

ground tissues (e.g., rhizomes) and later used for biosynthesis77. Arctic graminoids typically have 

a high ratio of belowground to aboveground biomass (e.g., the ratio for Carex aquatilis 

reportedly ranges from 3.4 to 22.6)78 underscoring the importance of below-ground processes in 

these ecosystems. Although based on observations from one study area, the positive correlation 

between Landsat NDVImax and graminoid ANPP provides support for interpreting Landsat 

NDVImax as a proxy for aspects of tundra plant productivity associated with graminoids. 

       

Relationship between Landsat NDVImax and ecosystem productivity 

We found that median annual Landsat NDVImax was related to broad spatial patterns of median 

annual tundra ecosystem GPP. Our remote sensing analysis builds on prior studies that showed 

positive associations between hand-held measurements of NDVI and short-term, chamber-based 

estimates of tundra ecosystem GPP79, 80. The relationship between NDVI and GPP likely arises 

because NDVI is a proxy for leaf area and chlorophyll content which together influence canopy 

light absorption and subsequent GPP80, 81. Overall, these results provide support for interpreting 

Landsat NDVImax as a proxy for GPP in tundra ecosystems.   

 

Relationship between Landsat NDVImax and shrub growth 

Our assessment revealed weak to moderate positive correspondence between interannual 

variability in Landsat NDVImax and shrub radial growth. Prior efforts have similarly 

demonstrated modest positive correspondence between AVHRR NDVI and both shrub16, 17, 82 

and tree62, 83, 84 radial growth in northern ecosystems. To our knowledge, Landsat NDVI has not 

previously been compared with interannual variability in shrub radial growth, but the generally 

positive but modest correspondence is not entirely surprising since both are metrics of carbon 

exchange. The NDVI is related to plant canopy leaf area and nitrogen content that affect light 

harvesting and subsequent carbon uptake (GPP) by the plant community80, 81. On the other hand, 
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shrub radial growth reflects carbon assimilation into plant aboveground woody tissues, which is 

but one aspect of whole plant NPP that also includes leaf and belowground productivity. 

Consequently, NDVI and radial growth are imperfect proxies for different metrics of carbon 

exchange that we might expect to positively covary under the assumption that both reflect inter-

annual variations between better and worse years of vegetation growth84. 

The degree of covariation between these proxies will likely be affected not only by 

interannual variability in respiration and allocation, but also by landscape heterogeneity 84. 

Shrubs can have a strong effect on NDVI in tundra ecosystems16, 49, 85, but are one function type 

of varying dominance in overall plant communities49, 86, which are themselves embedded in a 

mosaic of different land cover types. Consequently, we hypothesize that the correspondence 

between NDVI and shrub RWI is probably related to plant community and land cover 

heterogeneity, and the degree to which shrub RWI reflects fluctuations in above-ground plant 

productivity across the landscape87. This topic deserves future attention. Overall, the modest 

positive correspondence between Landsat NDVImax and shrub radial growth provides support for 

interpreting Landsat NDVImax as a proxy for aspects of tundra plant productivity associated with 

shrubs.       
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