<u>Supplemental materials for Peslak et al.</u> HRI depletion cooperates with pharmacologic inducers to strongly elevate fetal hemoglobin and reduce sickle cell formation

Supplemental Figure 1. *Select pharmacologic HbF inducers raise HbF levels in vitro.* **A.** F-cell quantitation by flow cytometry in CD34⁺ healthy donors following treatment with DMSO control, hydroxyurea (HU), pomalidomide (Pom), UNC0638, entinostat, or metformin. % F-cells are quantified for each sample. **B.** HbF levels (quantified as percent of total HbF+HbA peaks) by HPLC. DMSO serves as pharmacologic vehicle control. Error bars represent standard deviation. N=2 independent biological replicates.

Supplemental Figure 2. *HRI knockdown cooperates with pomalidomide or UNC0638 during HbF induction.* **A.** HRI transcript levels (normalized to DMSO control) of healthy CD34⁺ donors as measured by RT-qPCR following shRNA scrambled control or HRI depletion with two independent shRNA combined with either vehicle control or HbF pharmacologic induction (50 µM hydroxyurea (HU), 1 µM pomalidomide (Pom), or 0.125 µM UNC0638). **B.** F-cell quantitation by flow cytometry following shRNA scrambled control or HRI shRNA depletion combined with HbF pharmacologic induction. N=3 independent biological replicates for shRNA-based experiments. Statistical analyses done using two-way ANOVA analysis. * represents significance as compared to DMSO control. * p<0.05; ** p<0.01; *** p<0.001. **C.** Quantitation of HRI transcript (left panel, normalized to DMSO control); γ-globin transcript levels (center panel, expressed as γ-globin/γ-globin + β-globin); and % F-cells (right panel, obtained by flow cytometry) following RNP-based depletion of HRI combined with vehicle control or 1 µM pomalidomide treatment. N=2 independent biological replicates for RNP-based experiments. DMSO serves as pharmacologic vehicle control for all samples. Error bars represent standard deviation.

В

Gene Set Expression Analysis (RNA-Seq)

Supplemental Figure 3. Gene set enrichment analysis of HRI-depleted CD34⁺ derived cells treated with either pomalidomide or UNC0638 using erythroid differentiation transcriptional signatures. A. Expression levels of select erythroid differentiation genes (normalized to DMSO control) as measured by RT-qPCR. N=3 independent biological replicates. Error bars represent standard deviation. **B.** Gene set enrichment analysis of RNA-Seq data from HRI-depleted CD34⁺ derived cells treated with either DMSO control, 1 μ M pomalidomide, or 0.125 μ M UNC0638 using erythroid differentiation transcriptional signatures. Cluster 1 contains genes that are upregulated during erythroid differentiation and cluster 3 contains genes that are downregulated during erythroid differentiation. NES, normalized enrichment score; FDR, false discovery rate.

Supplemental Figure 4. *HRI depletion combined with both pomalidomide and UNC0638 treatment leads to very high levels of HbF induction*. **A.** HRI transcript levels following shRNAmediated depletion of HRI combined with either vehicle control, 1 μ M pomalidomide, 0.125 μ M UNC0638, or 1 μ M pomalidomide+0.125 μ M UNC0638 treatment. **B.** γ -globin transcript levels (right panel, expressed as γ -globin/ γ -globin + β -globin). **C.** Representative HPLC tracings of HbF and HbA. **D.** HbF levels (quantified as percent of total HbF+HbA peaks) by HPLC. N=2 independent biological replicates. DMSO serves as pharmacologic vehicle control. Error bars represent standard deviation.

Supplemental Figure 5. *HRI knockdown cooperates with pharmacologic inducers during HbF induction in SCD patient-derived cells.* **A.** HRI transcript levels (normalized to DMSO control) as measured by RT-qPCR in SCD patient-derived cells following shRNA scrambled control or HRI depletion with two independent shRNA combined with HbF pharmacologic induction (50 μ M hydroxyurea (HU), 1 μ M pomalidomide (Pom), or 0.125 μ M UNC0638). **B.** F-cell quantitation by flow cytometry of SCD patient-derived cells following shRNA scrambled control or HRI shRNA depletion combined with HbF pharmacologic induction. Statistical analyses done using two-way ANOVA analysis. * represents significance as compared to DMSO control. N≥3 independent biological replicates. Error bars represent standard deviation. * p<0.05; ** p<0.01; *** p<0.001.

Supplemental Figure 6. *Imaging flow cytometric analysis of cellular sickling*. **A.** Gating strategy for identifying sickled vs non-sickled cells by imaging flow cytometry as modified from previously published methods.²⁷ Single focused cells were classified as sickled vs non-sickled utilizing a combination of shape ratio (ratio of short axis to long axis) and circularity. **B.** Representative flow cytometric images (60x) of sickled vs non-sickled cells. **C.** Quantitation by imaging flow cytometry of percent sickled cells (normalized to DMSO control) following low-O₂ exposure. Statistical analyses done using two-way ANOVA analysis. * represents significance as compared to DMSO control. N=3 independent biological replicates. Error bars represent standard deviation. * p<0.05; ** p<0.01; *** p<0.001.

SUPPLEMENTAL TABLES

SUPPLEMENTAL TABLE 1. shRNA oligonucleotides.

Name	Sequence
Control shRNA F	CACCGGCAACAAGATGAAGAGCACCAACTCGAGTTGGTGCTCTTCATCTTGTTGTTTTTG
Control shRNA R	AATTCAAAAACAACAAGATGAAGAGCACCAACTCGAGTTGGTGCTCTTCATCTTGTTGCC
HRI shRNA #1 F	CACCGGCAGAGAGCAATGTGGTGTTAACTCGAGTTAACACCACATTGCTCTCTGTTTTTG
HRI shRNA #1 R	AATTCAAAAACAGAGAGCAATGTGGTGTTAACTCGAGTTAACACCACATTGCTCTCTGCC
HRI shRNA #2 F	CACCGGGCAGAAGTTCTAACAGGTTTACTCGAGTAAACCTGTTAGAACTTCTGCTTTTG
HRI shRNA #2 R	AATTCAAAAAGCAGAAGTTCTAACAGGTTTACTCGAGTAAACCTGTTAGAACTTCTGCCC

SUPPLEMENTAL TABLE 2. sgRNA sequences.

Name	Sequence
Control sgRNA	GCACTACCAGAGCTAACTCA
HRI sgRNA #1	TTGTTGGCTATCACACCGCG
HRI sgRNA #2	ATAGTCGAGAGAAACAAGCG

SUPPLEMENTAL TABLE 3. qRT-PCR primers.

Name	Sequence
β-globin F	TGGGCAACCCTAAGGTGAAG
β-globin R	GTGAGCCAGGCCATCACTAAA
γ-globin F	TGGCAAGAAGGTGCTGACTTC
γ-globin R	GCAAAGGTGCCCTTGAGATC
HRI F	CTGGACCAACAGAAACGGGA
HRI R	TTCGGGTGAAGCGTACAGAC
BCL11A F	ACAAACGGAAACAATGCAATGG
BCL11A R	TTTCATCTCGATTGGTGAAGGG
LRF/ZBTB7A F	GCTTGGGCCGGTTGAATGTA
LRF/ZBTB7A R	GGCTGTGAAGTTACCGTCGG
GATA1 F	CTGTCCCCAATAGTGCTTATGG
GATA1 R	GAATAGGCTGCTGAATTGAGGG
ALAS2 F	CAGCGCAATGTCAAGCAC
ALAS2 R	TAGATGCCATGCTTGGAGAG
SLC4A1 F	ACCTCTCTCACCTCACCTTCTG
SLC4A1 R	AACCTGTCTAGCAGTTGGTTGG
RPS18 F	GTAACCCGTTGAACCCCATT
RPS18 R	CCATCCAATCGGTAGTAGCG
AHSP F	TGAAGGAGTTCAGCGTTCTG
AHSP R	CACCTGCTGCCTGTAATAGTTG
GAPDH F	ACCACAGTCCATGCCATCACT
GAPDH R	CCATCACGCCACAGTTTCC

SUPPLEMENTAL TABLE 4. Western blot primary and secondary antibodies.

Name	Primary antibody	Secondary antibody
	EIF2AK1 (1:1000 dilution)	IRDye 800 donkey anti-rabbit IgG (1:15000 dilution)
HRI	MyBioSource, Cat. #MBS-9208228	Licor Cat. #926-32213
	CTIP1/BCL11A (1:1000 dilution)	IRDye 800 donkey anti-mouse IgG (1:15000 dilution)
BCL11A	Abcam, Cat. #19487	Licor Cat. #926-32212
	Pokemon/LRF (1:1000 dilution) eBioscience	Armenian Hamster IgG 680 (1:15000 dilution)
LRF	Cat. #14-3309-82	Rockland Cat. #620-144-440
	γ-globin (1:1000 dilution)	IRDye 800 donkey anti-goat IgG (1:15000 dilution)
γ-globin	Novus Biologicals, Cat. #NB-110-41084	Licor Cat. #925-32214
	β-actin (1:500 dilution)	IRDye 680 donkey anti-mouse IgG (1:15000 dilution)
β-actin	Santa Cruz, Cat. #sc-47778)	Licor Cat. #926-68072

SUPPLEMENTAL TABLE 5. Comparison of DMSO control shRNA versus DMSO HRI-depleted erythroid transcripts. RNA-seq expression of selected erythroid maturation up- and down-regulated genes comparing DMSO control shRNA samples versus DMSO HRI shRNA #2 samples. Gene numbers correspond to labels in Figure 2D. Data are shown as read counts for DMSO control and DMSO HRI-depleted samples, log₂ fold change, and DESeq adjusted p-values.

Category	Gene Number	Gene ID	DMSO control reads	DMSO HRI knockdown reads	Log2 fold change	Padj Value
	1	GATA1	5976.9	6199.0	0.0526	0.84
	2	KEL	7191.2	10356.6	0.5236	8.1E-09
	3	ANK1	24876.2	26851.7	0.0738	0.95
Erythroid Upregulated	4	KLF1	35505.9	34891.0	-0.0259	0.92
	5	FOXO3	36816.2	38826.9	0.0697	0.66
	6	AHSP	44995.0	83174.8	0.8843	4.6E-29
	7	EPB42	48508.9	81487.9	0.7484	6.5E-24
	8	GYPA	80201.2	89299.5	0.1604	0.11
	9	ALAS2	147138.6	226877.3	0.6293	1.2E-14
	10	SLC4A1 (BAND3)	187828.5	252594.0	0.401	0.46
	11	SLC25A37	268505.8	282252.1	0.062	0.76
Erythroid Downregulated	12	GATA2	90.4	106.3	0.1748	0.89
	13	JUN	549.8	555.4	-0.0476	0.96
	14	MYC	868.7	455.6	-0.8984	0.00001
	15	CD44	1312.9	681.3	-1.1007	0.11
	16	MYB	1750.7	1426.5	-0.3408	0.061
	17	KIT	2634.3	1633.3	-0.6856	2.3E-08
	18	CASP3	3599.8	6636.8	0.9112	4.3E-12
	19	PCNA	24437.2	16850.0	-0.5337	7.5E-11

DMSO Control shRNA vs DMSO HRI shRNA #2:

SUPPLEMENTAL TABLE 6. Comparison of DMSO control shRNA versus pomalidomide HRIdepleted erythroid transcripts. RNA-seq expression of selected erythroid maturation up- and downregulated genes comparing DMSO control shRNA samples versus 1 μ M pomalidomide HRI shRNA #2 samples. Gene numbers correspond to labels in Figure 2E. Data are shown as read counts for DMSO control and pomalidomide HRI-depleted samples, log₂ fold change, and DESeq adjusted p-values.

Gene Number Gene ID DMSO control reads Category Pom HRI knockdown reads Log2 fold change Padj Value 1 GATA1 5444.2 6598.0 0.2646 0.12 2 KEL 6551.9 9.7E-38 15543.9 1.249 3 ANK1 22655.9 24078.9 0.0553 0.93 4 KLF1 32317.7 29729.6 -0.1152 0.3 5 FOXO3 33486.3 40983.9 0.2823 0.00037 Erythroid Upregulated 6 AHSP 40978.9 76306.1 0.8952 1.4E-30 7 EPB42 44167.5 82705.4 0.903 2.8E-36 8 GYPA 72995.1 64800 6 -0.164 0.21 9 ALAS2 133919.9 246836.2 0.883 1.1E-29 10 SLC4A1 (BAND3) 171052.5 0.57 220158.1 0.3307 11 SLC25A37 244373.2 256606.8 0.0664 0.65 12 GATA2 82.4 218.0 1.4024 0.000037 13 JUN 500.8 2415.9 2.2701 6.5E-62 0.0000019 14 MYC 792.4 322.5 -1.2533 15 CD44 1194.9 741.0 -0.9388 0.34 Erythroid Downregulated 16 MYB 1596.2 678.2 -1.3099 1.6E-10 17 KIT 2400.9 1384.1 -0.7887 3E-09 9.8E-13 18 CASP3 3274.5 6679.2 1.0553 19 PCNA 22268.5 9738.9 1.2E-51 -1.1983

DMSO Control shRNA vs Pom HRI shRNA #2:

SUPPLEMENTAL TABLE 7. Comparison of DMSO control shRNA versus UNC0638 HRI-depleted erythroid transcripts. RNA-seq expression of selected erythroid maturation up- and down-regulated genes comparing DMSO control shRNA samples versus 0.125 μM UNC0638 HRI-depleted transcripts. Gene numbers correspond to labels in Figure 2F. Data are shown as read counts for DMSO control and UNC0638 HRI-depleted samples, log₂ fold change, and DESeq adjusted p-values.

Category	Gene Number	Gene ID	DMSO control reads	UNC0638 HRI knockdown reads	Log2 fold change	Padj Value
	1	GATA1	5856.5	7537.5	0.3588	0.0042
	2	KEL	7046.5	10822.1	0.6181	1.5E-11
	3	ANK1	24374.7	24395.2	-0.0021	1
	4	KLF1	34787.8	32246.0	-0.1024	0.53
Erythroid Upregulated	5	FOXO3	36069.0	38316.5	0.0957	0.4
	6	AHSP	44087.7	75722.4	0.7742	0.0006
	7	EPB42	47529.6	80603.6	0.7626	1.7E-23
	8	GYPA	78578.8	71719.9	-0.124	0.24
	9	ALAS2	144162.3	234142.3	0.7066	1.5E-22
	10	SLC4A1 (BAND3)	184040.2	234813.9	0.349	0.0000019
	11	SLC25A37	263073.4	292281.0	0.1508	0.082
Erythroid Downregulated	12	GATA2	88.6	81.3	-0.1247	0.94
	13	JUN	538.7	480.9	-0.1703	0.71
	14	MYC	851.3	498.5	-0.7347	0.0071
	15	CD44	1286.4	901.1	-0.7066	0.51
	16	MYB	1715.6	1372.2	-0.3461	0.052
	17	КІТ	2581.4	1879.7	-0.4638	0.027
	18	CASP3	3526.8	5717.7	0.7248	0.00000017
	19	PCNA	23945.8	15138.6	-0.6583	4.1E-16

DMSO Control shRNA vs UNC0638 HRI shRNA #2: