Supplementary material

Synthesis and Characterization of Poly(RGD) Proteinoid Polymers and NIR fluorescent Nanoparticles of Optimal D,L-Configuration for Drug Delivery Applications – In Vitro Study

Elad Hadad^a, Safra Rudnick-Glick^a, Igor Grinberg^a, Michal Kolitz-Domb^a, Jordan H.Chill^b and Shlomo Margel^{a*}

^aDepartment of Chemistry, Institute of Nanotechnology & Advanced Materials, Bar Ilan University, Ramat-Gan, Israel

^bDepartment of Chemistry, Bar Ilan University, Ramat-Gan 5290002, Israel

Supporting information including:

Figure S1. FTIR spectrum and UV-Vis absorption spectra of P(R^DGD^D, RGD, RGD^D) proteinoids.

Figure S2: 2D-NMR analysis of P(R^DGD) proteinoids.

Figure S3: NMR analysis of P(R^DGD^D, RGD, RGD^D) composition.

Figure S4: Simulations for prediction of RGD-content in P(R^DGD, R^DGD^D, RGD, RGD^D) NPs.

Table S1: NMR analysis of amino-acid incorporation into P(RGD)s.

Figure S5: Photostability of the encapsulated ICG P(R^DGD R^DGD^D, RGD, RGD^D) NPs and Free ICG

Figure S1. FTIR spectrum (A) and UV-Vis absorption spectra (B) of, P(R^DGD R^DGD^D, RGD, RGD^D) proteinoids (orange, yellow, green, brown) respectively.

Figure S2. 2D-NMR analysis of $P(R^{D}GD)$ proteinoids. Left, 2D homonuclear COSY spectrum of $P(R^{D}GD)$, and right, 2D ¹H-¹³C-HMQC spectrum of $P(R^{D}GD)$, both acquired for a 10 mg/ml sample in ²H₂O at 300 K and 16.4 T. Analysis of these spectra and comparison to expected correlation cross-peaks of the three amino acids allowed specific peaks (marked with arrows) to be identified as non-proteinoid signals and to be excluded from the integration analysis.

Figure S3. NMR analysis of P(R^DGD) proteinoid amino acid composition. Similarly to Figure 1, ¹D ¹H-NMR spectrum of 10 mg/ml proteniod in ²H₂O were acquired at 300 K and 16.4 T. Signals emanating from arginine, glycine and aspartate protons as well as integrated signal areas are shown. Asterisks denote non-proteinoid peaks excluded from the integration analysis. **Top**, P(R^DGD^D), **Middle**, P(RGD^D), **Bottom**, P(RGD).

Figure S4. Simulations for prediction of RGD content using amino acid composition. Based on the NMR-derived amino acid composition, random polypeptides were simulated and RGD occurrences counted. These are presented in a ternary component graph. (A) Percentage of residues involved in RGD triads as a function of the amino acid composition. (B) Detailed presentation of central region (shaded grey triangle) of the graph in (A). The color scale shows the %RGD for each point in the ternary graph. (C) Expected levels of residue involvement in RGD triads for conditions prevalent in this study as a function of the Gly mol:mol fraction when Arg:Asp is 1.3:1 (orange), representing the range of ratios seen in our P(RGD)s.

ppm-1	ppm-2	¹ H nuclei	Relative intensity	Normalized intensity ^a
1.25	2.21	$4H \operatorname{Arg}^{D}(H^{\beta}, H^{\gamma})$	1.00	0.25
2.60	3.02	$2H \operatorname{Asp}^{D}(H^{\beta})$	0.40	0.20
3.04	3.32	2H Arg ^D (H ^{δ})	0.52	0.26
3.56	4.41	1H Arg ^D (H $^{\alpha}$), 2H Gly(H $^{\alpha}$), 1H Asp ^D (H $^{\alpha}$)	0.81 ^b	$\begin{array}{l} Arg^{D}-0.25^{c}\\ Gly-0.18\\ Asp^{D}-0.20^{c} \end{array}$

Table S1a: NMR analysis of amino-acid composition in P(R^DGD^D)

Table S1b: NMR analysis of amino-acid composition in P(RGD^D)

PPM-1	PPM-2	¹ H nuclei	Relative intensity	Normalized intensity ^a
1.25	2.21	4H Arg(H ^{β} ,H ^{γ})	1.00	0.25
2.60	3.02	2H Asp ^D (H ^{β})	0.44	0.22
3.04	3.32	2H Arg(H $^{\delta}$)	0.51	0.255
3.56	4.41	1H Arg (H $^{\alpha}$), 2H Gly(H $^{\alpha}$), 1H Asp ^D (H $^{\alpha}$)	0.73 ^b	$Arg - 0.25^{\circ}$ Gly - 0.13 $Asp^{D} - 0.22^{\circ}$

Table S1c: NMR analysis of amino-acid composition in P(RGD)

PPM-1	PPM-2	¹ H nuclei	Relative intensity	Normalized intensity ^a
1.25	2.21	4H Arg(H ^{β} ,H ^{γ})	1.00	0.25
2.60	3.02	2H Asp(H ^{β})	0.46	0.23
3.04	3.32	2H Arg(H^{δ})	0.48	0.24
3.56	4.41	1H Arg(H $^{\alpha}$), 2H Gly(H $^{\alpha}$), 1H Asp(H $^{\alpha}$)	0.65 ^b	Arg – 0.25° Gly – 0.085 Asp – 0.23°

^a Signal intensity per proton nucleus.

^b Excluding the signals from solvent impurities at 3.57/3.65 ppm.

^c Relative contributions of Arg/Gly/Asp were based on the appropriate stoichiometric ratios.

Figure S5. Photostability of the encapsulated ICG P(R^DGD R^DGD^D, RGD, RGD^D) NPs and Free ICG. Illumination was performed continuously at 780 nm for a period of 30 minutes, for all the four different configurations of the ICG-encapsulated P(R^DGD, R^DGD^D, RGD, RGD^D) NPs and were compared to the photostability of the free ICG. (**Red**) ICG-encapsulated P(R^DGD) NPs, (**blue**) ICG-encapsulated P(RGD) NPs, (**green**) ICG-encapsulated P(R^DGD) NPs, (**yellow**) ICG-encapsulated P(RG^DD) NPs, (**blue**) ICG-encapsulated P(RG^DD) NPs, (**blue**) ICG-encapsulated P(RG^DD) NPs, (**blue**) ICG-encapsulated P(RG^DD) NPs, (**blue**) ICG-encapsulated P(R^DGD) NPs, (**blue**) ICG-encapsulated P(RG^DD) NPS, (**blue**) ICG-encapsulate