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1 Supplementary figures

Figure s1: A decision tree determining the association score sa. The parameter p0 is the
threshold of p-values for significance. By convention, it may be set to 0.05 in practice, corre-
sponding to a type-1 error rate of 5%.

Figure s2: A decision tree determining the consistency score c. IBD: identity by descent in
terms of the presence-absence of consistent physical distances in bacterial genomes. rin: range
of in-group distances. ε: a threshold of rin. The in-group distances are considered as consistent
when rin < ε . It may be twice the maximum error (with a unit of bp) to be tolerated for calling the
distance measurements accurate (i.e., the error tolerance). pIBD: an estimate of the probability
that the presence of consistent physical distances in bacterial genomes is due to IBD. p0: an
upper bound for pIBD, above which the consistency in the distances is considered as IBD.
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Figure s3: Antimicrobial resistance (AMR) genes detected in 169 E. coli genomes. (a) Fre-
quencies and allele numbers of AMR genes sorted by AMR classes. Every gene is represented
by a circle, either shaded (accessory) or unshaded (intrinsic), and is coloured by its associated
AMR class. The diameter of each circle is proportional to the allele number labelled on the
circle. (b) The number of genomes harbouring a particular number of accessory AMR genes
followed a bimodal distribution. (c) Frequencies of 178 alleles of accessory AMR genes ar-
ranged in a descending order within each AMR class. AMR classes are labelled by antimicrobial
classes that bacteria were resistant to: AGly, aminoglycosides; Bla, beta-lactams; Flq, fluoro-
quinolones; MLS, macrolides/lincosamides/streptogramins; Phe, phenicols; Sul, sulfonamides;
Tet, tetracyclines; and Tmt, trimethoprim.
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Figure s4: A binary heat map showing presence-absence of 27 alleles of accessory AMR
genes, each occurred at least four times in 169 E. coli genomes. Alleles of lower frequencies
are excluded from this heat map for conciseness. In the heat map, rows represent genomes whose
relationships are indicated in the midpoint-rooted core-genome ML phylogenetic tree; columns
represent alleles and are clustered using a single-linkage method based on binary distances be-
tween columns. In this heat map, each grey box indicates absence of an allele in a genome, and
each coloured box indicates presence of an allele in a given genome, with the colour linked to
an AMR class. AMR classes: AGly, aminoglycosides; Bla, beta-lactams; Flq, fluoroquinolones;
MLS, macrolides/lincosamides/streptogramins; Phe, phenicols; Sul, sulfonamides; Tet, tetra-
cyclines; Tmt, trimethoprim. Data underlying this figure can be interactively visualised and
downloaded from Microreact [1] following the link microreact.org/project/ifrfPqG u.
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Figure s5: AMR gene content of 359 Salmonella genomes. (a) Frequencies and allele numbers
of AMR genes sorted by AMR classes. Every gene is represented by a circle, either shaded
(accessory) or unshaded (intrinsic), and is coloured by its associated AMR class. (b) The number
of genomes each harbouring a particular number of accessory AMR genes. (c) Frequencies of
56 alleles of 23 accessory AMR genes arranged in a descending order within each AMR class.
AMR classes: AGly, aminoglycosides; Bla, beta-lactams; Phe, phenicols; Sul, sulfonamides;
Tet, tetracyclines; Tmt, trimethoprim.
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Figure s6: A binary heat map showing presence-absence of 22 alleles of SGI1-borne AMR
genes in 359 Salmonella genomes. Rows represent genomes whose relationships are indicated
in the midpoint-rooted core-genome ML phylogenetic tree, and columns represent alleles of five
acquired AMR genes. The columns are clustered using a single-linkage method based on binary
distances between columns. Each grey box indicates absence of an allele in a given genome.
AMR classes: AGly, aminoglycosides; Bla, beta-lactams; Phe, phenicols; Sul, sulfonamides;
Tet, tetracyclines. Original data underlying this figure can be interactively visualised and down-
loaded from Microreact following the link microreact.org/project/0bGpp3D-y.
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Figure s7: A binary heat map showing presence-absence of 34 alleles of 18 acquired AMR
genes that were not carried by SGI1 in 359 Salmonella genomes. Rows represent genomes
whose relationships are indicated in the midpoint-rooted core-genome ML phylogenetic tree,
and columns represent alleles of the AMR genes. The columns are clustered using a single-
linkage method based on their binary distances. Each grey box in the heat map indicates absence
of an allele in a given genome. AMR classes: AGly, aminoglycosides; Bla, beta-lactams; Phe,
phenicols; Sul, sulfonamides; Tet, tetracyclines; Tmt, trimethoprim.
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Figure s8: Binary heat maps showing distributions of identically distributed alleles of ac-
quired AMR genes in (a) E. coli or (b) Salmonella. For each species, an ML phylogenetic
tree is shown on the left side of each heat map. AMR classes: AGly, aminoglycosides; Flq,
fluoroquinolones; MLS, macrolides, lincosamides, and streptogramins; Tmt, trimethoprim.
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Figure s9: A summary of PCs obtained from core-genome relatedness matrices. (a) Cu-
mulative percentage of total genetic variation captured by PCs of each species. According to
Equation 23 in Section 3.1.7, when PCs are arranged in a descending order of their correspond-
ing eigenvalues, the percentage of genetic variation captured by the first k PCs is calculated by
the formula ∑

k
i=1 λi/∑

n
i=1 λi× 100%, where λi is the i-th PC and n is the total number of PCs.

Specifically, all genetic variation of the 169 E. coli genomes are captured by 159 PCs, where the
first PC, first six PCs and the first 20 PCs capture 31.36%, > 75% and > 95% of total variation,
respectively; total genetic variation of the 359 Salmonella genomes are captured by 319 PCs,
where the first PC, first 74 PCs and the first 191 PCs capture 11.29%, > 75% and > 95% of the
total variation, respectively. (b) Number of significant PCs contributing to presence-absence of
the response pattern in an LMM. Significant PCs are determined based on a maximum of 0.05
for Bonferroni-corrected p-values. For each species, the number of PCs per response is grouped
by the REML estimate of λ0. Considering both species, for patterns whose λ̂0 < 105, the count
of significant PCs varies between one and five, while for patterns whose λ̂0 ≥ 105, this count
varies between 10 and 136.
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Figure s10: A separate sub-network in the comparative network of E. coli and co-
occurrence of its alleles in 169 E. coli genomes. In panel (a), a heat map shows co-occurrence
events between nodes in the sub-network (b) and also shows an alignment of these events against
the midpoint-rooted ML core-genome phylogenetic tree of E. coli genomes. Column names of
the heat map denote node pairs labelled in panel b. Counts of alleles in the 169 genomes are dis-
played as digits between parentheses next to node labels in b. Asterisks beneath column names
denote raw p-values (that is, without Bonferroni correction) between 1×10−4 and 5×10−3 from
PLM-based association tests. Note that for each pair of these alleles, PLM-based p-values were
the same, regardless roles (response or explanatory) of two alleles in their PLMs.
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Figure s11: Accuracy of SPDs measured across at most five nodes in assembly graphs of
E. coli genomes under two levels of error tolerance (0 or ±1 kbp). The assembly graph was
generated from imperfect simulated reads. A genome name and error tolerance are printed in
each panel. Only accuracy rates from six out of ten genomes are shown in this figure for clarity.
SPD: shortest-path distance.
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Figure s12: Accuracy of SPDs measured across at most five nodes in assembly graphs of
Salmonella genomes under two levels of error tolerance (0 or±1 kbp). The assembly graphs
were generated from imperfect simulated reads. A genome name and error tolerance are printed
in each panel. Only results from six out of ten genomes are shown here for clarity.
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Figure s13: Accuracy of SPDs in contigs under six levels of error tolerance for 10 E. coli
genomes. A genome name is shown at the top of each panel. Distance: the SPD between two
alleles in a contig. Accuracy: percentage of SPDs differing from true distances by no more than
a given error tolerance level. The neighbour-joining tree shows the mean whole-genome average
nucleotide identity (ANI) calculated with FastANI v1.0 for each pair of genomes [2].

15



Figure s14: Accuracy of SPDs measured in contigs under six levels of error tolerance for 10
S. Typhimurium genomes. A genome name is printed to the top of each panel. We analysed all
distances without a random sampling because the number of measurable distances in contigs is
much smaller than that in assembly graphs. Distance: the shortest distance between two loci in
an assembly graph. The neighbour-joining tree shows the mean whole-genome ANI calculated
with FastANI v1.0 for each pair of genomes.
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Figure s15: Distribution of six reliable SPDs measured between positively associated alleles
blaTEM-214.147 and tet(A) in 15 E. coli genomes. Genome assemblies in which reliable SPDs
were obtained are highlighted with red circles on tips of the midpoint-rooted ML phylogenetic
tree and are labelled by distance values.
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Figure s16: Resolved structures of regions comprising alleles blaTEM-214.147 and tet(A) in E.
coli genomes. The alleles are denoted by their gene names in this figure. The SPD between these
two alleles and the genome name are displayed on the left of each structure. The distribution of
SPDs in E. coli genomes is illustrated in Figure s15. We annotated these regions via searching
their nucleotide sequences against Enterobacteriaceae genomes in GenBank with megaBLAST.
For each structure, a pair of red brackets show the region in which the SPD was measured. Grey
shades between structures indicate homologous regions showing > 99% nucleotide identity.
Green boxes with dashed borders represent two transposon sequences. Arrows and boxes filled
with colour patterns denote pseudo genes or MGEs. All the six genetic structures contained a
4,950 bp Tn3-family transposon Tn2 (GenBank accession: KT002541, coordinates: 1–4,917),
either complete or truncated (1,573 bp, in a single genome), showing a 100% nucleotide iden-
tity to each other. Repeats of partial TnAs1 sequences are highlighted using a purple-white
filling pattern and had their lengths labelled nearby. The sign ∆ denotes a truncated gene or
a genetic element. Asterisks besides an MGE name indicates a variant of the corresponding
MGE. Annotations for open reading frames (ORFs): ORF1, cysteine hydrolase (NCBI protein
ID: AWA37038) gene; ORF2, a gene encoding an EamA-family transporter (NCBI protein ID:
AYD32134); ORF3, a 243 bp relaxase (NCBI protein ID: AXE60424) gene, which is associated
with insertion sequences and transposons; ORF4, a gene encoding a recombinase-family protein
(NCBI protein ID: AXS38585); and ORF5, a gene encoding a Tn3-family transposase (NCBI
protein ID: AXS38584). Pseudo genes: ∆tnpA, a fragment of the 2,964 bp transposase gene
(GenBank accession: CP022426, at coordinates 4,991,027–4,993,990) in TnAs1; ∆hin, a 174 bp
truncation remnant of a gene encoding a DNA-invertase Hin (GenBank accession: MG692690,
at coordinates 2,971–3,387).
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Figure s17: Reconstructed genetic structures for alleles sul1 and aadA2 in Salmonella
genomes. (a) Distribution of the alleles in 359 Salmonella genomes. In the midpoint-rooted ML
phylogenetic tree shown in the centre, red and blue circles highlight tips representing genomes
from which SPDs between the two alleles were obtained. Particularly, the blue circle denotes the
strain DT104, whose complete genome is available in GenBank. A single lineage from which
all SPDs were obtained is coloured in orange. (b) A diagram showing genetic structure of the
MDR region, which was created based on Figure 2 by Boyd, et al. [3]. Other genes within this
region are omitted for simplicity. (c) An assembly graph (genome DRR006262) of double DNA
strands in which the SPD between the alleles was 504 bp. (d) Double DNA strands of a single
contig (genome ERR170653) harbouring both alleles, which were 504 bp apart in the contig.

19



Figure s18: A maximal clique of three alleles of AMR genes extracted from the linkage
network of E. coli and distribution of its alleles in genomes. (a) Presence-absence of these
alleles were positively associated, as determined using LMMs, and SPDs between these alleles
were always measurable and consistent. (b) A ring plot created for this clique using GeneMates,
which illustrates co-occurrence of all three alleles (red tiles in the outer most track) and presence-
absence of individual alleles (tiles coloured in dark grey in inner tracks). A midpoint-rooted ML
phylogenetic tree of E. coli genomes is shown in the middle.
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2 Supplementary tables

Table s1: Overall scores given association scores and distance scores given perfect distance
measurability (min = 1).

sssdddScores 1 0 -1
1 2 1 0
0 1 0 -1sssaaa
-1 0 -1 -2

Table s2: A summary of 10 MDR E. coli genomes used for determining reliability
criteria for APDs. An accession number in the NCBI nucleotide database is provided
for each nucleotide sequence. The sequence length is measured in base pairs (bp).
Abbreviations: AMR, antimicrobial resistance; NA, not detected.

Strain Sequence Accession Length AMR genes
2011C-3493 chromosome CP003289 5,273,097 ampH, ampC1, ampC2, mrdA,

drfA7, strA, strB, sul1, sul2, tet(A)
plasmid CP003291 74,217 NA
plasmid CP003290 88,544 blaCTX-M-15, blaTEM-105

plasmid CP003292 1,549 NA
NRG 857C chromosome CP001855 4,747,819 ampH, ampC2, mrdA

plasmid CP001856 147,060 aadA1-pm, catA1, drfA1, mphB,
strA, strB, sul1, sul2, tet(A),
blaTEM-105

Ecol 517 chromosome CP018965 4,794,957 ampH, ampC1, ampC2, mrdA

plasmid CP018964 118,495 aac6-Ib, aadA5, blaCTX-M-15,
catB4, dfrA7, mphA, blaOXA-1,
sul1, tet(A)

plasmid CP018963 54,644 blaKPC-2

Ecol 545 chromosome CP018976 5,031,843 ampH, ampC1, ampC2, mrdA,
blaCTX-M-15, qnr-S1

plasmid CP018975 95,926 NA
plasmid CP018974 70,876 aac6-Ib, catB3, blaKPC-2,

blaOXA-1, blaTEM-105

plasmid CP018973 70,152 blaCTX-M-27

plasmid CP018972 4,073 NA
plasmid CP018971 3,164 NA

APEC O1 chromosome CP000468 5,082,025 ampH, ampC1, ampC2, mrdA

plasmid DQ381420 174,241 NA
plasmid DQ517526 241,387 aac3-VIa, aadA1-pm, sul1, tet(C)

PCN033 chromosome CP006632 4,987,957 ampH, ampC2, mrdA, aac3-IId,
blaTEM-105

plasmid CP006633 3,319 NA
plasmid CP006634 4,086 NA
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plasmid CP006635 161,511 aph3-Ia, dfrA17, oqxA, oqxB,
strA, strB, sul2, blaTEM-105, tet(B)

ST540a chromosome CP007390 4,807,977 ampH, ampC1, ampC2, mrdA,
aph3-Ia, strA, strB, sul2,
blaTEM-150, tet(A)

Santai chromosome NZ CP007592 5,104,557 ampH, ampC1, ampC2, mrdA,
aac3-IId, aac6-Ib, aadA2, armA,
arr3, catA1, catB3, dfrA12,
floR, fosA, mphA, mphE, msrE,
blaOXA-1, strA, strB, sul1, sul2,
blaTEM-105, tet(A)

ECONIH1 chromosome CP009859 5,310,511 ampH, ampC1, ampC2, mrdA,
blaCTX-M-15

plasmid CP009860 121,385 aadA5, dfrA17, ermB, mphA, sul1

plasmid CP009861 47,560 NA
plasmid CP009862 80,186 aac6-Ib, aadA1-pm, dfrA14,

blaKPC-2, blaOXA-9, strA, strB,
sul2, blaTEM-150

EC958 chromosome HG941718 5,109,767 ampH, ampC2, mrdA, blaCMY-23

plasmid HG941719 135,602 aac6-Ib, aadA5, blaCTX-M-15,
catB4, dfrA17, mphA, blaOXA-1,
sul1, blaTEM-105, tet(A)

plasmid HG941720 4,080 NA

Table s3: A summary of the 10 MDR S. Typhimurium genomes used for determining relia-
bility criteria for APDs. An accession number in the NCBI nucleotide database is provided for
each nucleotide sequence. The sequence length is measured in base pairs (bp). Abbreviations:
AMR, antimicrobial resistance; NA, not detected.

Strain Sequence Accession Length AMR genes
DT104 chromosome HF937208 4,933,631 aac6-Iaa, aadA2, blaCARB-2, floR,

sul1, tet(G)
plasmid HF937209 94,034 NA

TW Stm6 chromosome CP019649 4,999,862 aac6-Iaa, strA, strB, sul2,
blaTEM-105, tet(B)

plasmid CP019647 275,801 aadA2, aadA1-pm, aphA2,
cmlA1, dfrA12, strA, strB, sul3,
blaTEM-105, tet(A)

plasmid CP019648 4,083 NA
ST33676 chromosome CP012681 4,809,574 aac6-Iaa

plasmid CP012683 112,639 cmy-17

plasmid CP012684 4,512 NA
plasmid CP012682 161,461 aac3-IId, aadA2, dfrA12, floR,

oqxA, oqxB, strA, strB, sul2, sul3,
tet(A)
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T000240 chromosome AP011957 4,954,814 aac6-Iaa, aadA1-pm, catA1,
blaOXA-1, sul1, tet(B)

plasmid AP011958 106,510 aac3-IId, aadA2, dfrA12, sul1

plasmid AP011959 8,670 strA, strB, sul2

U288

chromosome CP003836 4,852,606 aac6-Iaa

plasmid CP004058 148,711 aadA2, aadA1-pm, cmlA1,
dfrA12, sul3, blaTEM-105

plasmid CP004059 11,067 strA, strB, sul2, tet(A)
plasmid CP004060 4,675 NA

ST81741 chromosome CP019442 4,974,856 aac6-Iaa, tet(B)
plasmid CP019443 233,802 aac3-IId, aadA17, blaCTX-M-65,

floR, lunF, sul2, blaTEM-105,
tet(M)

plasmid CP019444 84,565 mphA, blaNDM-5, blaTEM-105

L3553 chromosome AP014565 5,051,841 aac6-Iaa, aada2, cmy-17, dfrA12,
floR, strA, strB, sul1, sul2, tet(A)

plasmid AP014566 132,611 aph3-Ia, sul1, blaTEM-105, tet(A)
SO469809 chromosome NZ LN999997 5,037,238 aac6-Iaa, strA, strB, sul2,

blaTEM-105, tet(B)
WW012 chromosome NZ CP022168 4,991,167 aac6-Iaa, strA, strB, sul2, tet(B)

plasmid NZ CP022169 151,609 aadA2, aadA1-pm, cmlA1,
dfrA12, mcr-1, sul3

VNB151 chromosome NZ LT795114 4,985,374 aac6-Iaa, tet(B)
plasmid NZ LT795115 246,444 aac3-Iva, aac6-Ib, aadA2, aadA1-

pm, aph3-Ia, aph4-Ia, arr3,
catB3, cmlA1, floR, blaOXA-1,
oqxA, oqxB, sul1, sul2, sul3

plasmid NZ LT795116 4,239 NA

Table s4: Number of queries unidentified in every assembly graph and contig file of E.
coli genomes. Each query is a random CDS extracted from a complete genome for the distance
measurement. Bandage runs the nucleotide BLAST to locate queries in each file so as to measure
the physical distances. For specificity of analysis, we accepted the hit that covered at least 95%
of a query path under a minimum nucleotide identity of 95% and a maximum e-value of 1×10−5.

Strain No. of queries Missing hits in contig file Missing hits in graph file
2011C-3493 5,150 229 43
NRG 857C 4,582 40 7
Ecol 517 4,932 103 37
Ecol 545 5,214 148 28
APEC O1 4,891 164 29
PCN033 5,076 74 20
ST540a 4,562 121 19
Santai 4,838 73 14
ECONIH1 5,322 143 18
EC958 5,100 113 25
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Table s5: Number of queries unidentified in every assembly graph and contig file of S.
Typhimurium genomes. Each query is a random CDS extracted from a complete genome for
the distance measurement. Bandage runs the nucleotide BLAST to locate queries in each file so
as to measure the physical distances. For specificity of analysis, we accepted the hit that covered
at least 95% of a query path under a minimal nucleotide identity of 95% and a maximum e-value
of 1×10−5.

Strain No. of queries Missing hits in contig file Missing hits in graph file
DT104 4,656 68 9
TW Stm6 5,062 110 13
ST33676 4,767 58 11
T000240 4,871 78 19
U288 4,798 58 19
ST81741 5,172 85 18
L3553 5,106 69 15
SO469809 4,950 105 11
WW012 5,009 68 12
VNB151 5,133 79 17

Table s6: Accuracy of prioritised SPDs measured between alleles of accessory AMR genes
in contigs and assembly graphs of E. coli genomes. Since there may be≥ 2 copies of an allele
at different loci in a genome, the reference distance to be compared to between two alleles was
defined as the shortest one amongst all distances. The actual absolute value of errors given ≤ 2
nodes did not exceed 19 bp. Ni (i = 1, ..,5): accuracy, number of accurate/all distances given
≤ i nodes.

Strain N1 N2 N3 N4 N5
2011C-3493 100% (5/5) 100% (5/5) 100% (5/5) 100% (5/5) 75.00% (6/8)
APEC O1 100% (6/6) 100% (6/6) 100% (6/6) 100% (6/6) 100% (6/6)
EC958 100% (9/9) 100% (9/9) 81.82% (9/11) 46.15% (12/26) 46.15% (12/26)
Ecol 517 100% (9/9) 100% (9/9) 39.29% (11/28) 39.29% (11/28) 36.11% (13/36)
Ecol 545 100% (3/3) 100% (4/4) 100% (4/4) 100% (5/5) 100% (5/5)
ECONIH1 100% (10/10) 93.33% (14/15) 90.00% (18/20) 90.00% (18/20) 83.33% (25/30)
NRG 857C 100% (16/16) 100% (16/16) 100% (22/22) 91.67% (22/24) 91.67% (22/24)
PCN033 100% (5/5) 100% (5/5) 33.33% (11/33) 33.33% (11/33) 27.50% (11/40)
Santai 100% (23/23) 100% (41/41) 86.54% (45/52) 86.54% (45/52) 60.49% (49/81)
ST540a 100% (3/3) 100% (3/3) 100% (3/3) 100% (3/3) 57.14% (4/7)
Margin 100% (89/89) 99.12% (112/113) 72.83% (134/184) 68.32% (138/202) 58.17% (153/263)
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Table s7: Accuracy of prioritised SPDs measured between alleles of accessory AMR genes
in contigs and assembly graphs of S. Typhimurium genomes. We filtered BLAST hits for
a nucleotide identity and query coverage of 95%. The distances were prioritised based on our
empirical discovery that the distance measurements were more accurate in contigs than were
in assembly graphs. Since there may be ≥ 2 copies of an allele in different genomic loci of
a genome, the reference distance to be compared with between two alleles was defined as the
shortest one among all distances for this table. Error tolerance: ±1 kb; Ni (i = 1, ..,5): accuracy,
number of accurate/all distances under a node number ≤ i.

Strain N1 N2 N3 N4 N5
DT104 100% (1/1) 66.67% (2/3) 71.43% (5/7) 77.78% (7/9) 80% (8/10)
L3553 100% (6/6) 100% (16/16) 92.00% (23/25) 80% (24/30) 72.73% (24/33)
SO469809 100% (3/3) 100% (3/3) 70.00% (7/10) 70% (7/10) 70% (7/10)
ST33676 100% (12/12) 100% (16/16) 59.26% (16/27) 47.06% (16/34) 38.10% (16/42)
ST81741 100% (3/3) 100% (5/5) 35.71% (10/28) 38.71% (12/31) 34.15% (14/41)
T000240 100% (10/10) 100% (14/14) 100% (16/16) 100% (16/16) 100% (16/16)
TW Stm6 81.82% (9/11) 77.78% (14/18) 70% (14/20) 57.14% (24/42) 48.28% (28/58)
U288 100% (16/16) 100% (16/16) 76.19% (16/21) 76.19% (16/21) 76.19% (16/21)
VNB151 100% (36/36) 100% (42/42) 62.50% (60/96) 56.14% (64/114) 48.48% (64/132)
WW012 88.89% (8/9) 88.89% (8/9) 56.25% (9/16) 63.16% (12/19) 60% (12/20)
Margin 97.20% (104/107) 95.77% (136/142) 66.17% (176/266) 60.74% (198/326) 53.52% (205/383)

Table s8: Accuracy of prioritised SPDs measured between alleles of accessory AMR genes
in contigs and assembly graphs of S. Typhimurium genomes. We filtered BLAST hits for
a nucleotide identity and query coverage of 99%. The distances were prioritised based on our
empirical discovery that the distance measurements were more accurate in contigs than were
in assembly graphs. Since there may be ≥ 2 copies of an allele in different genomic loci of
a genome, the reference distance to be compared with between two alleles was defined as the
shortest one among all distances for this table. Error tolerance: ±1 kb; Ni (i = 1, ..,5): accuracy,
number of accurate/all distances under a node number ≤ i.

Strain N1 N2 N3 N4 N5
DT104 100% (1/1) 66.67% (2/3) 71.43% (5/7) 77.78% (7/9) 80% (8/10)
L3553 100% (6/6) 100% (16/16) 92.00% (23/25) 80% (24/30) 72.73% (24/33)
SO469809 100% (3/3) 100% (3/3) 70.00% (7/10) 70% (7/10) 70% (7/10)
ST33676 100% (12/12) 100% (16/16) 59.26% (16/27) 47.06% (16/34) 38.10% (16/42)
ST81741 100% (3/3) 100% (5/5) 35.71% (10/28) 38.71% (12/31) 34.15% (14/41)
T000240 100% (10/10) 100% (14/14) 100% (16/16) 100% (16/16) 100% (16/16)
TW Stm6 100% (8/8) 100% (11/11) 84.62% (11/13) 60% (21/35) 58.14% (25/43)
U288 100% (16/16) 100% (16/16) 76.19% (16/21) 76.19% (16/21) 76.19% (16/21)
VNB151 100% (36/36) 100% (42/42) 62.50% (60/96) 56.14% (64/114) 48.48% (64/132)
WW012 100% (6/6) 100% (6/6) 53.85% (7/13) 60% (9/15) 60% (9/15)
Margin 100% (101/101) 99.24% (131/132) 66.80% (171/256) 60.95% (192/315) 54.82% (199/363)

Table s9: SPDs between five alleles of SGI1-borne AMR genes in Salmonella genomes
of our example data set. SPDs were measured in complete genomes, contigs, and assembly
graphs. Rows are sorted by column Nr in a descending order. Columns: LMM, whether an
LMM-based significant association is identified between two alleles ( , yes; , no); wd, weighted
distance score; N, number of all SPDs; SPD, range of all SPDs; Nnode, numbers of nodes across
which the SPDs were measured; Nr, number of reliable SPDs; SPDr, range of reliable SPDs.
For each pair of alleles, the percentage of reliable SPDs is calculated by formula Nr/N×100%.

Allele pair LMM wd N SPD (bp) Nnode Nr SPDr (bp)
aadA2, sul1 0 295 504–9,964 1–3 294 504–9,964
blaCARB-2, sul1 0.92 266 557–557 1–3 265 557–557
floR.12, tet(G) 0.99 202 937–937 1–1 202 937–937
blaCARB-2, tet(G) 0.04 258 3,521–4,673 1–7 13 3,521–3,896
aadA2, tet(G) 0.04 254 3,473–4,620 1–7 11 3,473–3,843
blaCARB-2, floR.12 0.04 186 1,745–5,634 1–3 10 1,745–5,634
sul1, tet(G) 0.03 250 3,185–710,475 1–44 8 4,757–4,945
floR.12, sul1 0.03 181 6,301–7,058 1–13 7 6,870–7,058
aadA2, floR.12 0.02 181 1,692–5,586 1–3 6 1,692–5,586
aadA2, blaCARB-2 0 249 5,221–704,968 1–57 1 8,540–8,540
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Table s10: Physical distances measured from 45 pairs of positively associated alleles in 169
E. coli genomes. A minimum of two reliable SPDs were obtained for each pair. Columns:
Co, co-occurrence count; M, measurability of all SPDs; Mr, measurability of reliable SPDs; Pr,
Mr/M×100% — percentage of reliable SPDs in all SPDs; Pnongraph, percentage of reliable SPDs
not measured in assembly graphs; C, consistency scores of SPDs.

Allele 1 Allele 2 Co M Mr Pr Pnongraph C
dfrA7 sul1 19 100.00% 100.00% 100.00% 100.00% 1
strA.173 sul2.168 18 100.00% 100.00% 100.00% 100.00% 1
strB sul2.168 18 100.00% 100.00% 100.00% 100.00% 1
catA1.215 blaOXA-1 11 100.00% 100.00% 100.00% 100.00% 1
dfrA1 sat-2A 10 100.00% 100.00% 100.00% 100.00% 1
dfrA7 sul1.203 7 100.00% 100.00% 100.00% 100.00% 1
aadA1-pm.182 catA1.215 7 100.00% 100.00% 100.00% 100.00% 1
aadA1-pm.182 blaOXA-1 7 100.00% 100.00% 100.00% 100.00% 1
mphA sul1 5 100.00% 100.00% 100.00% 100.00% 1
aadA2.195 sul1 3 100.00% 100.00% 100.00% 100.00% 1
aadA2.195 catA1.215 3 100.00% 100.00% 100.00% 100.00% 1
aadA2.195 mphA 3 100.00% 100.00% 100.00% 100.00% 1
dfrA12 sul1 3 100.00% 100.00% 100.00% 100.00% 1
catA1.215 dfrA12 3 100.00% 100.00% 100.00% 100.00% 1
dfrA12 mphA 3 100.00% 100.00% 100.00% 100.00% 1
qepA.31 sul1 3 100.00% 100.00% 100.00% 100.00% 1
catA1.215 qepA.31 3 100.00% 100.00% 100.00% 100.00% 1
mphA qepA.31 3 100.00% 100.00% 100.00% 100.00% 1
aadA5 sul1 3 100.00% 100.00% 100.00% 100.00% 1
dfrA17 sul1 3 100.00% 100.00% 100.00% 100.00% 1
aadA1-pm.181 dfrA1 2 100.00% 100.00% 100.00% 100.00% 1
aadA1-pm.181 sat-2A 2 100.00% 100.00% 100.00% 100.00% 1
aac(3)-IId.148 aadA2.195 2 100.00% 100.00% 100.00% 100.00% 0
aac(3)-IId.148 dfrA12 2 100.00% 100.00% 100.00% 100.00% 0
aac(3)-IId.148 qepA.31 2 100.00% 100.00% 100.00% 100.00% 0
aadA5 mphA 2 100.00% 100.00% 100.00% 100.00% 1
dfrA17 mphA 2 100.00% 100.00% 100.00% 100.00% 1
dfrA14.227 sul2 30 96.67% 96.67% 100.00% 82.76% 1
strB sul2 45 95.56% 95.56% 100.00% 81.40% 1
dfrA14.227 strB 27 92.59% 92.59% 100.00% 84.00% 1
catA1.215 mphA 4 75.00% 75.00% 100.00% 100.00% 1
strA.173 strB 66 68.18% 68.18% 100.00% 97.78% 1
strB.153 sul2 20 65.00% 65.00% 100.00% 92.31% 1
strA.173 sul2 68 64.71% 63.24% 97.73% 90.70% 1
catA1.215 sul1 8 100.00% 62.50% 62.50% 100.00% 0
strA.173 bla TEM-214.147 70 78.57% 37.14% 47.27% 100.00% 1
bla TEM-214.147 tet(A) 43 100.00% 34.88% 34.88% 93.33% 0
dfrA8 strB.153 18 61.11% 33.34% 54.55% 100.00% 1
dfrA8 sul2 22 100.00% 22.73% 22.73% 100.00% 1
strB tet(A) 32 87.50% 9.37% 10.71% 100.00% 0
strA.173 tet(A) 43 69.77% 9.30% 13.33% 100.00% 0
catA1.215 dfrA1 11 100.00% 9.09% 9.09% 100.00% 0
dfrA7 bla TEM-214.147 27 100.00% 7.41% 7.41% 100.00% 0
dfrA7 strA.173 27 100.00% 3.70% 3.70% 100.00% 0
dfrA7 strB 27 100.00% 3.70% 3.70% 100.00% 0
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Table s11: Physical distances measured from 15 pairs of positively associated alleles in 359
Salmonella genomes. A minimum of two reliable SPDs were obtained from each pair of alleles.
Columns: Co, co-occurrence count; M, measurability of all SPDs; Mr, measurability of reliable
SPDs in all SPDs; Pr, Mr/M× 100% — percentage of reliable SPDs in all SPDs; Pnongraph,
percentage of reliable SPDs not measured in assembly graphs; C, consistency score of SPDs.

Allele 1 Allele 2 Co M Mr Pr Pnongraph Sd
dfrA14.79 strB 21 100.00% 100.00% 100.00% 85.71% 1
floR.12 tet(G) 204 99.02% 99.02% 100.00% 100.00% 1
strB sul2 20 95.00% 95.00% 100.00% 73.68% 1
dfrA14.79 sul2 19 94.74% 94.74% 100.00% 72.22% 1
aadA2 sul1 318 92.77% 92.45% 99.66% 14.63% 0
blaCARB-2 sul1 288 92.36% 92.01% 99.62% 4.53% 1
aac(3)-Iva.65 strB 5 80.00% 60.00% 75.00% 66.67% 1
aph(4)-Ia strB 5 80.00% 60.00% 75.00% 66.67% 1
strA.55 strB 16 25.00% 25.00% 100.00% 75.00% 1
strA.55 sul2 14 14.29% 14.29% 100.00% 50.00% 1
blaCARB-2 floR.12 202 92.08% 4.95% 5.38% 30.00% 1
blaCARB-2 tet(G) 279 92.47% 4.66% 5.04% 23.08% 1
aadA2 tet(G) 282 90.07% 3.90% 4.33% 27.27% 1
aadA2 floR.12 204 88.73% 2.94% 3.31% 33.33% 1
sul1 tet(G) 282 88.65% 2.84% 3.20% 50.00% 1

Table s12: SPDs measured in E. coli genomes between three alleles of the clique shown in
Figure s18. All SPDs were obtained from single nodes in assembly graphs.

Allele1 Allele2 Distance (bp) No. of distances
aadA1-pm.181 sat-2A 46 2
sat-2A dfrA1 94 10
aadA1-pm.181 dfrA1 665 2

Table s13: Exact matches of the 3,084 bp MDR region in the genome assembly of
Salmonella genome ERR026101 to the NCBI nucleotide database. All these hits showed
the same bit score. The database was accessed in April, 2018.

Species Strain Plasmid Size (bp) Accession Coordinates
Escherichia coli MS7163 pMS7163B 84,078 CP026855 61,778–64,861
Escherichia coli 1283 p7 6,800 CP023375 2,487–5,570
Escherichia coli S1.2.T2R pCERC1 6,790 JN012467 97–3,180
Salmonella enterica SA20084699 unnamed2 38,945 CP022499 6,380–9,463
Shigella sonnei c8225 pABC-3 6,779 KT988306 97–3,180
Yersinia ruckeri 1521 pYR1521 5,021 HG423538 924–4,007
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3 Supplementary details of implementation

Section Implementation of the main article outlines our network approach that identifies

horizontally co-transferred alleles of acquired genes in bacteria. Herein we show a full

mathematical justification of this approach. Specifically, we describe association anal-

ysis and distance assessment for network construction, and demonstrate statistical tests

for structural random effects that contribute to allelic presence-absence status across

bacterial genomes. By convention, we use boldface upper-case letters to represent ma-

trices, boldface lower-case letters for vectors, and a regular typeface for scalars. All

mathematical expressions are italicised.

3.1 Association analysis controlling for population structure

In order to determine edges in a linkage network, we test for fixed effect of an explana-

tory allele on presence-absence of a response allele for each linear mixed model (LMM)

that takes bacterial population structure and environmental randomness into account.

Herein we derive a stringent procedure from existing methods for network construction.

3.1.1 Representing allelic presence-absence status

The first step in our association analysis is to represent the presence-absence of alleles

in all bacterial genomes using a matrix. Assuming that m alleles of M genes (m > M)

are identified in n genomes, let an n×m binary matrix AAA = (ai j) represent the presence-

absence of every allele across genomes, where the (i, j)-th element ai j of AAA equals one if

the j-th allele is present in the i-th genome and otherwise equals zero (cf., the manual of

GEMMA [4]). This designation of one and zero to presence-absence status makes the

explanation of results straightforward, although it is merely arbitrary and has no impact

on conclusions. Following this designation, matrix AAA is essentially an allelic presence-

absence matrix (PAM), where rows represent genomes and columns represent alleles. In

particular, we do not include any allele that does not show variation in its distribution,

namely, any allele showing a frequency of zero or one is excluded from our analysis

in order to observe a fundamental assumption for linear models — variables must be

random. Problems arise when this assumption is violated. For example, a perfect fit

of an explanatory variable to a constant response is seen in a linear model, where the

coefficient of the explanatory variable equals zero as we can expect.

3.1.2 Identifying presence-absence patterns

In practice, it is not unusual to see several alleles sharing the same distribution in sam-

ples. For instance, the allelic co-transfer of tetracycline resistance gene tet(G) and its
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regulatory gene tetR(G) between S. Typhimurium has been reported [5]. Mathemati-

cally, identically distributed alleles are interchangeable in association tests and produce

the same result. As a result, these duplicated tests lead to an excessively rigorous ad-

justment of p-values for controlling false positives as they enlarge the number of tests.

Consequently, the power of tests is compromised. To retain statistical power, we learn

from R package BugWAS [6] and take a single allele from each group of identically

distributed alleles as a representative for all relevant association tests. Particularly, we

call this representative a presence-absence pattern.

Assuming there are p patterns representing m alleles, where p6m, we can compress

the n×m allelic PAM AAA into an n× p binary matrix BBB = (bi j), whose rows denote

genomes and columns denote patterns. We call BBB a pattern matrix. In the example below,

we merge the first and fourth columns, the third and fifth columns of AAA, respectively,

into two columns to make a pattern matrix BBB. Note that neither rows nor columns of AAA

and BBB have to be sorted.

AAA =

1 1 1 1 1

0 1 1 0 1

0 0 1 0 1

⇒ BBB =

1 1 1

0 1 1

0 0 1

 (1)

3.1.3 Column-wise zero-centring of the pattern matrix

Zero-centring random variables of the same population by their arithmetic means is a

common technique for simplifying algebra without changing the distribution of data

points or affecting results. Herein, we treat each pattern as a column vector of n di-

chotomous variables representing presence-absence of the same allele in n genomes.

Accordingly, we define an n× p column-wisely zero-centred pattern matrix XXX = (xi j)

as follows:

xi j = bi j−
1
n

n

∑
k=1

bk j = bi j− b̄. j, where 1 6 i 6 n and 1 6 j 6 p (2)

Accordingly, the presence-absence status of an allele belonging to the j-th pattern in

the i-th genome appears as follows in the centred pattern matrix XXX :

xi j =

{
1− b̄. j > 0, presence

−b̄. j < 0, absence
(3)

Note that the column mean b̄. j equals the frequency of each allele represented by the

j-th pattern in n genomes. It is known that every column of XXX sums to zero:

n

∑
k=1

xk j = (1− b̄. j)(b̄. jn)+(−b̄. j)(n− b̄. jn) = 0 (4)
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This property applies to other zero-centred binary matrices as well.

3.1.4 Genotype matrix of biallelic core-genome SNPs

The construction of a genotype matrix from biallelic core-genome single-nucleotide

polymorphisms (cgSNPs) imports genetic variation for estimating population structure

of sampled bacterial genomes. In our approach, a cgSNP site is strictly defined as a

single-nucleotide polymorphic site that is present in all genomes. This constraint is a

known limitation of current methods that incorporate population structure into linear

models using principal components (PCs) [4, 7].

Assuming there are L biallelic cgSNP sites identified in n genomes and n < L, we

define an n×L binary genotype matrix GGG = (gi j), where 1 6 i 6 n, 1 6 j 6 L, and

gi j =

0, major allele

1, minor allele
(5)

We treat each single-nucleotide polymorphism (SNP) site as a dichotomous random

variable observed in n genomes. Accordingly, we can also zero-centre columns of GGG by

column means to simplify algebra, creating an n×L column-wise zero-centred genotype

matrix SSS = (si j):

si j = gi j−
1
n

n

∑
k=1

gk j = gi j− ḡ. j =

−ḡ. j < 0, major allele

1− ḡ. j > 0, minor allele
(6)

Note that column mean ḡ. j equals the minor allele frequency (MAF) of the j-th

cgSNP site in n genomes. According to Equation 4, we know that every column of SSS

sums up to zero as well. Furthermore, the maximum rank of SSS reduces by 1 from n as

its columns have been zero-centred [8]. Hence we have:

rank(SSS)6 n−1 (7)

More generally, we have rank(SSS) 6 min{n− 1,L} when removing the assumption

that n < L for the SNP matrix.

3.1.5 Calculation of a relatedness matrix

A relatedness matrix captures population structure and plays a pivotal role in introduc-

ing the population structure into linear models. In our implementation of GeneMates,

function findPhysLink calls GEMMA to calculate this relatedness matrix [4]. Follow-

ing the manual of GEMMA (github.com/genetics-statistics/GEMMA), we calculate an

n×n relatedness matrix KKK = (ki j) from the centred SNP matrix SSS (Note that GEMMA

performs column-wise zero-centring on GGG before calculating KKK) with formula
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KKK =
SSSSSST

L
(8)

where the superscript T denotes a matrix transpose and this notation will be used through-

out this document. The relatedness matrix KKK reveals all-to-all relationships between the

n genomes. It is a symmetric matrix because

ki j =
1
L

L

∑
r=1

sirs jr =
1
L

L

∑
r=1

s jrsir = k ji (9)

where 1 6 i, j 6 n. As such, both rows and columns of KKK denote genomes. Moreover,

given the inequality (Formula 7), the relatedness matrix KKK is positive semidefinite and

rank(KKK) = rank(SSS) (Theorems 2.6D and 2.4A in a book by Rencher [9]).

3.1.6 Singular-value decomposition of the SNP matrix

This is a critical step for converting the population structure into an orthogonal form,

which can be incorporated into an LMM afterwards for term of structural random ef-

fects. Let r = rank(KKK). Since KKK is a symmetric matrix of order n, we can perform eigen-

decomposition on it, which returns n real eigenvalues (cf. Theorem 2.12C in the book

by Rencher [9]) and n accompanying linearly independent column vectors, even though

some eigenvalues may be the same. Moreover, the eigenvalues must not be negative but

may equal zero, because KKK is a positive semidefinite matrix. Let λ1 > λ2 > · · ·> λn > 0

represent these eigenvalues sorted in a descending order. Note that there must be posi-

tive eigenvalues because square matrix KKK is positive semidefinite (To put it simple, there

must be positive eigenvalues of KKK, because the sum of its eigenvalues equals its trace

and the trace must be positive as entries on the main diagonal of the relatedness matrix,

i.e., entries representing self-relatedness, must be positive). To avoid confusions, we re-

fer an eigenvector (in a narrow sense) of KKK to an orthonormal vector obtained from the

linearly independent vectors aforementioned through the Gram–Schmidt process and

subsequent normalisation, although in a broad sense, all of these untransformed vectors

are also eigenvectors of KKK (linearly independent, but are not necessarily orthogonal). Of

note, the Gram–Schmidt process itself shows that it retains the link between eigenvalues

and broad-sense eigenvectors when it is applied.

Therefore, we obtain and can only obtain n eigenvectors eee1, · · · ,eeen corresponding

to the non-negative eigenvalues λ1, · · · ,λn of KKK. By definition, these eigenvectors are

orthonormal bases of an n dimensional real Euclidean space V n ⊂ Rn, in which each

genome is a data point pinned down by n coordinates. Note that the orientation of

each base (hence that of the axis) is merely arbitrary and relies on the corresponding

eigenvalue. As a result, reversing one eigenvector has no impact on the orthonormality

of bases. Using the n eigenvectors, we can construct an n×n matrix EEE = [eee1 · · ·eeen]. This
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is an orthonormal matrix as EEET EEE = EEEEEET = IIIn (an identity matrix of order n) and we can

immediately know that EEE−1 =EEET . Since KKK is a symmetric matrix of real numbers and EEE

is invertible, we have EEE−1KKKEEE = diag(λ1,λ2, · · · ,λn) and r = rank(KKK) = rank(EEE−1KKKEEE).

Therefore, r is the number of non-zero (hence positive) eigenvalues of KKK, and n− r

equals the number of its zero eigenvalues (cf. Chapter 2.12.5 in Rencher’s book [9]).

As we will be demonstrating in following algebra, this is an important property for

obtaining correct transformation of population structure, however, it has not been taken

into account in literature so far to our knowledge.

Further, since a singular value of KKK is defined as the non-negative square root of one

of its eigenvalues, there is always an equal number of singular values and eigenvalues

of the same relatedness matrix, regardless whether there are duplicated values or not.

Using singular-value decomposition (SVD) on real matrices, we can decompose the

biallelic cgSNP matrix SSS into a product of matrices:

SSSn×L = PPPn×nΣΣΣn×LQQQT
L×L (10)

where the matrices

PPP =
[
UUUn×r NNNn×(n−r)

]
(11)

ΣΣΣ =

[
DDDr×r OOOr×(L−r)

OOO(n−r)×r OOO(n−r)×(L−r)

]
(12)

QQQT =
[
VVV L×r WWW L×(L−r)

]T
(13)

To be more specific, columns of PPP are eigenvectors (also known as left singular vectors)

of SSSSSST = LKKK, which correspond to the r positive eigenvalues and n− r zero eigenvalues

(notice eigenvectors of LKKK are the same as KKK but eigenvalues are L times those of KKK);

columns of QQQ are eigenvectors (right singular vectors) of MMM = (mi j) = SSST SSS (scatter

matrix), which correspond to the same r positive eigenvalues and L−r zero eigenvalues

of LKKK; DDD is a diagonal square matrix of r positive singular values of both SSSSSST and SSST SSS;

and OOO denotes a zero matrix of a given size. Both matrices PPP and QQQ are orthonormal.

In addition, the scatter matrix MMM equals n− 1 times the genome variance-covariance

matrix of un-centred cgSNP genotypes because

mi j =
n

∑
k=1

skisk j = (n−1)
n

∑
k=1

skisk j

n−1
= (n−1)

n

∑
k=1

(gki− ḡ.i)(gk j− ḡ. j)
n−1

= (n−1)Cov(gggi,ggg j)

(14)
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where vectors gggi and ggg j denote the i-th and j-th columns of the un-centred cgSNP matrix

GGG, respectively.

For conciseness, singular values are arranged in a descending order. Therefore, each

of the matrices UUU and VVV is comprised of r eigenvectors corresponding to the r positive

eigenvalues, and the matrices NNN and WWW are comprised of n− r and L− r eigenvectors

corresponding to zero eigenvalues, respectively. Now we show that

SSSn×L =
[
UUUn×r NNNn×(n−r)

][ DDDr×r OOOr×(L−r)

OOO(n−r)×r OOO(n−r)×(L−r)

][
VVV T

L×r

WWW T
L×(L−r)

]

=
[
UUUDDD OOOn×(L−r)

][ VVV T
L×r

WWW T
L×(L−r)

]
=UUUDDDVVV T

(15)

Accordingly, we can deduce that rank(SSS)= rank(PPPΣΣΣQQQT )= rank(ΣΣΣ) because rank(ΣΣΣ)=

rank(DDD) = r and columns of PPP and QQQ are orthonormal (hence both matrices are non-

singular and invertible). Notice neither UUU nor VVV is invertible when r < n because they are

not square matrices under this condition, and then we can only have UUUTUUU =VVV TVVV = IIIr.

Since matrices NNN and WWW always get cancelled out in Equation 15, we call Equation

SSS =UUUDDDVVV T the reduced form of SVD, which is equivalent to the full form, SSS = PPPΣΣΣQQQT .

Consequently, we can completely recover SSS only with r eigenvectors in UUU and VVV cor-

responding to the r positive singular values in DDD instead of using all eigenvectors in PPP

and QQQ. Therefore, this substitution simplifies our computation. Nonetheless, as we will

demonstrate later, we can benefit from orthonormal matrices in the full form of SVD in

simplification of some equations.

3.1.7 Projecting data points on axes defined by eigenvectors

Projections can be acquired through both the full and reduced forms of SVD We

consider every bacterial genome as a data point in an L dimensional real Euclidean space

VVV L ⊂ RL using genotypes of L biallelic cgSNPs as coordinates. These coordinates may

not be linearly independent because of homoplasy, parallel evolution, linkage disequi-

librium, SNP-call errors, and so forth. Noticing QQQT QQQ = IIIL, we obtain an orthogonal

transformation of rows (that is, coordinate vectors of genomes) in SSS through multiply-

ing the orthonormal matrix QQQ with equation

SSS = PPPΣΣΣQQQT ⇔ SSSQQQ = PPPΣΣΣ (16)

Let an n×L matrix CCCL = SSSQQQ = PPPΣΣΣ, where CCCL = [ccc1 · · ·cccL] and the length-n column

vector ccci (1 6 i 6 L) is the i-th column of CCCL. Similarly, we define the j-th (1 6 j 6 n)

column of PPP and the j-th singular value in ΣΣΣ as ppp j and σ j, respectively. Then we have
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CCCL = PPPΣΣΣ =
[

ppp1 · · · pppr pppr+1 · · · pppn

][
diag(σ1, · · · ,σr,0, · · · ,0) OOOn×(L−n)

]
=
[
σ1 ppp1 · · · σr pppr 0pppr+1 · · ·0pppn 000 · · · 000

]
=
[
σ1 ppp1 · · · σr pppr 000 · · · 000

]
n×L

(17)

Hence CCCL = [σ1 ppp1 · · · σr pppr 000 · · · 000], which consists of L−r zero column vec-

tors. Since ccci = σi pppi, 1 6 i 6 n, we know that ccci equals the i-th eigenvector of the scatter

matrix SSST SSS (positive semidefinite and of the same rank as SSS) scaled by its i-th singular

value σi. We notice the non-zero partition of CCCL in Equation 17 can be acquired via the

reduced form of SVD:

SSS =UUUDDDVVV T ⇔ SSSVVV =UUUDDD =
[

ppp1 · · · pppr

]
σ1 · · · 0
... . . . ...

0 · · · σr

=
[
σ1 ppp1 · · · σr pppr

]
(18)

which gives CCCr = [ccc1 · · · cccr] = [σ1 ppp1 · · · σr pppr], where notation CCCr represents a

sub-matrix comprised of the first r columns of CCCL. As elucidated in following para-

graphs, vectors ccc1, · · · ,cccn are projections of genomes onto axes defined by eigenvectors

ppp1, · · · , pppn.

The projections remain in the same Euclidean space Since the inner product cccT
i ccc j =

σi pppT
i σ j ppp j = 0, Equation 17 also shows that vectors ccc1, ..., cccn are orthogonal and in

parallel with orthonormal bases ppp1, . . . , pppn of the n dimensional Euclidean space VVV n

described previously.

Similarly, we expand the n× L matrix product SSSQQQ in Equation 16 into a matrix

comprised of inner products of vectors:

SSSQQQ =


sss1
...

sssn

[qqq1 · · · qqqL

]
=


sss1qqq1 · · · sss1qqqL

... . . . ...

sssnqqq1 · · · sssnqqqL

=
[
ccc1 · · · cccL

]
(19)

where sssi (i = 1, · · · ,n) is the i-th row vector [si1, . . . ,siL] of SSS and ccc j ( j = 1, · · · ,L) is a

column vector of length n. Vector ccc j shows “coordinates” (strictly specaking, scaling

coefficients of bases that define axes) on L “axes” (namely, binary SNP codes, which are

often mutually correlated between genomes and hence are not genuine bases of a linear

space) that locate the i-th genome in space VVV L. Therefore, ccc j = [sss1qqq j · · · sssnqqq j]
T ,
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where j = 1, · · · ,L. Note that every one of cccr+1, · · · ,cccL equals 000 following Equation 17.

Furthermore, we can write the i-th row of CCCL in an alternative form:

[
ci1 · · · ciL

]
=
[
sssiqqq1 · · · sssiqqqL

]
= sssiQQQ (20)

which represents an orthonormal transformation of VVV L itself (denoted by VVV L → VVV L)

and shows that ci1, · · · ,ciL are projections of coordinates si1, · · · ,siL via the orthonor-

mal matrix QQQ. Since ccci is orthogonal to ccc j when i 6= j, we transform correlated vectors

[s1i, . . . ,sni]
T and [s1 j, . . . ,sn j]

T (“coordinates” of the n genomes on the i-th and j-th

axes of SNPs) into orthogonal coordinates ccci and ccc j with Equation 20 as a benefit of

SVD. This equation is known as a rotation transformation, which preserves the distri-

bution of data points but establishes a set of orthogonal axes going through the same

origin (i.e., builds another coordinate system). Therefore, projections on every new

axis, namely, elements in vector ccci, are also zero-centred. In addition, matrix QQQ is also

known as a rotation matrix.

The projections and matrices show profound interconnections As for the i-th ele-

ment in ccc j, it follows

ci j = sssiqqq j =
L

∑
k=1

qk jsik (21)

which means the coordinate of the i-th genome on the j-th projection axis (either defined

by ppp j when j 6 n or being 000 with any directions when n< j 6 L) is a linear combination

of all its SNP “coordinates” using elements in qqq j as weights. This equation reveals

profound connections between the SNP matrix SSS, the relatedness matrix KKK of genomes,

the variance-covariance matrix MMM of biallelic cgSNPs, and the projections of genomes

on a group of orthogonal axes through SVD.

Principal components are bases establishing r orthogonal axes where data points
are projected onto According to the reduced form of SVD (Equation 18) and Equa-

tion 20, the r eigenvectors ppp1, · · · , pppr, which are columns of UUU and bases of an r di-

mensional Euclidean space VVV r, are called PCs of SSS [7, 8]. As shown in Equations 18

and 19, projection ccci (i = 1, · · · ,r) of n data points on the i-th axis is comprised of

transformed coordinates and hence reflects the length of the scaled i-th PC, which are

therefore referred to as scores in literature. Since PCs are ranked by their accompanying

eigenvalues in a descending order, people often use the first a few PCs to capture the

majority of variation in data for an approximation in their analysis (for example, in prin-

cipal component regression [10]), which is usually more computationally efficient than

using all PCs. For GeneMates, however, we use all PCs in order to capture all variation
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in SNP data (Figure s9).

Each eigenvalue measures the percentage of genetic variation captured by the cor-
responding principal component Considering the variance of data projections on

the j-th ( j 6 n) axis, namely, the variance in the length of the j-th PC, since projec-

tions remain zero-centred, all their arithmetic means equal zero. Accordingly, we can

determine the sample variance of c1 j, · · · ,cn j through equation

Var(ccc j) = Var(c1 j, · · · ,cn j) =
1

n−1

n

∑
i=1

(
ci j− c̄. j

)2
=

1
n−1

n

∑
i=1

c2
i j =

cccT
j ccc j

n−1
(22)

According to Equation 17, since cccT
j ccc j = (σ j ppp j)

T (σ j ppp j) = σ2
j pppT

j ppp j = λ j ·1, we have

Var(ccc j) =
λ j

n−1
∝ λ j,( j 6 n) (23)

which shows that projections of data points 1, · · · ,n on the j-th axis have a variance

proportional to the j-th eigenvalue. This equation also shows that singular value σ j can

be obtained from σ(ccc j), the standard deviation of observed lengths of the j-th PC:

σ j =
√

λ j =
√

n−1σ(ccc j) (24)

The rank of relatedness matrix KKK determines the minimum number of principal
components required for capturing all genetic variation in sample genomes Equa-

tion 23 shows that projections on the first r axes (in parallel with orthonormal bases

ppp1, · · · , pppr) always have variances greater than zero (hence are informative), while pro-

jections on the other n− r axes (in parallel with orthonormal bases pppr+1, · · · , pppn) all fall

into the origin and hence do not show any variance (uninformative). Moreover, we do

not consider projections on the rest of L− n axes because these axes are always 000 of

any directions and all of these projections do not diverge from the origin either. Conse-

quently, all variances in the distribution of data points are captured by the first r axes,

and the proportion of total variance captured by the i-th (i 6 r) axis equals λi divided by

the sum of all r positive eigenvalues.

3.1.8 Univariate linear mixed models and parameter estimation

For genes of interest, we use LMMs to explain the presence-absence of a response allele

with a fixed effect of the presence-absence of an explanatory allele, additive random ef-

fects of population structure, and environmental random effects. Specifically, alleles are

represented with patterns as described in Section 3.1.2. For any two out of p columns

(denoted by xxx and yyy, where xxx 6= yyy) in the zero-centred pattern matrix XXX , we consider yyy
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as the sum of a fixed effect of xxx, additive random effects of population structure (par-

ticularly, we call them structural random effects), and environmental random effects. In

literature, structural random effects are also known as lineage effects or background ef-

fects [6]. Following our notations, we construct a univariate LMM with four parameters

to explain observations in vector yyy:

yyy = 111α + xxxβ +CCCLγγγ + εεε (25)

γγγ ∼MV NL
(
000,λτ

−1L−1IIIL
)

(26)

εεε ∼MV Nn
(
000,τ−1IIIn

)
(27)

where α is the coefficient for the intercept term; β is the fixed effect size of the explana-

tory pattern xxx; γγγ is a column vector of length L, which represents sizes of structural

random effects of ccc1, · · · ,cccL on the response vector yyy; and the error term εεε of length

n represents residuals between data points and the mean of yyy under the model. Four

parameters α , β , λ , and τ of this model will be estimated based on observations. Note

that there is only a constant term 111α in the model for covariates as we do not take other

variables into account at present.

Particularly, authors of GEMMA defined two components that constitute the total

variance in random effects in an LMM. Specifically, σ2
e = τ−1 is the environmental

variance component and σ2
g = λσ2

e = λτ−1 is the structural variance component (In the

article about GEMMA, these components are called environmental effect and genetic ef-

fect, respectively [4]). Therefore, λ = σ2
g/σ2

e , which measures the relative contribution

of population structure over environmental randomness to random effects. Accordingly,

we can rewrite the assumed distributions of random effects in the LMM (Equation 25)

using their equivalent forms:

γγγ ∼MV NL
(
000,L−1

σ
2
g IIIL
)

(28)

εεε ∼MV Nn
(
000,σ2

e IIIn
)

(29)

As already shown in Equation 17, there are only r 6 n− 1 orthogonal axes hav-

ing projections diverging from the origin. Accordingly, the total effect of population

structure reduces to the form

CCCLγγγ =
r

∑
j=1

γ jccc j +
L

∑
j=L−r

γ j000 =CCCrγγγr (30)
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where the column vector γγγr is comprised of the leading r elements of γγγ without chang-

ing their order. Therefore, we can simplify the model defined in Equation 25 into an

equivalent form:

yyy = 111α + xxxβ +CCCrγγγr + εεε (31)

γγγr ∼MV Nr
(
000,λτ

−1L−1IIIr
)

(32)

and the error term εεε follows the same distribution as that in Equation 27.

3.1.9 Parameter estimation

We use GEMMA to estimate the four parameters in our LMM (Equation 25). In this

section, we only outline key algebra for the estimates to demonstrate their forms specif-

ically in our model. Readers may read the original article about GEMMA [4] and the

software manual for more details. Herein, for allelic presence-absence status across n

genomes, we use the notation xxx to denote a column vector for an explanatory pattern and

use yyy to denote the other column vector for a response pattern. Both vectors have already

been zero-centred by their arithmetic means. Notably, the designation of response and

explanatory vectors is arbitrary, and in practice, patterns are iterated for both roles in

the LMM to make all-to-all contrasts. Assuming xxx 6= yyy and n� 2, we specify GEMMA

to estimate the parameters using a residual maximum-likelihood (REML) approach and

obtain unbiased parameter estimates of random effects. The target function for our

model to optimise is

lr1(λ ,τ;yyy,xxx,KKK) =
n−2

2
logτ− n−2

2
log(2π)+

1
2

logdet
([

111 xxx
]T [

111 xxx
])

−1
2

logdetHHH− 1
2

logdet
([

111 xxx
]T

HHH−1
[
111 xxx

])
− 1

2
τyyyTWWW xyyy

(33)

where

HHH = λKKK + IIIn (34)

WWW x = HHH−1−HHH−1
[
111 xxx

]([
111 xxx

]T
HHH−1

[
111 xxx

])−1 [
111 xxx

]T
HHH−1 (35)

The term WWW x is an n×n matrix. Noticing xxx is a zero-centred vector, we deduced that

the following term in Equation 33 involves the genetic variance of xxx:
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det
([

111 xxx
]T [

111 xxx
])

=

∣∣∣∣∣ n ∑
n
i=1 xi

∑
n
i=1 xi ∑

n
i=1 x2

i

∣∣∣∣∣=
∣∣∣∣∣n 0

0 ∑
n
i=1 x2

i

∣∣∣∣∣
= n(n−1)

n

∑
i=1

x2
i

n−1
= n(n−1)Var(xxx)

(36)

Therefore, the target function (Equation 33) does not exist when xxx is a constant vec-

tor (namely, Var(xxx) = 0 when the explanatory allele is uniformly present or absent in all

sampled genomes) because the function takes a logarithm of the determinant (Equation

36). This is a limitation of our LMMs: REML parameter estimates only exist when the

explanatory allele has a frequency of neither zero nor one.

Provided existence of the target function, Zhou and Stephens point out that this

function is maximised at the scalar [4]

τ̂ =
n−2

yyyTWWW xyyy
(37)

assuming the parameter λ is known. This equation immediately indicates another lim-

itation of our method: τ̂ does not exist when the response allele is absent across all

genomes (that is, yyy = 000).

Putting Equations 37 and 36 back into Equation 33, we show the residual target

function for REML estimates:

lr1(λ ;yyy,xxx,KKK) =
1
2

[
(n−2) log

n−2
2π

+ log
n(n−1)

detHHH
− (n−2)

]

+
1
2

log
Var(xxx)

det
([

111 xxx
]T

HHH−1
[
111 xxx

]) − (n−2) log
(
yyyTWWW xyyy

) (38)

which consists of a constant term (between the first pair of square brackets) and a variant

term (between the second pair of square brackets). Then we can determine the REML

estimate of λ for the LMM (Equation 25) through

λ̂r1 = argmax lr1(λ ;yyy,xxx,KKK) (39)

Next, GEMMA uses a generalised least-square (GLS) approach to estimate param-

eters of fixed effects in the LMM [11]. Following the algebra by authors of GEMMA,

we have derived the following GLS estimator and variance of β given REML estimates

of the two variance components (i.e., structural and environmental effects) explaining

the response pattern yyy [4].
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β̂ =
(
xxxTWWW 1xxx

)−1
xxxTWWW 1yyy (40)

Var(β̂ ) =
1

n−2
· y

yyTWWW xyyy
xxxTWWW 1xxx

(41)

where WWW 1 = HHH−1−HHH−1111
(
111T HHH−1111

)−1
111T HHH−1 and it is an n×n matrix.

3.1.10 Hypothesis tests for the fixed effect

The null hypothesis for our LMMs to be tested for is β = 0 and the alternative hypothesis

is β 6= 0. Accordingly, the LMM defined by Equation 25 becomes yyy = 111α +CCCLγγγ + εεε

under the null hypothesis.

Likelihood-ratio tests are invalid in our approach for comparing LMMs under the

null and alternative hypotheses using logarithms of residual likelihood functions be-

cause these LMMs differ in fixed effects, that is, with or without the term xxxβ besides

the constant fixed effect 111α . Instead, a Wald test is implemented in GEMMA to test for

the null hypothesis. Specifically, the test statistic follows an F distribution when the null

hypothesis is true and thereby a p-value is calculated [4]:

F =
β̂ 2

Var(β̂ )
∼ F(1,n−2) (42)

3.2 Assessment of structural random effects

This step determines whether sample projections on an axis can explain the presence-

absence of an allele as a structural random effect under a given significance level (namely,

a maximum type-1 error rate or false-positive rate). Based on the assumption about

structural random effects for the LMM defined by Equation 25, the effects follow a

multivariate normal distribution (Equation 26). However, being different to the fixed

effects 111α +xxxβ , explicit element values in the vector γγγ = [γ1, · · · ,γn, · · · ,γL]
T are unob-

servable in an LMM, although we can estimate their related parameters λ and τ . Earle,

Wu, et al. show that we can use the posterior distribution of γγγ under the null LMM to

test for the hypothesis that γi (1 6 i 6 L) equals zero [6]. In this section, we revise their

algebra for higher stringency and accuracy.

3.2.1 Posterior distribution of structural random effects

From the null LMM,

yyy = 111α +CCCLγγγ + εεε (43)
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we can derive an equivalent form

yyy−111α =CCCLγγγ + εεε (44)

where γγγ ∼MV NL
(
000,λτ−1L−1IIIL

)
and εεε ∼MV Nn

(
000,τ−1IIIn

)
. Let zzz = yyy−111α , we have

an ordinary model of multiple regression:

zzz =CCCLγγγ + εεε (45)

Given REML estimates of λ and τ under the null model (Equation 43), prior distri-

butions of γγγ and εεε are determined:

γγγ ∼MV NL

(
000, λ̂ τ̂

−1L−1IIIL

)
(46)

εεε ∼MV Nn
(
000, τ̂−1IIIn

)
(47)

Supposing that the true variance-covariance matrix of the residual error εεε is known

and it equals τ̂−1IIIn, we can deduce that the posterior distribution of γγγ is a multivariate

normal distribution with a mean vector µµµ and a covariance matrix ΣΣΣ determined by the

following procedure (cf. Theorem 11.45, Equations 11.60 and 11.61 on page 327 of

Kendall’s book [12], when σ2 = τ−1 for both equations).

Let www = λ̂ τ̂−1L−1IIIL. Note that III−1
L = IIIL, then www−1 = λ̂−1τ̂LIIIL. According to

Kendall’s Equation 11.60 [12], we derived that

µµµ = E(γγγ|zzz) =
(
www−1 + τ̂CCCT

LCCCL
)−1 (

www−1 ·000+ τ̂CCCT
L zzz
)
= τ̂

(
www−1 + τ̂CCCT

LCCCL
)−1

CCCT
L zzz

=
(

Lλ̂
−1IIIL +CCCT

LCCCL

)−1
CCCT

L (yyy−111α)

=
(

Lλ̂
−1IIIL +CCCT

LCCCL

)−1
CCCT

L yyy−α

(
Lλ̂
−1IIIL +CCCT

LCCCL

)−1
CCCT

L 111

(48)

On one hand, using rotation transformation CCCL = SSSQQQ in Section 3.1.7, we have

CCCT
L 111 = (((SSSQQQ)))T 111 = QQQT SSST 111 (49)

Because column sums of the n×L centred genotype matrix SSS are zeros, we have

SSST 111 =


s.1
...

s.L

= 000L×1 (50)

where s. j = ∑
n
i=1 si j,1 6 j 6 L, the sum of elements in the j-th column of SSS. Therefore,

the second term of Equation 48 is cancelled and we have the posterior mean
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µµµ =
(

CCCT
LCCCL +Lλ̂

−1IIIL

)−1
CCCT

L yyy (51)

which equals the ridge estimator of the coefficient vector ηηη in linear model

yyy =CCCLηηη + eee where eee∼MV Nn
(
000,σ2IIIn

)
(52)

given the ridge parameter k = L/λ̂ . Consequently, the intercept term 111α in our LMM

does not affect the posterior mean µµµ = E(γγγ|zzz) at all, which is reasonable as it only

reveals the relative scale of observations.

On the other hand, knowing CCCL = PPPΣΣΣ, PPPT PPP = IIIn, and the diagonal matrix ΣΣΣ
T = ΣΣΣ,

we show

CCCT
LCCCL = (PPPΣΣΣ)T PPPΣΣΣ = ΣΣΣ

T PPPT PPPΣΣΣ = ΣΣΣ
T

ΣΣΣ

=

[
DDDr×r OOOr×(n−r)

OOO(L−r)×r OOO(L−r)×(n−r)

][
DDDr×r OOOr×(L−r)

OOO(n−r)×r OOO(n−r)×(L−r)

]

=

[
DDD2

r×r OOOr×(L−r)

OOO(L−r)×r OOO(L−r)×(L−r)

]
L×L

= diag(λ1, · · · ,λr,0, · · · ,0)

(53)

Let ΛΛΛL×L be the diagonal matrix diag(λ1, · · · ,λr,0, · · · ,0) of eigenvalues, we can

simplify Formula 51 as follows:

µµµ =
(

Lλ̂
−1IIIL +CCCT

LCCCL

)−1
CCCT

L yyy

=
(

Lλ̂
−1IIIL +ΛΛΛ

)−1
CCCT

L yyy

= diag
[(

Lλ̂
−1 +λ1

)−1
, · · · ,

(
Lλ̂
−1 +λr

)−1
,0, · · · ,0

]
CCCT

L yyy

=



(
Lλ̂−1 +λ1

)−1
cccT

1
...(

Lλ̂−1 +λr

)−1
cccT

r

000
...

000


yyy

(54)

Hence, the i-th (i = 1, · · · ,r) element of µµµ is

µµµ i =
(

Lλ̂
−1 +λi

)−1
cccT

i yyy =
(

Lλ̂
−1 +λi

)−1 n

∑
j=1

c jiy j,1 6 i 6 r (55)
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which is the i-th posterior mean of γi given zzz (or yyy) and CCCL. This equation shows that we

can use CCCr instead of CCCL to capture all genetic variation underlying population structure.

Similarly, we can deduce the variance-covariance matrix of γγγ|zzz through Kendall’s

Equation 11.61 [12].

∆∆∆ = Cov(γγγ|zzz) =
(
www−1 + τ̂CCCT

LCCCL
)−1

= τ̂
−1
(

Lλ̂
−1IIIL +CCCT

LCCCL

)−1
(56)

Using Equation 53, we show that ∆∆∆ is an L×L diagonal matrix:

∆∆∆ = τ̂
−1
(

Lλ̂
−1IIIL +CCCT

LCCCL

)−1
= τ̂

−1
(

Lλ̂
−1IIIL +ΛΛΛ

)−1

= τ̂
−1 diag

[(
Lλ̂
−1 +λ1

)
, · · · ,

(
Lλ̂
−1 +λr

)
,
(

Lλ̂
−1 +0

)
, · · · ,

(
Lλ̂
−1 +0

)]−1

= τ̂
−1 diag

[(
Lλ̂
−1 +λ1

)−1
, · · · ,

(
Lλ̂
−1 +λr

)−1
, λ̂/L, · · · , λ̂/L

]
(57)

This is what we can expect from genome projections, which are mutually independent:

sizes of their effects on the response yyy are independent as well. Putting Equations 51

and 56 together, we have the posterior distribution of γγγ based on the full form of SVD:

γγγ|zzz = γγγ|yyy∼MV Nn(µµµ,∆∆∆)

where µµµ =
(

CCCT
LCCCL +Lλ̂

−1IIIL

)−1
CCCT

L yyy

and ∆∆∆ = τ̂
−1
(

Lλ̂
−1IIIL +CCCT

LCCCL

)−1

(58)

3.2.2 Bayesian chi-square tests of structural random effects

Let ϕi = γi|yyy for Equation 58, where i = 1, · · · ,L, we are interested in testing for the

null hypothesis H0 : ϕi = 0 versus an alternative hypothesis H1 : ϕi 6= 0. We say genome

projections along the i-th PC contributes to the presence-absence status in yyy if H0 is

rejected under a given significance level.

Since ϕi is a member variable participating in the multivariate normal distribution

(Equation 58), it follows a univariate normal distribution:

γi|yyy = ϕi ∼ N(µi,∆ii) (59)

where ∆ii is the i-th diagonal element of the matrix ΣΣΣ. Therefore, we can construct a ran-

dom variable (represented by wi) that follows a chi-square distribution of one degree of

freedom from the distribution of ϕi using the connection between a normal distribution

and a chi-square distribution:
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wi =

(
ϕi−µi√

∆ii

)2

=
(ϕi−µi)

2

∆ii
∼ χ

2(1) (60)

Hence the null hypothesis for the posterior distribution (Equation 58), γi|yyy = ϕi = 0,

is equivalently converted into an observation of the chi-square distribution:

wi|ϕi=0 =
(0−µi)

2

∆ii
=

µ2
i

∆ii
(61)

This is the statistic drawn from the population of χ2(1) to test for the null hypothesis

ϕi = 0 versus the alternative hypothesis ϕi 6= 0, and it relies on parameter estimates λ̂

and τ̂ of the null LMM as well as genome projections. Assuming a confidence level of

p0 (0 < p0 < 1), we can consider the event of observing wi|ϕi=0 > µ2
i /∆ii “impossible”

and thereby reject the null hypothesis if the upper-tail probability P(wi|ϕi=0 > µ2
i /∆ii)6

p0 based on the distribution χ2(1) — in other words, it is unlikely the null distribution

of wi holds when this probability is sufficiently small. By convention, the threshold p0

for confidence may be set to 0.05, 0.01, and so forth.

Furthermore, it is worth noting that this hypothesis test determines whether genome

projections along a specific PC explain allelic presence-absence status in the response

vector yyy. Hence it may report a PC that does not significantly contribute to the presence

of alleles but their absence. In other words, a PC may show either a significant positive

association or a negative association with yyy.

3.3 Scoring evidence of physical linkage

In this section, we describe a scoring scheme for enriching allele pairs that are physically

linked in HGT. The identification of co-localised alleles is a particular utility of the

association result. The final score applies to each pair of explanatory allele and response

allele. In other words, it weights each directed edge of an association network of alleles.

We have developed this scheme via taking into account the direction of each significant

association and characteristics in measurements of allelic physical distances (APDs).

As such, the overall score (denoted by s hereafter) is comprised of two components,

which are explained in details in the following contents.

3.3.1 Score for association status

For each pair of explanatory and response alleles, the first component of the overall

score is a score for association status in terms of its orientation (positive or negative)

and statistical significance. Let sa denote an association score, then sa is determined

using a decision tree shown in Figure s1.
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Specifically, the association score sa is a discrete variable taking values from -1 (evi-

dence against physical linkage), 0 (insufficient evidence for a decision), and 1 (evidence

supporting physical linkage). The tree is designed under the consideration that a signif-

icant positive association is strong evidence for the co-localisation of alleles, and a sig-

nificant negative association is evidence against the presence of allelic co-localisation.

Nonetheless, since the association status tested for using LMMs are directed and con-

founded by the contrast of allele distributions (e.g., how many overlaps and mismatches

in distributions of each pair of alleles), there may be significant associations where β < 0

but alleles are actually co-localised in some genomes. These cases can be considered

as co-localisation signals that are too weak to be detected due to a high level of noise

caused by co-occurrence of the same alleles which are however physically unlinked in

the same collection of bacterial genomes.

3.3.2 Score for allelic physical distances

Since physical distances between acquired alleles are unlikely to conserve across bac-

terial linages when individual alleles are randomly acquired and inserted into bacterial

genomes, consistency in the physical distances found in phylogenetically distant bacte-

rial genomes provides us with the second layer of evidence for the inference of physical

linkage. In addition, the network of positive associations between alleles may contain

edges resulted from transfer dependency (where the horizontal transfer of one MGE

relies on the presence of another) or particular combinations of alleles whose distribu-

tion contrast leads to a positive association only computationally. Taken together, we

leverage physical distances (physical evidence) to filter positive associations (statistical

evidence) for those supporting the existence of physical linkage.

Nonetheless, we cannot directly incorporate the distances into an LMM as a co-

variate by far, because it is highly correlated with presence-absence of the explanatory

allele and is confounded by the same population structure. For instance, it is evident

that the distance is unmeasurable when the explanatory allele is absent (the same to the

response allele as well), and the consistency in distances may be resulted from a phe-

nomenon called identity by descent (IBD), where the same genomic structure is passed

down to descendants through clonal reproduction. In evolution, the IBD gets lost or

weaken in some bacteria of the same clade because of gene-loss events, insertion of

MGEs (A common example is the disruption of genomic structures by the acquisition

of insertion sequences), genomic rearrangement, and so forth, causing a spurious HG-

coT signal in the distribution of allelic co-occurrence events. Therefore, we designed a

decision tree to score APD consistency (Figure s2) while taking into account the prob-

ability of observing consistent APDs due to common ancestry. This method enables us

to integrate the association score and make a concise scoring scheme.
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Assuming m reliable physical distances d1, · · · ,dm are measured between alleles X

and Y in m genomes and m > 2, the decision tree works as follows.

1. Define in-group distance measurements as those within range Q1− 1.5IQR 6

di 6 Q3+1.5IQR (1 6 i 6 m), where Q1 and Q3 denote the first and third quan-

tiles (namely, the 25th and 75th percentiles) of all the distances, respectively, and

IQR is an abbreviation of the interquartile range (equalling Q3−Q1) of distances.

Outlier distance measurements are determined accordingly. This grouping of dis-

tances enables us to evade erroneous decisions driven by a few outlier distances

that may be caused by poor assembly quality, recombination events, etc.

2. Assuming n (n 6 m) in-group physical distances were measured between alleles

X and Y in n bacterial genomes and one distance measurement per genome, let

d(i) (1 6 i 6 n) represent the distance measurement in the i-th genome and define

the range of in-group distances as rin =max{d(i)}−min{d(i)}. Herein, we assume

n > 2 for the rest of steps for simplicity of our description.

3. The in-group distances are considered consistent if their range rin 6 ε where ε

(bp) is a user-specified upper bound for distance ranges. We suggest users to set

ε as twice the error tolerance for distance measurements to simplify explanations

of results, because this is the expected maximum difference between accurate

distance measurements under this tolerance setting when true distances are the

same in all of n genomes.

4. To determine whether consistent in-group distances are caused by IBD, we obtain

a binary vector as a “trait” for all genomes where one is assigned to the n genomes

and zero to the others to denote the presence and absence of in-group distances,

respectively. Then we reconstruct the presence-absence state of the same/similar

distance in the most-recent common ancestor of all the n genomes using function

ace in R package ape [13] under an all-rates-equal model for state transitions of

a discrete trait in these genomes. Based on the outcome of this function, we con-

sider presence of consistent distances as a result of IBD if the empirical Bayesian

posterior probability of the ancestral state of “presence” exceeds a pre-defined

threshold p0 (GeneMates uses 0.9 by default for this parameter). The consistency

score c is determined accordingly.

5. The same ancestral state reconstruction also applies to inconsistent in-group dis-

tances. It can be understood as an evaluation of the tendency in n genomes to

show consistent physical distances as a result of clonal reproduction. Notably,

when the tendency is strong, we consider inconsistency in the distances as evi-

dence against physical linkage (assigning -1 to c), whereas it is unsurprised to see

inconsistent distances when the tendency is weak or absent (assigning zero to c).
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For this scoring procedure, a user may provide a maximum-likelihood (ML) phy-

logenetic tree estimated using an external program as an input. GeneMates generates

a neighbour-joining tree from Euclidean distances between genome projections for an-

cestral state reconstruction when the external tree is not provided. Compared to the

ML tree, the projection-based neighbour-joining tree does not depend on any model or

assumption, however, this tree may be less accurate than the ML tree as it is built on

less SNPs (only biallelic cgSNPs) than the ML tree (usually constructed from SNP sites

detected in 99% of bacterial genomes).

3.3.3 Overall score

The final score for physical linkage between a specific pair of alleles is an integration

of both the association score sa and the consistency score c. In addition, we need to

consider the measurability of APDs in genomes where both alleles are co-occurring be-

cause it is positively associated with representability of the consistency score, frequency

of allelic co-localisation, and quality of genome assemblies. Specifically, we define the

in-group measurability (min) as the percentage of genomes having in-group APDs mea-

sured between two given alleles in genome assemblies over all genomes in which these

two alleles are co-occurring. Therefore, we know 0 6 min 6 1. Then the overall linkage

score is defined as

s = sa +minc (62)

where sa is the association component of s and minc is the distance component. Note that

the measurability can be considered as a weight for consistency score c. In particular, we

define a distance score sd = minc to simplify Equation 62. Evidently, s is a continuous

variable and −2 6 s 6 2.

Assuming perfect measurability (namely, min = 1), since each of sa and c has three

levels (-1, 0, 1), the overall score s has five levels (Table s1), which can be interpreted

as follows:

• 2: physical linkage is well supported by both association analysis and APDs;

• 1: physical linkage is supported by either association analysis or APDs;

• 0: we cannot determine whether a pair of alleles are physically linked or not;

• -1: there is weak evidence opposing the presence of physical linkage;

• -2: there is strong evidence against the presence of physical linkage.

An advantage in using the product of distance measurability and the distance score is

that it does not apply a hard and often arbitrary cut-off to the measurability for filtering

edges in the association network. As a result, overall scores retain more information for
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investigation than scores filtered for a certain measurability level do. In practice, overall

scores can be mapped to a colour gradient of edges in an association network in order to

identify clusters of co-localised alleles at different levels of measurability. Some studies

may use 0.5 as a cut-off for min to filter out scores that are not sufficiently representative.

3.4 Further discussions

In this section, we show connections between our association analysis and other meth-

ods. Furthermore, we explain the fixed effect of the explanatory variable. Finally, we

discuss several limitations of our approach to detection of HGcoT.

3.4.1 Model equivalence

Here, we demonstrate equivalence of our LMM to LMMs implemented in GEMMA,

BugWAS, and EMMA [14] using affine transformations.

Equivalence to the standard LMM of GEMMA Let uuu = CCCLγγγ denote the term of

random structural effect, we used an affine transformation of multivariate normal dis-

tributions to prove the equivalence between our model (Equation 25) and the standard

LMM implemented in GEMMA [4]. Specifically, given uuu = CCCLγγγ , Equation 26 and

CCCL = SSSQQQ = PPPΣΣΣ, the affine transformation shows

uuu∼MV Nn
[
000,CCCL

(
λτ
−1L−1IIIL

)
CCCT

L
]

(63)

and

CCCL
(
λτ
−1L−1IIIL

)
CCCT

L = λτ
−1CCCLCCCT

L
L

= λτ
−1 (PPPΣΣΣ)(SSSQQQ)T

L

= λτ
−1

(
PPPΣΣΣQQQT)SSST

L
= λτ

−1 SSSSSST

L
= λτ

−1KKK

(64)

This equivalence also applies to the model defined by Equation 31, which follows

the reduced form of SVD. Specifically, applying an affine transformation to the n× 1

vector uuu =CCCrγγγr, we can restore the same variance-covariance matrix of the multivariate

normal distribution in the GEMMA LMM.

CCCr
(
λτ
−1L−1IIIr

)
CCCT

r = λτ
−1CCCrCCCT

r
L

= λτ
−1 (UUUDDD)(SSSVVV )T

L

= λτ
−1

(
UUUDDDVVV T)SSST

L
= λτ

−1 SSSSSST

L
= λτ

−1KKK

(65)
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Taken together, our LMM is equivalent to the LMM of GEMMA:

yyy = 111α + xxxβ +CCCLγγγ + εεε = 111α + xxxβ +uuu+ εεε (66)

uuu∼MV Nn
(
000,λτ

−1KKK
)

(67)

εεε ∼MV Nn
(
000,τ−1IIIn

)
(68)

Hypotheses about β to be tested for in association analysis are the same between

these two models.

Equivalence to the LMM of BugWAS Our model is also equivalent to the LMM

used by package BugWAS, which defines the LMM as follows:

yyy = 111α + xxxβ +SSSδδδ + εεε (69)

δδδ ∼MV NL
(
000,λ ′τ−1IIIL

)
(70)

εεε ∼MV Nn
(
000,τ−1IIIn

)
(71)

Here, the L× 1 vector δδδ represents additive background effects of cgSNPs. Let

uuu′ = SSSδδδ , using an affine transformation of Equation 70, we show

uuu′ ∼MV Nn
[
000,SSS

(
λ
′
τ
−1IIIL

)
SSST ] (72)

and we can calculate that

SSS
(
λ
′
τ
−1IIIL

)
SSST = λ

′
τ
−1L

SSSSSST

L
= Lλ

′
τ
−1KKK (73)

Particularly, when λ ′ = λ/L, uuu′ follows the same distribution of uuu in our model.

uuu′ ∼MV Nn
(
000,λτ

−1KKK
)

(74)

Therefore, the LMM of BugWAS becomes an equivalent form of our model when

λ ′ = λ/L:

yyy = 111α + xxxβ +SSSδδδ + εεε = 111α + xxxβ +uuu′+ εεε (75)

where uuu′ ∼ MV Nn
(
000,λτ−1KKK

)
. This equivalence justifies the use of GEMMA for pa-

rameter estimation for the LMM of BugWAS, which tests for the association between a
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phenotype and the genotype of an explanatory locus.

Equivalence between LMMs of GEMMA and EMMA First, we demonstrate the

equivalence between two forms of LMMs that are fitted using GEMMA. The article

about GEMMA [4] offers an equivalent form of Equation 66:

yyy = 111α + xxxβ +ZZZuuum + εεε

uuum ∼MV Nn
(
000,λτ

−1KKKm
)

εεε ∼MV Nn
(
000,τ−1IIIn

) (76)

where ZZZ is an n×m incidence matrix showing the membership of n individuals in m

lineages/groups, and KKKm is an m×m relatedness matrix between the lineages. In the

simplest scenario of GWAS, ZZZ can be an n× n identity matrix. According to supple-

mentary materials of the GEMMA article, there are two matrices playing an important

role in parameter estimation:

GGG = ZZZKKKmZZZT (77)

HHH = λGGG+ IIIn (78)

Using an affine transformation and defining uuu = ZZZuuum and KKK = ZZZKKKmZZZT , the linear

combination of elements in uuum follows a multivariate normal distribution:

uuu = ZZZuuum ∼MV Nn
[
000,ZZZ

(
λτ
−1KKKm,

)
ZZZT ] (79)

ZZZ
(
λτ
−1KKKm,

)
ZZZT = λτ

−1 (ZZZKKKmZZZT)= λτ
−1KKK (80)

By definition, the n×n matrix KKK = ZZZKKKmZZZT describes the relatedness between these

n individuals. Substituting ZZZuuum with uuu in Equation 76, we obtain Equation 66:

yyy = 111α + xxxβ +uuu+ εεε

where uuu ∼ MV Nn
(
000,λτ−1KKK

)
and KKK = ZZZKKKmZZZT . Hence GGG = ZZZKKKmZZZT = KKK and HHH =

λKKK+ IIIn. Particularly, KKKm =KKK and both models defined by Equations 66 and 76 become

the same when m = n and ZZZ = IIIn. Nonetheless, we usually take the form of Equation 66

for LMMs in practice, because KKK can be easily calculated using formula KKK = (SSSSSST )/L

while the calculation of KKKm may be difficult.

On the other hand, we know that GEMMA is an improvement of EMMA. Specifi-

cally, EMMA works on the LMM [14]:
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yyy = XXXβββ +ZZZggg+ εεε (81)

ggg∼MV Nn
(
000,σ2

g KKKm
)

(82)

εεε ∼MV Nn
(
000,σ2

e IIIn
)

(83)

where XXXβββ includes an intercept and possible covariates. Herein we are interested in σ2
g

and σ2
e , which are known as variance components of random effects ggg and residuals εεε ,

respectively. According to the GEMMA article, λ is defined as the ratio of σ2
g over σ2

e

(cf. Section 3.1.8):

λ =
σ2

g

σ2
e

(84)

Hence σ2
g = λσ2

e . Following the EMMA article [14] and Equation 80, we have:

HHH ′ = ZZZKKKmZZZT +λ
−1IIIn = KKK +λ

−1IIIn = λ
−1 (λKKK + IIIn) = λ

−1HHH (85)

Therefore, HHH ′−1 = λHHH−1. Furthermore, we can derive the full log-likelihood function

described by authors of EMMA for their model (Equation 81) as follows:

lF(yyy;βββ ,σg,λ ) =−
1
2

[
n log

(
2πσ

2
g
)
+ logdetHHH ′+

1
σ2

g
(yyy−XXXβββ )T (HHH ′)−1

(yyy−XXXβββ )

]

=−1
2

[
n log(2π)+n log

(
λσ

2
e
)
+ logdet

(
λ
−1HHH

)
+

1
λσ2

e
(yyy−XXXβββ )T (

λ
−1HHH

)−1
(yyy−XXXβββ )

]
=−1

2

[
n log(2π)+n logλ +n logσ

2
e + log

(
λ
−n detHHH

)
+σ

−2
e (yyy−XXXβββ )T HHH−1 (yyy−XXXβββ )

]
=−1

2

[
n log(2π)+n logλ +n logσ

2
e −n logλ + logdetHHH +σ

−2
e (yyy−XXXβββ )T HHH−1 (yyy−XXXβββ )

]
=−1

2

[
n log(2π)+n logσ

2
e + logdetHHH +σ

−2
e (yyy−XXXβββ )T HHH−1 (yyy−XXXβββ )

]
(86)

Let τ = σ−2
e , then σ2

e = τ−1, hence we have
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lF(yyy;βββ ,λ ,τ) = lF(yyy;βββ ,σg,λ )

=−1
2

[
n log(2π)−n logτ + logdetHHH + τ (yyy−XXXβββ )T HHH−1 (yyy−XXXβββ )

]
=

1
2

[
n logτ−n log(2π)− logdetHHH− τ (yyy−XXXβββ )T HHH−1 (yyy−XXXβββ )

]
(87)

which is exactly the log-likelihood function of the standard LMM in GEMMA. In con-

clusion, both GEMMA and EMMA use the same LMM when λ = σ2
g/σ2

e and τ = σ−2
e

(note that we do not require m = n). In other words, LMMs in Equations 25, 31, 66,

75, 76, and 81 are equivalent under aforementioned conditions. Moreover, they use the

same relatedness matrix KKK in this case.

3.4.2 Equivalent posterior distributions of structural random effects

In this section, we demonstrate equivalence between algebra calculating posterior dis-

tributions of structural random effects based on different LMMs.

Equivalence to the posterior distribution derived for BugWAS On one hand, since

CCCT
LCCCL = (SSSQQQ)T SSSQQQ = QQQT SSST SSSQQQ, QQQT QQQ = QQQQQQT = IIIL, and QQQ−1 = QQQT , we rewrite the

posterior mean (Equation 51) using the centred SNP matrix SSS:

µµµ =
(

Lλ̂
−1QQQT QQQ+QQQT SSST SSSQQQ

)−1
(SSSQQQ)T yyy =

[
QQQT
(

Lλ̂
−1IIIL +SSST SSS

)
QQQ
]−1

QQQT SSST yyy

=
[
QQQQQQT

(
Lλ̂
−1IIIL +SSST SSS

)
QQQ
]−1

SSST yyy = QQQ−1
(

Lλ̂
−1IIIL +SSST SSS

)−1
SSST yyy

= QQQT
(

Lλ̂
−1IIIL +SSST SSS

)−1
SSST yyy

(88)

Similarly, the variance-covariance matrix (Equation 56) of the posterior distribution

can be rewritten as

∆∆∆ = τ̂
−1
(

CCCT
LCCCL +Lλ̂

−1IIIL

)−1
= τ̂

−1
(

QQQT SSST SSSQQQ+Lλ̂
−1QQQT QQQ

)−1

= τ̂
−1
[
QQQT
(

SSST SSS+Lλ̂
−1IIIL

)
QQQ
]−1

= τ̂
−1QQQ−1

(
SSST SSS+Lλ̂

−1IIIL

)−1
QQQ

= τ̂
−1QQQT

(
SSST SSS+Lλ̂

−1IIIL

)−1
QQQ

(89)

On the other hand, based on the same equations by Kendall, authors of BugWAS

have directly deduced the posterior distribution of δδδ for the LMM (Equation 75) used

in BugWAS under the null hypothesis where β = 0 [6]. Specifically, δδδ |yyy follows a
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multivariate normal distribution that takes as parameters the REML estimates of λ ′ and

τ (cf. source code of BugWAS).

δδδ ∼MV NL (µµµδ ,∆∆∆δ ) (90)

µµµδ =

(
SSST SSS+

1

λ̂ ′
IIIL

)−1

SSST yyy (91)

∆∆∆δ = τ̂
−1
(

SSST SSS+
1

λ̂ ′
IIIL

)−1

(92)

Since SSS = PPPΣΣΣQQQT =CCCLQQQT , we have SSSδδδ =CCCLQQQT
δδδ . Let γγγδ = QQQT

δδδ and λ̂ = Lλ̂ ′, we

can obtain an affine transformation of the posterior multivariate normal distribution of

the structural random effects γγγδ :

γγγδ ∼MV NL
(
µµµ
′
δ
,∆∆∆′

δ

)
(93)

µµµ
′
δ
= QQQT

µµµδ = QQQT
(

SSST SSS+
1

λ̂ ′
IIIL

)−1

SSST yyy = QQQT
(

SSST SSS+Lλ̂
−1IIIL

)−1
SSST yyy (94)

∆∆∆
′
δ
= QQQT

∆∆∆δ QQQ = τ̂
−1QQQT

(
SSST SSS+Lλ̂

−1IIIL

)−1
QQQ (95)

Both µµµ ′
δ

and ∆∆∆
′
δ

are exactly the same as Equations 88 and 89. As such, the struc-

tural random effects γγγ in our model (Equation 25) and the δδδ in the BugWAS model

are interconnected in terms of their posterior multivariate normal distributions given

observations yyy and SSS.

Posterior distribution of structural random effects computed using reduced SVD
We can derive the posterior distribution of structural random effects given yyy through

the reduced form of SVD as well. Using the reduced form of SVD, we have shown

the equivalent form of our LMM in Formulae 31 and 32, where SSS = UUUDDDVVV T and CCCr =

UUUDDD = SSSVVV . Since Formulae 25 and 31 only differ in the vector for sizes of structural

random effects (that is, γγγ versus γγγr), substituting CCCL with CCCr and IIIL with rrr in Equation

58 immediately produces the posterior distribution:

γγγr|yyy∼MV Nn (µµµr,∆∆∆r) (96)

µµµr =
(

CCCT
r CCCr +Lλ̂

−1IIIr

)−1
CCCT

r yyy (97)
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∆∆∆r = τ̂
−1
(

Lλ̂
−1IIIr +CCCT

r CCCr

)−1
(98)

Moreover, since Equation 13 shows QQQ =
[
VVV L×r WWW L×(L−r)

]
, we rewrite Equation 88 as

µµµ = QQQT
(

Lλ̂
−1IIIL +SSST SSS

)−1
SSST yyy =

[
VVV T

WWW T

](
Lλ̂
−1IIIL +SSST SSS

)−1
SSST yyy

=

VVV T
(

Lλ̂−1IIIL +SSST SSS
)−1

SSST yyy

WWW T
(

Lλ̂−1IIIL +SSST SSS
)−1

SSST yyy

 (99)

The top partition, VVV T
(

Lλ̂−1IIIL +SSST SSS
)−1

SSST yyy, equals the posterior mean of γγγr given

yyy; the second partition, WWW T
(

Lλ̂−1IIIL +SSST SSS
)−1

SSST yyy, equals the posterior mean of γγγL−r

that always get cancelled in our LMM (Equation 25) because ccc j = 0 when j = r+1,r+

2, · · · ,L. Moreover, this partition does not involve in the LMM (Equation 31) and we

are not interested in γγγL−r as the accompanying projections do not reveal any variation

in SSS (namely, no genetic variation is captured by these effects).

Similarly, we can convert the posterior variance-covariance matrix (Equation 58) of

γγγ into the following form:

ΣΣΣ = τ̂
−1QQQT

(
SSST SSS+Lλ̂

−1IIIL

)−1
QQQ = τ̂

−1

[
VVV T

WWW T

](
Lλ̂
−1IIIL +SSST SSS

)−1 [
VVV L×r WWW L×(L−r)

]

= τ̂
−1

VVV T
(

SSST SSS+Lλ̂−1IIIL

)−1
VVV VVV T

(
SSST SSS+Lλ̂−1IIIL

)−1
WWW

WWW T
(

SSST SSS+Lλ̂−1IIIL

)−1
VVV WWW T

(
SSST SSS+Lλ̂−1IIIL

)−1
WWW


(100)

The top-left r×r partition, τ̂−1VVV T
(

SSST SSS+Lλ̂−1IIIL

)−1
VVV , reveals the posterior variance-

covariance between elements of γγγr, in which we are interested for our model defined by

Equation 31. Therefore, we have the posterior distribution of γγγr, that is, Equation 96, in

the null model of Equation 31 given yyy and KKK:

µµµr =VVV T
(

Lλ̂
−1IIIL +SSST SSS

)−1
SSST yyy (101)

∆∆∆r = τ̂
−1VVV T

(
SSST SSS+Lλ̂

−1IIIL

)−1
VVV (102)

which is exactly the posterior distribution of structural random effects calculated by
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package BugWAS1. We can also deduce this distribution directly from the BugWAS

model with the reduced form of SVD. More specifically, since SSS =UUUDDDVVV T =CCCrVVV T , we

can deduce that SSSδδδ = CCCrVVV T
δδδ . Let γγγ ′

δ
= VVV T

δδδ , knowing the posterior mean (Equation

91) and variance-covariance matrix (Equation 92) of δδδ , we can derive the posterior

distribution of γγγ ′
δ

given yyy through an affine transformation of the posterior multivariate

normal distribution of δδδ :

γγγ
′
δ
|yyy∼MV NL

(
µµµ
′
δ
,∆∆∆′

δ

)
(103)

µµµ
′
δ
=VVV T

µµµδ =VVV T
(

SSST SSS+
1

λ̂ ′
IIIL

)−1

SSST yyy (104)

∆∆∆
′
δ
=VVV T

∆∆∆δVVV = τ̂
−1VVV T

(
SSST SSS+

1

λ̂ ′
IIIL

)−1

VVV (105)

Evidently, µµµ ′
δ

and ∆∆∆
′
δ

are identical to µµµr and ∆∆∆r in Equation 96, proving that the

equivalence between posterior distributions in our LMM (Equation 31) and the Bug-

WAS model still holds under the reduced form of SVD. This is an ideal conclusion.

Nevertheless, we note that authors of the BugWAS article use the following inference

to the calculate the posterior distribution of structural random effects:

CCC = SSSVVV n =⇒ SSS =CCCVVV−1
n =⇒ SSSδδδ =CCCVVV−1

n δδδ =⇒ γγγδ =VVV−1
n δδδ (106)

where VVV n denotes the first n columns of QQQ and it is computed using the R function

prcomp. We consider this inference invalid because VVV is a rectangular matrix, to which

an ordinary matrix inverse does not apply. Furthermore, we argue that only the first r

columns of QQQ (that is, the L× r matrix VVV ) should be used in this reduced form of SVD

for efficiency because r is always less than n (as BugWAS also uses the zero-centring

process) and the n− r excessive eigenvectors in QQQ do not capture population structure

and hence are not informative.

3.4.3 Interpretations of the fixed effect size

Herein, we are concerning the meaning of the fixed effect parameter β in our LMMs

(Equations 25 and 31). Let dichotomous random variables X and Y denote the presence-

absence of alleles ax and ay, respectively, in a sample. In particular, we do not perform

zero-centring on observations of X or Y in this section to make our description clearer,

although the centring does not affect our conclusions.

1Note that Equation 102 in the article publishing BugWAS differs from the one implemented in the
code of BugWAS. Based on algebra shown in this section, we inclined to consider the equation in the
BugWAS article incorrect due to a typo.
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The first interpretation of parameter β is the change in the conditional mean of

Y , namely, E(Y |X), given a unit change in X under constraints that ∆X = −1 when

X = 1 and ∆X = 1 when X = 0 at the beginning. To be more specific, let E(Y |X) =

E(Y |X +∆X)−E(Y |X). Since for a given genome, E(Y |X) = E(α +Xβ +u+ ε), and

random variables (u and ε) are independent of X following the model setting, we have

∆E(Y |X) = β ∆X , which can be denoted by ∆E(Y |∆X). This is a general interpretation

and it is the same as the meaning of regression coefficients in a simple linear model.

Second, when β > 0 in particular, this fixed effect becomes the probability of observ-

ing an allele ay in a genome given an acquisition event of the other allele ax. Assuming

there are n genomes (where n is sufficiently large) in total, which were nevertheless void

of alleles ax and ay, then nx and ny of these genomes acquired ax and ay, respectively,

via HGT. As such, the observation of ∆X , denoted by ∆x, increases to one in these

nx genomes. Let nxy denote the number of genomes harbouring both alleles. Noticing

∆x = 0 if a genome does not have the ax allele, for the nx observations we can derive:

∆E(Y |∆X = 1)≈ ȳyy|x=1 =
nxy

nx
= β (107)

where ∆x = 1 and yyy is a vector for observations of Y in the n genomes. Therefore,

a positive β can be understood as the probability of observing ay when allele ax is

successfully transferred into a bacterium.

Moreover, when X and Y do not show perfect separation as required by ordinary lo-

gistic regression [15], in other words, neither P(Y = 1|X = 0) nor P(Y = 1|X = 1) equals

one or zero and hence 0 < E(Y |X = x) < 1, a positive β can also be interpreted as an

approximation of an odds ratio through expanding a logistic model into a Maclaurin se-

ries. Specifically, let f (x) = P(Y = 1|X = x), and let scalars m and b be the intercept and

slope of the logistic model, respectively, then 0 < f (x)< 1 and the Maclaurin expansion

f (x) =
em+xb

em+xb +1
=

em

em +1
+

bem

(em +1)2 +o
(
x2) , x→ 0 (108)

holds when treating x as a continuous variable and letting x be close to zero. Further-

more, we can approximate f (1)=P(Y = 1|X = 1) using this expansion. Since Y follows

a Bernoulli distribution conditioning on X , we have E(Y |X = x) = P(Y = 1|X = x).

Referring to the conditional mean of Y in our LMM for a given genome, which is

0 < E(Y |X = x) =α+xβ < 1 given x∈ {0,1} and β > 0, we can deduce that 0 <α < 1

and approximation

α + xβ ≈ em

em +1
+

bem

(em +1)2 x (109)

Let α = em

em+1 and β = bem

(em+1)2 , we have m = ln α

1−α
and b = β (em+1)2

em = β

α(1−α) . As
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such, the odds ratio of Y is approximated using fixed effect sizes α and β in the LMM

via equation

OR(Y |X = 1 vs. X = 0) =
odds(Y = 1 vs. Y = 0|X = 1)
odds(Y = 1 vs. Y = 0|X = 0)

= eb = exp
β

α(1−α)
(110)

We use GEMMA to perform a Wald test to determine if β = 0 under a certain con-

fidence level (Section 3.1.10).

3.4.4 Incapability of parameter estimation between identical variables

A crucial constraint of GEMMA in estimating parameters of LMMs is that parameter

estimation does not work between identical variables. Let yyy= xxx, then model in Equation

25 becomes 000 = 111α + xxxβ ′+CCCLγγγ + εεε , where β ′ = β − 1. As such, the target function

lr1(λ ;000,xxx,KKK) (cf. Formula 38) does not exist because one of its items (yyyTWWW xyyy) for

logarithm becomes zero. Therefore, GEMMA does not return a valid log-likelihood or

REML estimates for parameters of variance components under this condition. We con-

firmed that this behaviour is the same for ordinary maximum-likelihood (ML) estimates

for a similar reason (the denominator in the ML estimate of τ reaches zero — cf. Sec-

tion 3.1.1 in the supplementary document of the GEMMA article [4]). As a result, our

approach is not applicable to identically distributed alleles or genes.

4 Supplementary methods of the validation study

This section demonstrates steps of applying GeneMates to the E. coli and Salmonella

data sets for validation [16, 17].

4.1 Collection of whole-genome sequencing data

Supplementary File 2 tabulates details of bacterial genomes whose WGS data were

recruited for our validation study. For E. coli data, we used paired-end 100 bp reads

(Illumina HiSeq2000) from 185 atypical enteropathogenic E. coli genomes from Africa

and South Asia between 2008 and 2010 during the Global Enteric Multicentre Study

(GEMS) [18, 19]. Most genomes were obtained from faecal samples. To ensure high

read quality and purity, we inspected base and read quality using MultiQC [20], which

compiled reports of FastQC v0.11.5 [21]. All read sets were accepted at this stage. We

merged overlapping reads with FLASH [22] because a high level of overlapping reads

was detected.

As for Salmonella data, we took paired-end Illumina reads (length: 76–150 bp) from

373 genomes of S. enterica serovar Typhimurium definitive type 104 (DT104), which
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were sampled between 1990 and 2011 [17]. The reads were generated using Illumina

Genome Analyzer II or IIx, HiSeq2000, and MiSeq platforms. According to the original

publication [17], we removed 14 known atypical DT104 genomes (All of them were

isolated in Scotland) as they are genetically more similar to non-DT104. The remaining

genomes included 275 Scottish genomes, 23 English or Welsh genomes, 51 Canadian

genomes and 10 Japanese genomes. Finally we carried out the same steps for quality

control as those for the E. coli data except the use of FLASH, because the Salmonella

reads showed a low level of overlapping.

4.2 Extraction of core-genome SNPs

We mapped de-overlapped E. coli reads to the chromosome sequence of E. coli serovar

0103:H2 strain 12009 (GenBank association: AP010958) using RedDog V1beta.10.3

(github.com/katholt/RedDog) under its default parameters. This reference genome had

been previously shown to yield the highest read coverage for this data set [19]. To

obtain reliable SNP calls, we identified repetitive and prophage regions in the refer-

ence genome using MUMmer v3.23 (≥ 90% nucleotide identity to call repetitive) and

PHASTER (accessed on 26 November 2017), respectively [23, 24], and filtered out

SNPs within those regions. We applied the same mapping process to Salmonella reads,

for which the chromosome sequence of DT104 (GenBank association: HF937208) was

used as the reference. Instead of using PHASTER, which was under maintenance at the

time (22 March 2018), PHAST [25] was used to identify prophages.

A challenge in the analysis of HGcoT is the requirement for homogenous read sets,

namely, reads from DNA of a pure bacterial culture. A DNA library for sequencing may

be contaminated due to mixed bacterial cultures or artefacts in the library preparation.

To evaluate heterogeneity in a read set, we compared coordinates and minor allele fre-

quencies (MAFs) of heterozygous SNP calls to those of homozygous SNPs, given the

fact that E. coli and S. enterica are haploid organisms. Any read set showing congruent

MAFs of the heterozygous SNPs across the whole reference genome was considered

potentially contaminated. Altogether, 16 E. coli genomes and one Salmonella genome

were excluded due to possible contamination, leaving 169 E. coli genomes and 359

Salmonella genomes for following steps.

4.3 Phylogenetic reconstruction

For each bacterial species, five independent RAxML (v8.2.9) runs were launched on

homozygous SNPs in sites that were present in 99% of genomes to obtain an optimal

unrooted maximum-likelihood phylogeny [26]. A unique combination of seeds was

set for the random-number generator of RAxML in each run. To calculate bootstrap
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supports for branches on each phylogenetic tree, in each run we specified RAxML to

repeat the tree inference for 125 iterations for E. coli genomes and 200 iterations for

Salmonella genomes. The tree displaying the greatest log-likelihood was chosen as the

best tree for further analyses.

4.4 Detection of antimicrobial resistance genes

Based on our curated ARG-ANNOT database (ARGannot r2.fasta, available in the

GitHub repository of SRST2) [27], we screened AMR genes in all genomes using

SRST2 v0.2.0 (arguments determining presence of an ARG: > 90% query coverage,

≥ 90% nucleotide identity, > 5 fold average read depth and > 2 fold edge depths)

[28]. We evaluated reliability of ARG calls based on per-base read depths calculated

by SRST2 (Section 4.4.1). Next, for each bacterial species, we pooled consensus se-

quences of reliable gene calls in all genomes and clustered them under a nucleotide

identity of 100% using CD-HIT-EST v4.6 [29]. An identifier was then assigned to each

unique sequence to represents an allele of an AMR gene.

Since there was a complete chromosome sequence and plasmid sequences included

for the Salmonella strain DT104, we could achieve high resolution and accuracy in

gene detection via directly aligning reference allele sequences from ARGannot r2.fasta

against complete genomes using nucleotide BLAST [30]. Therefore, geneDetector

(github.com/wanyuac/geneDetector) was developed to convert BLAST results into SRST2

compatible formats. Consensus allele sequences extracted by geneDetector were pooled

with those from SRST2 for sequence clustering and subsequent allele identifier assign-

ment, producing an allelic PAM from reliable allele calls.

4.4.1 Evaluation of allele-call reliability

We used PAMmaker (github.com/wanyuac/PAMmaker), a helper tool of GeneMates, to

evaluate reliability of allele calls of AMR genes. Specifically, PAMmaker read score

files in SRST2 outputs and classified an allele call as sufficiently reliable if the call

satisfied the following criteria:

• When no truncation (at one or both ends of a reference) or deletion (flanked by re-

maining bases) of at least two bases was present in the alignment of reads against

a reference allele sequence, the average read depth > 5 fold, edge read depths≥ 2

fold, and the nucleotide divergence ≤ 10%.

• When any truncations were present, nucleotide divergence ≤ 10%, the average

read depth > 5 and read depths that neighbour truncations > 2.
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4.5 De novo genome assembly

De novo assembly of E. coli and Salmonella genomes was conducted using Unicycler

v0.4.1 [31], which implements SPAdes v3.10.1 for short-read assembly [32] and lever-

ages paired-end reads to optimise initial assembly graphs from SPAdes via bridging

gaps, merging nodes, and correcting assembly errors. In this study, we specified Unicy-

cler to turn the SPAdes option of read correction off as this process turned out to be too

conservative for some read sets to get the assembly pipeline successfully run through.

Other options were kept default (see Unicycler manual for details). Finally, we gath-

ered assembly graphs from Unicycler for measuring APDs and concatenated assembly

statistics for further quality assessment of read sets.

4.6 Measurement of allelic physical distances

Physical distances between alleles of AMR genes were measured in genome assemblies

for each bacterial species. Since the distance measurement was complicated in unfin-

ished short-read assemblies, we took an empirical simulation-and-validation strategy to

determine criteria for removing unreliable measurements. The overall procedure was

that, for each species, we simulated Illumina reads from complete genomes of 10 MDR

strains that were drawn from non-sibling lineages in a published species dendrogram

(NCBI genome database, accessed in November 2017), reassembled synthetic reads

into assembly graphs using the same method as real reads, and for each pair of coding

sequences (CDSs), we compared APDs from assembly graphs to their real distances.

See Tables s2 and s3 for details of selected E. coli and S. Typhimurium strains. We used

FastANI v1.0 to calculate whole-genome average nucleotide identities (ANIs) between

these strains.

For E. coli genomes, we used ART (version MountRainier) and its build-in Illumina

HiSeq2000 error profile to simulate 100-bp pair-end reads at a read depth of 89 fold

(the median depth covering the 169 E. coli genomes according to the RedDog outputs),

a mean insert size of 220 bp with a standard deviation of 71 bp (both arguments are

medians for this data set) [33]. For Salmonella genomes, we simulated short reads from

the Illumina HiSeq2000 platform under a 76 bp read length, a 251 bp insert size with a

76 bp standard deviation and a 75 fold read depth in accordance with summary statistics

of actual read sets of the shortest read length (76 bp). To ensure sufficient specificity in

locating CDSs in every assembly for the distance measurement, a hit of each CDS was

reported by the nucleotide BLAST to Bandage only if it covered at least 95% of the CDS

under a nucleotide identity of at least 95% and displayed an e-value of at most 1×10−5.

These parameters were kept the same for subsequent applications. Further, in order to

compare the distance measurements and the reference distances in an efficient manner,

we randomly selected 250k measurements per strain from the distances measured in
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paths of at most 10 nodes in assembly graphs.

For the 169 E. coli genomes and 359 Salmonella genomes, we took consensus allele

sequences of accessory AMR genes as queries, took assembly graphs and contigs as

subjects, and used Bandage to measure the shortest-path distances (SPDs) in genome

assemblies of each species. It is self-evident that, for the same pair of alleles, their SPD

equals the APD in a complete genome and contig. Since we found that SPDs in contigs

were more accurate than those in assembly graphs, we prioritised SPDs according to

their sources and kept the SPD from contigs when there were SPDs measurable in both

a contig and a graph. Furthermore, when calling function findPhysLink, we specified the

function to filter out any measurements obtained from more than two nodes or stretched

longer than 250 kbp to ensure that more than 90% of remaining distance measurements

were accurate when tolerating errors not exceeding ±1 kbp. Note that since Unicycler

may create a contig from multiple nodes in an assembly graph, SPDs in a single node

may differ from those in a single contig in accuracy.

4.7 Network analysis

Network construction We used function findPhysLink to construct a linkage network

for alleles of AMR genes detected in each example data set. In particular, we excluded

alleles of known intrinsic AMR genes (ampH, ampC1, ampC2 and mrdA of E. coli, and

aac6-Iaa of S. enterica). Following the method for validating BugWAS [6], we did not

filter alleles for a minimum frequency or co-occurrence count in order to include all

possible allele pairs. In order to investigate effects of controlling for population struc-

ture on estimates of fixed effects, we fitted simple penalised logistic models (PLMs),

implemented in GeneMates function plr, for the same allele pairs. A significant fixed

effect of an explanatory allele on a response allele was determined when the hypothesis

test on the effect size β in an LMM (Wald test) or a PLM (two-sided chi-squared test)

returned a Bonferroni-corrected p-value ≤ 0.05. We compared LMM-based p-values to

those based on PLMs for the same explanatory and response alleles, and grouped the

differences based on the estimate λ̂0 for the null LMM (Y ∼ 1) of each response al-

lele, because λ0 reveals the proportion of variation in Y explained (PVE) by population

structure in the absence of any explanatory allele [4].

Visualisation Result tables produced by function findPhysLink for each species were

exported to Cytoscape v3.6.1 for network visualisation. In every network, each node

represented one or more alleles sharing the same distribution amongst genomes (We

confirmed that the distance score sd = 1 for edges between each of these identically

distributed alleles to its neighbour nodes) and each edge represented a significant fixed

effect (β̂ in an LMM or PLM) of an explanatory allele X on a response allele Y in the
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linear model Y ∼ X . Attributes of each edge included the fixed effect size β̂ (−1≤ β̂ ≤
1) and a distance score sd (0≤ sd ≤ 1).

Analyses LMM-based linkage networks were analysed for three purposes. First, in or-

der to validate the ability of LMMs in identifying co-mobilised alleles of AMR genes,

we compared edges to known mobile ARG clusters — plasmid-borne AMR genes in

E. coli [16]. Second, in order to show the effect of controlling for population structure

in association tests, for each species we merged LMM-based and PLM-based linkage

networks into a comparative network highlighting shared and unique edges in each kind

of linkage networks. Finally, we identified maximal cliques in each linkage network

using package igraph, extracted corresponding nucleotide sequences from genome as-

semblies, and searched them against GenBank (www.ncbi.nlm.nih.gov/genbank) to dis-

cover co-transferred alleles of acquired AMR genes.
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