Supporting Information

Preparation and Properties of Cellulose-based Films Regenerated from Waste Corrugated Cardboard using [Amim]Cl/CaCl₂

Hao Xu[£], Lijie Huang^{£,*}, Mingzi Xu[§], Minghui Qi[£], Tan Yi[£], Qi Mo[§], Hanyu Zhao[£], Chongxing Huang^{£,§}, Shuangfei Wang[§], Yang Liu[£]

 College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning

530004, China

*Email: jiely165@163.com

Supporting information content

Figure S1. Polarizing micrographs of the P-WCC in [Amim]Cl at 90 °C after 0 min (a), 10 min (b), 40 min (c).

Figure S2. XRD spectrum of P-WCC (a) and BM-P-WCC (b).

Figure S3. ¹H NMR spectra of [Amim]Cl (a) and recovered [Amim]Cl (b). (Photograph courtesy

of 'Mingzi Xu'. Copyright 2020. The graphic is free domain)

Figure S4. FTIR spectra of [Amim]Cl (a) and recovered [Amim]Cl (b).

Figure S5. Surface roughness of the R-WCC film.

Figure S6. Transmittance (a) and visual pattern (b) of the R-WCC film.

Figure S1. Polarizing micrographs of the P-WCC in [Amim]Cl at 90 °C after 0 min (a), 10

min (b), 40 min (c).

Figure S2. XRD spectrum of P-WCC (a) and BM- P-WCC (b).

Figure S3. ¹H NMR spectra of [Amim]Cl (a) and recovered [Amim]Cl (b). (Photograph courtesy of 'Mingzi Xu'. Copyright 2020. The graphic is free domain)

Figure S4. FTIR spectra of [Amim]Cl (a) and recovered [Amim]Cl (b).

Figure S5. Surface roughness of the R-WCC film.

Figure S6. Transmittance (a) and visual pattern (b) of the R-WCC film.