SUPPLEMENTAL MATERIAL

Diverse energy-conserving pathways in *Clostridium difficile*: Growth in the absence of amino acid Stickland acceptors and the role of the Wood-Ljungdahl Pathway

Simonida Gencic and David A. Grahame

Figure S1. Complementation of the C. difficile *AacsB* mutant

Wild-type, $\Delta acsB$ mutant and the complemented $\Delta acsB$ mutant are compared for growth, glucose consumption and acetate production in glucose-only (Glc only) medium under acetatelimiting conditions. Glc only medium contained decreasing amounts of sodium acetate (**A-D**, 2.0, 1.0, 0.5 and 0 mM). Panels on the left show growth OD₆₀₀ of WT (closed black symbols), $\Delta acsB$ mutant (open black symbols), and the complemented $\Delta acsB$ mutant (+ green symbols, dashed lines), and glucose consumption (red corresponding symbols). Panels at the right show acetate production, WT (closed blue symbols), $\Delta acsB$ mutant (open blue symbols), and the complemented $\Delta acsB$ mutant (+ blue symbols, dashed lines) from the same growths and the corresponding glucose consumption curves (in red) for comparison.

Figure S2. TcdA toxin levels in *C. difficile* during growth in BHIS medium

Growth was followed on four BHIS cultures as described under Materials and Methods. Inset; Western blot of an 8% acrylamide SDS-PAGE gel with samples removed from cultures at the times indicated (hours) using anti-TcdA as primary antibody.

Time (hr)	BHIS-1 H₂ (%)	BHIS-2 H ₂ (%)	
2.3	0.42	0.56	
4.6	2.06	2.04	
6.8	3.84	3.99	
9.2	7.12	8.11	
21.4	9.46	10.97	
25.9	9.96	11.70	

TABLE S1 Evolution of H₂ during growth in BHIS

Duplicate 10 ml BHIS day cultures (BHIS-1 and BHIS-2) were prepared as described under Materials and Methods, and monitored for growth by OD_{600} and for H₂ evolution by gas-tight, valve-equipped, syringe sampling of the headspace (17 ml total). Hydrogen in aliquots of the gas phase (0.2 ml) was quantified by GC using a 1.3 m molecular sieve 13 X column (isothermal at 40 °C) with N₂ as carrier gas, producing negative peaks by TCD detection. The cultures were grown at 37 °C and periodically shaken. The maximum amount of H₂ found was 10-12% of the gas phase by volume. Thus, the 17 ml headspace contained approximately 7.6 to 9.1 µmol H₂ evolved per ml of culture, which, in relation to other substrates and products (Table S2) represents a substantial number of reducing equivalents disposed of as H₂.

Strain or plasmid	Relevant features	Source
E. coli strains		
DH5α TOP10 NEB10-beta NM522 NM522(DE3) XL1-Blue S17-1 SG-Ec2270 SG-Ec2280	S17-1 with pSG1217 S17-1 with pMTI 84151::acsB	Invitrogen Invitrogen Biolabs Promega This study Stratagene ATCC 47055 This study This study
C. difficile strains		inio ocady
CD630 CD630∆ <i>acsB</i> SG-Cd113	Genome reference strain CD630 with in-frame deletion in the acetyl CoA synthase <i>acsB</i> gene CD630∆ <i>acsB</i> with pMTL84151:: <i>acsB</i>	ATCC BAA-1382 This study This study
Clostridium ljungdahlii		ATCC 55383
Plasmids		
pCR-BluntII-TOPO pMTL83151 pMTL83151::codA pSG1217 pMTL84151 pMTL84151::acsB	<i>Clostridium</i> modular plasmid pMTL83151 with modified <i>C. pasteurianum</i> fdx promoter fused to the <i>E. coli codA</i> gene and cloned into the BamHI and Ncol sites pMTL83151::codA with the <i>acsB</i> allele exchange cassette cloned into the Pmel site <i>Clostridium</i> modular plasmid used for complementation Complementation plasmid, pMTL84151 with WLP promoter fused to the <i>acsB</i> and cloned into the BamHI and AatII sites	Invitrogen N. Minton This study This study N. Minton This study

TABLE S3 Bacterial strains and plasmids

Table S4 Oligonucleotide sequences

Name	Sequence $(5' \rightarrow 3')$	Use
fdx-codA-BamHI-A-f	5' GTGCATGGATCCGATCGAGATAGTATATGATGCATATTC	fdx-codA fusion
fdx-codA-B-r	5' GTTTGTAAAGCGTTATTCGACACATTATGAAATACACCTCCTTAAAATTTTAATC	
fdx-codA-C-f	5' GATTAAAATTTTAAGGAGGTGTATTTCATAATGTGTCGAATAACGCTTTACAAAC	
fdx-codA-Ncol-D-r	5' GGTCGACCATGGTCAACGTTTGTAATCGATGGCTTC	
acsE-Pmel-A-f	5' GTGCATGTTTAAACGATATAGCAGCTGAATACGAAGCAATGG	acsB allele exchange
acsB-5pdel-B-r	5' CTAATACTCCTTCAGAATCGTCAGCAGCTTGAGCCGCACCTAAAGC	
acsB-3pdel-C-f	5' GCTTTAGGTGCGGCTCAAGCTGCTGACGATTCTGAAGGAGTATTAG	
gcvH-Pmel-D-r	5' GGTCGAGTTTAAACTAATCCAGCCTCGTATTCTTTATCAC	
PL-AE-Pmel-f	5' GACGGATTTCACATTTGCCGTTTTGTAAACGAATTGCAGG	PCR of integrants and double cross-over recs
PL-AE-Pmel-r	5' AGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGG	
acsB-AE-1f	5' CTGAGTTCAACAATGTTCCTATAGCATTAGATACAGC	
acsB-AE-1r	5' GATAAAAGGAAAGTATAGCTAAATTTGCGTGCACTC	
pro-BamHI-A-f	5' GCATGGATCCGAAATAGGATAAATCGCTTGAAATAAATGAATTAAAG	native promoter-acsB
pro-acsB-B-r	5' GATTCATATTCCTATCCCCTTTTTTTGATTTTTAAAATCCC	
pro-acsB-C-f	5' TCAAAAAAAGGGGATAGGAATATGAATCTATAATATAAT	
acsB-AatII-D-f	5' GCATGACGTCTTACATTACACTTTCCATAGCTAATGCTGG	