## **SUPPLEMENTAL FILE 1**

Overproduction of the AlgT sigma factor is lethal to mucoid Pseudomonas aeruginosa

Ashley R. Cross, Vishnu Raghuram, Zihuan Wang, Debayan Dey,

and Joanna B. Goldberg



Figure S1. Overexpression of *algT* in PDO300 and PDO300  $\Delta algD$  reduces growth. Growth curves of each strain grown in LB containing no inducer, 0.1 mM IPTG, or 1.0 mM IPTG. The strains shown are PAC539 and PAC543.



Figure S2. Overexpression of *algT* in strains containing wild type MucA is not lethal. The *algT* coding sequence was cloned downstream of an IPTG inducible tac promoter and inserted, in single copy, at the *att*Tn7 site of each strain (Tn7:: $P_{tac}$ -*algT*). Overnight cultures were grown without inducer, normalized to an optical density of 0.5, and then serially diluted onto LA containing no inducer, 0.1 mM IPTG, and 1 mM IPTG. IPTG induces expression of *algT*. Corresponding dilutions factors are shown on top. PAO1 becomes mucoid when *algT* is expressed. The strains shown are PAC501 and PAC541.

v F н D Е Α Q Α Q D Α ν GAA GCC CAG GAC GTA GCG alaT TTC GTG CAC GAC GCC CAG ---------117 151 D Q А TTC GTG CAC GAC GCC CAG GAC GCC CAG GAA GCC CAG GAC GTA GCG dup1 Е А Q TTC GTG CAC GAC GCC CAG GAA GCC CAG GAA GCC CAG GAC GTA GCG dup2

**Figure S3. AlgT sequence alignment of two nonmucoid revertants.** The AlgT amino acid sequence (green) is shown above the 117-151 bp nucleotide sequence (black). Both nonmucoid revertants had an in-frame duplication resulting in the insertion of three amino acids (red); DAQ (dup1) and EAQ (dup2). The underlined text represents the duplicated nucleotides.



**Figure S4. Structural models of** *Pseudomonas* **AlgT.** The AlgT sigma factor is composed of two helical bundles which form the N-terminal domain I (blue) and C-terminal domain II (red) connected by a flexible 25 residue linker. The apo structure schematic is shown in the middle. Anti-sigma factor MucA binds AlgT and prevents it from binding to the RNA polymerase for transcription. The conformation of AlgT bound to MucA (PDB 6IN7) is shown in left, where domains I and II are arranged in a closed conformation. In contrast, AlgT interacts with the DNA in the transcription initiation complex with an extended linker conformation (right; modeled from RpoE-DNA complex, PDB 6JBQ), where domain I (in blue) engages the -10 element of the promoter and takes part in promoter melting, while the domain II (in red) interacts with -35 element of the promoter.



**Figure S5. Homology model of MucP membrane bound and periplasmic domains.** A) Model of membrane bound M50 peptidase domain of MucP modeled using *de novo* modeling using evolutionary and structural constrains with PDB 3B4R. As MucP does not share overall sequence similarity to any protein for which a structure has been determined, this model was generated *de novo* using structural constrains of the active site, helical constrains, secondary structure prediction, and using a distant homolog of MucP from *M. jannaschii*. B) Homology model of the two PDZ domains in MucP modeled with PDB 2FNE. PDZ1 is connected to the membrane bound N-terminal domain (NTD) while PDZ2 is connected to the membrane bound C-terminal domain (CTD). The catalytic core is composed of the NTD (His 21 and His 25), the CTD (D402), and a zinc metal cation.

| Strain                    | Gene Locus | Nucleotide Mutation                | Location (total) | Product                           |
|---------------------------|------------|------------------------------------|------------------|-----------------------------------|
| PDO300 suppressor 1       | PA4059     | C insertion, frameshift            | 315(378)         | hypothetical protein              |
| PDO300 suppressor 2       | PA4059     | C insertion, frameshift            | 315(378)         | hypothetical protein              |
| PDO300 suppressor 3       | PA3649     | G insertion, frameshift            | 358(1353)        | MucP, MucA protease               |
|                           | PA4059     | C insertion, frameshift            | 315(378)         | hypothetical protein              |
| PDO300 ∆algD suppressor 1 | PA3541     | A1G, start codon variant           | 1(1485)          | Alg8, alginate biosynthesis       |
|                           | PA3649     | CCCCCGC deletion, frameshift       | 910_916(1353)    | MucP, MucA protease               |
|                           | PA4059     | C insertion, frameshift            | 315(378)         | hypothetical protein              |
| PDO300 ∆algD suppressor 2 | PA3541     | A1G, start codon variant           | 1(1485)          | Alg8, alginate biosynthesis       |
|                           | PA4059     | C insertion, frameshift            | 315(378)         | hypothetical protein              |
| PDO300 ∆algD suppressor 3 | PA3541     | A1G, start codon variant           | 1(1485)          | Alg8, alginate biosynthesis       |
|                           | PA3649     | TTATGGAGTCGAGCG deletion, in frame | 1022_1036(1353)  | MucP, MucA protease               |
|                           | PA4059     | C insertion, frameshift            | 315(378)         | hypothetical protein              |
|                           | PA4938     | G462A, synonymous                  | 462(1293)        | PurA, adenylosuccinate synthetase |

Table S1. Genes identified with mutations in suppressors.

| Strains Genotype or relevant features   |                                                                        | Source     |
|-----------------------------------------|------------------------------------------------------------------------|------------|
| E. coli                                 |                                                                        |            |
| DH5a                                    | cloning background, plasmid maintenance                                | Invitrogen |
| P. aeruginosa                           |                                                                        |            |
| PAO1                                    | wild type (nonmucoid)                                                  | 1          |
| PDO300                                  | PAO1 <i>mucA22</i> (mucoid)                                            | 2          |
| PAC342                                  | PAO1 ΔalgD                                                             | 3          |
| PAC437                                  | PDO300 ∆algD                                                           | This study |
| PAC541                                  | PAO1 CTX::P5 <sub>algT</sub> -optRBS-lacZ Tn7::Ptac-algT               | This study |
| PAC501                                  | PAC342 CTX::P5 <sub>algT</sub> -optRBS-lacZ Tn7::Ptac-algT             | This study |
| PAC539                                  | PDO300 CTX::P5 <sub>algT</sub> -optRBS-lacZ Tn7::Ptac-algT             | This study |
| PAC543                                  | PAC437 CTX::P5 <sub>algT</sub> -optRBS-lacZ Tn7::Ptac-algT             | This study |
| PAC559                                  | PAC539 pHERD20T-mucA                                                   | This study |
| PAC561                                  | PAC543 pHERD20T-mucA                                                   | This study |
| PAC667                                  | PAC577 pHERD20T-mucP                                                   | This study |
| PAC678                                  | PAC579 pHERD20T-mucP                                                   | This study |
| PAC577                                  | PAC539 suppressor (mucP 358 C insertion)                               | This study |
| PAC578                                  | PAC539 suppressor ( <i>algT</i> duplication 136-144<br>GAAGCCCAG)      | This study |
| PAC579                                  | PAC543 suppressor ( <i>mucP</i> deletion 910-916<br>GCGGGGG)           | This study |
| PAC581                                  | PAC543 suppressor (algT C400T)                                         | This study |
| PAC582                                  | PAC543 suppressor ( <i>mucP</i> deletion 1022-1036<br>CGCTCGACTCCATAA) | This study |
| Plasmids                                | Description                                                            | Source     |
| miniTn7-P <sub>tac</sub> -algT          | IPTG inducible <i>algT</i> in single copy                              | 4          |
| pHERD20T                                | arabinose-inducible multicopy plasmid                                  | 5          |
| pHERD20T-mucA                           | arabinose inducible <i>mucA</i> with an N-terminus HA tag              | 6          |
| pHERD20T-mucP                           | arabinose inducible <i>mucP</i> , multicopy                            | This study |
| pEXG2-mucA22                            | mucA22 allelic replacement vector                                      | 4          |
| miniCTX-optRBS-lacZ                     | promoterless-lacZ reporter with optimized RBS, single-copy             | 4          |
| miniCTX-P5 <sub>algT</sub> -optRBS-lacZ | algT promoter-lacZ reporter                                            | This study |

Table S2. Strains, plasmids, and primers used in this study.

| Primers | Sequence                                                          | Source     |
|---------|-------------------------------------------------------------------|------------|
| oAC32   | GACCCACTCTCAGGAGTGAAC                                             | 4          |
| oAC33   | CTCTTCGCTATTACGCCAGCTG                                            | 4          |
| oAC039  | ATCGCAACTCTCTACTGTTTCT                                            | 5          |
| oAC040  | TGCAAGGCGATTAAGTTGGGT                                             | 5          |
| oAC089  | TTCCACACATTATACGAGCCGGAAGCATAAAT<br>GTAAAGCAatgagtcgtgaagccctgca  | 4          |
| oAC090  | CGAGCTCGAGCCCGGGGGATCCTCTAGAGTCGA<br>CCTGCAGAtcagcggttttccaggctgg | 4          |
| oAC107  | TGAGCCCGATGCAATCCAT                                               | This study |
| oAC108  | CAACTGGTAACGCGACCAG                                               | This study |
| oAC158  | CTGGAGCTCCACCGCGGTGGCGGCCGCTCTAG<br>AACTAGTGatgcgcaggtgttccggaag  | This study |
| oAC159  | AATCATGGTCATAGCTGTTCCTCCTTACTGCAG<br>CCCGGGGggaggagcttcgagcgtccc  | This study |
| oAC276  | GGTACCCGGGGATCCTCTAGAGTCGACCTGCA<br>GGCATGCAatgagtgcgctttacatgat  | This study |
| oAC277  | TTTTCCCAGTCACGACGTTGTAAAACGACGGC<br>CAGTGCCActacagacgactcagatcgt  | This study |

\*lowercase nucleotides anneal to plasmid sequence during isothermal assembly

## REFERENCES

- Hancock REW, Carey AM. 1979. Outer membrane of *Pseudomonas aeruginosa*: heatand 2-mercaptoethanol-modifiable proteins. J Bacteriol 140:902-910.
- Mathee K, Ciofu O, Sternbrg C, Lindum PW, Campbell JIA, Jensen P, Johnsten AH, Givskov M, Ohman DE, Molin S, Hoiby N, Kharazmi A. 1999. Mucoid conversion of *Pseudomonas aeruginosa* by hydrogen peroxide: a mechanism for virulence activation in the cystic fibrosis lung. Microbiology 145:1349-1357.
- Tseng BS, Zhang W, Harrison JJ, Quach TP, Song JL, Penterman J, Singh PK, Chopp DL, Packman AI, Parsek MR. 2013. The extracellular matrix protects *Pseudomonas aeruginosa* biofilms by limiting the penetration of tobramycin. Environ Microbiol 15:2865-78.
- 4. Cross AR, Goldberg JB. 2019. Remodeling of O antigen in mucoid *Pseudomonas aeruginosa* via transcriptional repression of *wzz2*. mBio 10:e02914-18.
- Qiu D, Damron FH, Mima T, Schweizer HP, Yu HD. 2008. P<sub>BAD</sub>-based shuttle vectors for functional analysis of toxic and highly regulated genes in *Pseudomonas* and *Burkholderia* spp. and other bacteria. Appl Environ Microbiol 74:7422-6.
- Damron FH, Qiu D, Yu HD. 2009. The *Pseudomonas aeruginosa* sensor kinase KinB negatively controls alginate production through AlgW-dependent MucA proteolysis. J Bacteriol 191:2285-95.