HYPERsol: high-quality data from archival FFPE tissue for clinical proteomics

Dylan M. Marchione¹, Ilyana Ilieva², Kyle Devins², Danielle Sharpe², Darryl J. Pappin^{3,4}, Benjamin A. Garcia¹, John P. Wilson^{4*}, and John B. Wojcik^{2*†}

- 1. Epigenetics Institute, Department of Biochemistry & Biophysics, University of Pennsylvania, Philadelphia PA
- 2. Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia PA
- 3. Cold Spring Harbor Laboratory, Cold Spring Harbor NY
- 4. ProtiFi, LLC, Huntington NY john@protifi.com

†Current address: Bristol-Myers Squibb, Lawrenceville NJ

Table of Contents

	Page
Figure S1. Direct solubilization combined with ultrasonication efficiently	S-2
solubilizes FFPE samples	
Figure S2. Peptides from FFPE samples contain missed cleavages and	S-4
modifications	
Table S1. Experiment 1 Peptide Report	
Table S2. Experiment 1 Protein Report	
Table S3. Experiment 1 Unique Peptides and Protein Modifications	
Table S4. Experiment 1 Gene Ontology Terms	
Table S5. Experiment 2 Peptide Report	
Table S6. Experiment 2 Protein Report	
Table S7. Experiment 2 Protein Correlation Matrix	
Table S8. Experiment 2 Volcano Plots	
Table S9. Archival FFPE Tumor Specimen Protein Report	
Table S10. Archival FFPE Tumor Specimen Age and Number of Protein IDs	
Table S11. Raw File Names and Conditions	

^{*}Corresponding authors (jbwojcik5@gmail.com, john@protifi.com)

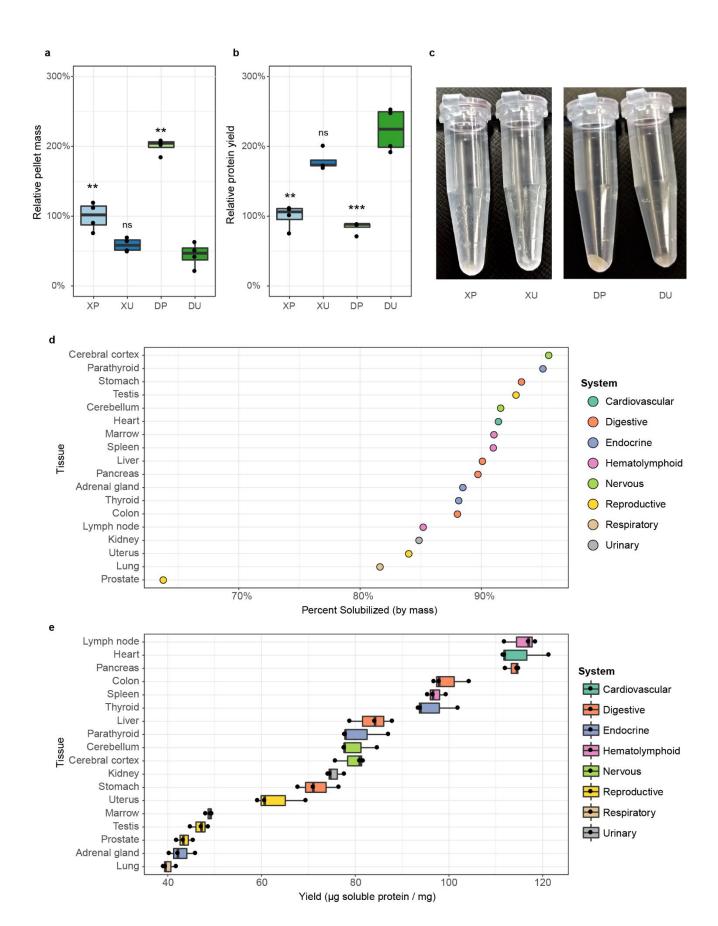
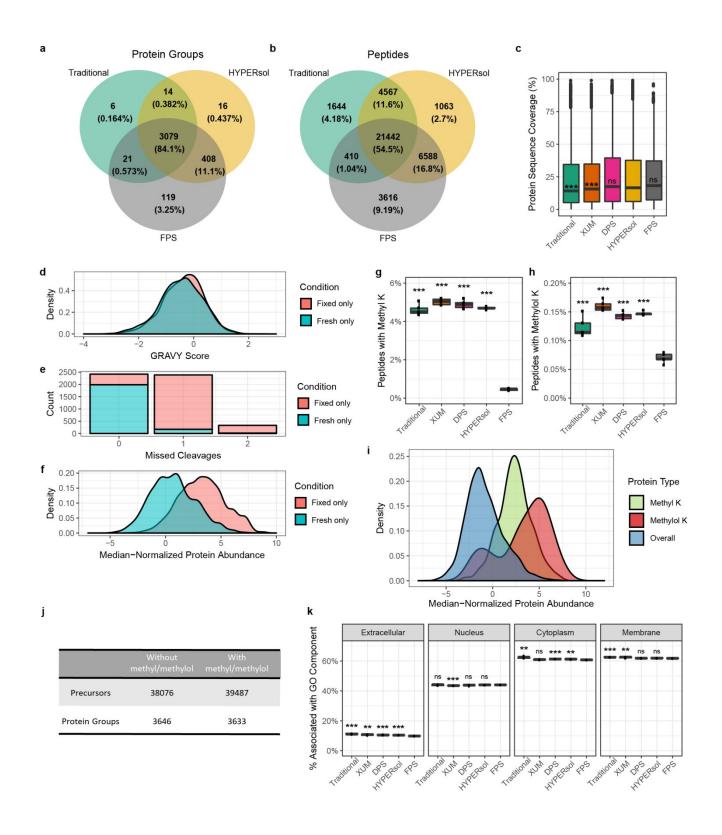



Figure S1. Direct solubilization combined with ultrasonication efficiently solubilizes FFPE samples. a). Bar graph of relative residual pellet mass, normalized to initial pellet mass. XP: xylene-ethanol, probe. XU: xylene-ethanol, ultrasonication. DP: direct, probe. DU: direct, ultrasonication. b). Bar graph of relative protein yields, normalized to initial pellet mass. For bar graphs, means \pm standard deviations are shown (n = 4), and asterisks indicate statistical significance compared to HYPERsol with Welch's two-tailed t-test and p < 0.05 = *, p < 0.01 = ***, and p < 0.001 = ***. c). Representative images of residual material after each combination of conditions. d). Scatter plot depicting the extent of solubilization of 18 FFPE human tissue samples (n = 1). e) Scatter plot depicting protein yield per milligram of FFPE across 18 human tissue samples (n = 1). Error bars depict the standard deviation from 3 technical replicates of the BCA assay.

Figure S2. Peptides from FFPE samples contain missed cleavages and modifications. a) Venn diagram illustrating the overlap among detected proteins in Traditional, HYPERsol, and FPS. b) Venn diagram illustrating the overlap among detected proteins in Traditional, HYPERsol, and FPS. c) Tukey boxplot depicting average sequence coverage across conditions. d-f) Density plots depicting grand average of hydropathy (GRAVY) scores (d), missed cleavage counts (e), and median-normalized protein abundance (f) associated with peptides that were

unique to either FFPE samples (pink) or flash-frozen samples (blue). g-h) Tukey boxplot depicting the fraction of peptides containing methyl lysine (g) or methylol lysine (h) across experimental conditions. i) Density plot depicting median-normalized protein abundance of methylated proteins (green), or methylolated proteins (red), relative to the entire dataset (blue). j) Table illustrating the effect of including methyl and methylol lysine as variable modifications on spectral library size in Spectronaut. k) Tukey boxplot depicting the fraction of identified proteins associated with each Gene Ontology (GO) Component term. The conditions were: Traditional: xylene-ethanol, probe, methanol-chloroform. XUM: xylene-ethanol, ultrasonication, methanol-chloroform. DPS: direct, probe, S-Trap. HYPERsol: direct, ultrasonication, S-Trap. FPS: flash-frozen, probe, S-Trap. For box plots, n = 5. In panel c) asterisks indicate statistical significance when compared to HYPERsol with Welch's two-tailed t-test and p < 0.05 = *, p < 0.01 = **, and <math>p < 0.001 = ***. In panel k), conditions were compared against FPS rather than HYPERsol.