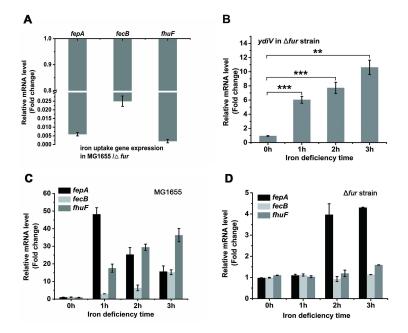

- 1 YdiV regulates Escherichia coli ferric uptake by manipulating the
- 2 DNA-binding ability of Fur in a SlyD-dependent manner
- 3 SUPPLEMENTARY DATA
- 4

Supplementary Figure S1. Expression of *ydiV* from pTrac*ydiV* and pBAD*ydiV* plasmids increases over time after induction. (**A**) The $\Delta ydiV$ strain containing pTrac*ydiV* plasmid was cultured in LB medium and induced by 0.3 mM IPTG. (**B**) The $\Delta ydiV$ strain containing pBAD*ydiV* plasmid was cultured in LB medium and induced by 1 mg/mL L-Arabinose. The mRNA level of *ydiV* was tested by qRT-PCR and compared with *gapA* expression at the same point in time. All the values shown represent mean ± standard deviation from three independent experiments.

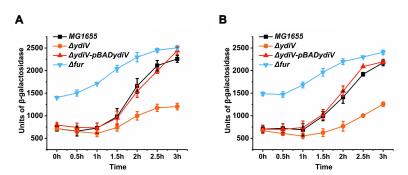
13


14

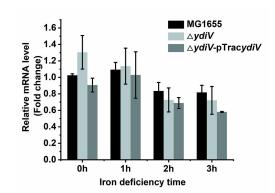
Supplementary Figure S2. *ydiV* as well as iron uptake genes show low expression under iron sufficient condition. (**A**) The expression of *ydiV* in *E. coli*. Wild-type *E.coli* MG1655 was cultured in LB medium to OD_{600} =0.6, then samples were collected at 0 to 3h synchronously with figure 1A. The amount of *ydiV* mRNA was detected by qRT-PCR and compared with 0h. (**B–D**) The iron uptake genes expression in MG1655, $\Delta ydiV$ and $\Delta ydiV$ -pTrac*ydiV* strains. Strains were cultured in LB medium to OD_{600} =0.6, then IPTG were added for *ydiV* induction. 21 Samples were collected at 0 to 3h synchronously with figure 1B–D. The amount of *fepA*, *fecB*

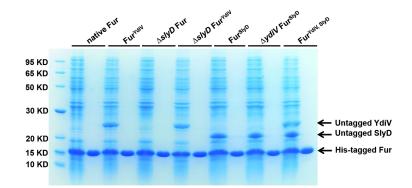
22 and *fhuF* mRNA was detected by qRT-PCR and compared with 0h. All the values shown

23 represent mean ± standard deviation from three independent experiments.


24

25

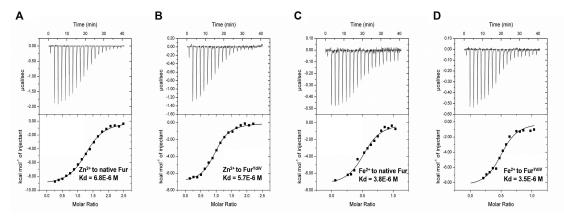

Supplementary Figure S3. The mRNA level of *ydiV* and iron uptake genes in MG1655 or Δfur 26 27 strains. (A) In LB medium, the mRNA level of iron uptake system genes in MG1655 in comparison with that in Δfur strain were detected by qRT-PCR. (**B**) The mRNA level of *ydiV* in 28 29 Δfur strain before (0h) and after (1-3h) facing iron-limited environment was detected by 30 qRT-PCR. The expression of ydiV under iron deficiency in comparison with that before iron 31 deficiency (0h) using the t-test. **, P < 0.01; ***, P < 0.001. (C-D) The iron uptake genes 32 transcription in MG1655 and Δfur strain during iron deficiency induction is monitored by 33 qRT-PCR. 200 µM 2,2'-dipyridyl was added in LB medium for generating iron-limited condition. 34 All the values shown represent mean ± standard deviation from three independent experiments. 35


Supplementary Figure S4. The *fepA* promoter (**A**) and *fhuF* promoter (**B**) activity in iron sufficient condition was tested by β -galactosidase assays. The target strain was inoculated into LB medium and cultured until OD₆₀₀=0.2. Then 0.8 mg/ml arabinose was added to activate *ydiV* gene expression. Cultures at different induction times were reserved to detect

- 42 β -galactosidase activity. The values shown as represent mean ± standard deviation from three
- 43 independent experiments.
- 44

46 **Supplementary Figure S5.** The expression of *fur* in strains with different levels of YdiV. The

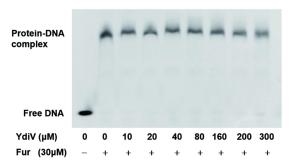
- 47 mRNA level of *fur* gene in MG1655, $\Delta y diV$ and $\Delta y diV$ -pTracydiV strains before (0h) and after
- 48 (1-3h) facing iron-limited environment was detected by qRT-PCR. Three biological replicates
- 49 were performed for each sample.
- 50



51

52 **Supplementary Figure S6.** The SDS-PAGE for native Fur and Fur co-expressed with YdiV or 53 SlyD. Protein names are marked on the top of the picture. For each set of samples, the first 54 lane represents the whole cell lysate of the protein-expressing strain, the second lane 55 represents the protein purified after Ni-NTA affinity column and Size-Exclusion 56 chromatography.

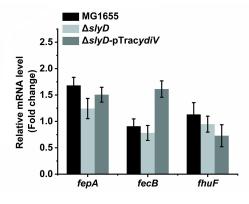
58


59 **Supplementary Figure S7.** Characterization of binding affinities of native Fur and Fur^{YdiV} for

60 metal cofactors. The dissociation constant of Zn²⁺ with native Fur (A), Zn²⁺ with Fur^{YdiV} (B),

61 Fe²⁺ with native Fur (C) and Fe²⁺ with Fur^{YdiV} (D) was detected by ITC and marked in the

62 corresponding curve.

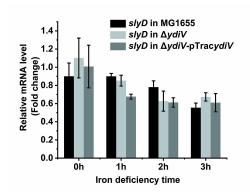

63

Supplementary Figure S8. EMSA for native Fur and Fur box DNA with different concentrations of YdiV. 30 μM of Fur was mixed with different concentrations of YdiV for 10 min and then the DNA-binding ability was examined by EMSA with 25 nM FAM-labeled Fur box DNA. The amount of YdiV added in this experiment was annotated in the figure. The experiment was repeated three times with similar results.

70

64

71


Supplementary Figure S9. The expression of iron uptake genes in MG1655, $\Delta slyD$ and $\Delta slyD$ -pTracydiV strains during iron sufficiency. The mRNA level of *fepA*, *fecB* and *fhuF* was monitored by qRT-PCR. Strains were cultured in LB medium to OD₆₀₀=0.6, then IPTG was added for *ydiV* induction. Samples were collected at 3h after induction. Three biological replicates were performed.

77

78

Supplementary Figure S10. The inhibition of flagella synthesis by YdiV in WT, Δfur and $\Delta slyD$ strains. (A) 0.5 ul overnight bacterial culture was inoculated on the LB plate containing 0.2%

- 81 agar. (B) The diameters of bacterium colonies. Four biological replicates were performed for
- 82 each sample.

Supplementary Figure S11. The expression of *slyD* in strains with different levels of YdiV. The mRNA level of *slyD* gene in MG1655, $\Delta y diV$ and $\Delta y diV$ -pTracydiV strains before (0h) and after (1–3h) facing iron-limited environment were detected by qRT-PCR. Three biological replicates were performed for each sample.

116 **Supplementary Table S1.** Bacterial strains used in this study.

<i>E.coli</i> strain	Relevant characteristics Source		
DH5a	A host for plasmid cloning.	Our lab	
MG1655	Strain K-12, <i>F⁻λ⁻ rph-1.</i>	Our lab	
MG1655 ∆ydiV	ydiV deletion mutant of MG1655.	This study	
MG1655 ∆slyD	<i>slyD</i> deletion mutant of MG1655. This stu		
MG1655 ∆ <i>fur</i>	<i>fur</i> deletion mutant of MG1655. This stud		
BL21(DE3)	F' $ompT hsdS_B$ (rB ⁻ m _B ⁻) gal dcm met (DE3). Our lab		
BL21 ΔydiV	ydiV deletion mutant of BL21(DE3). This		
BL21 ∆ <i>slyD</i>	<i>slyD</i> deletion mutant of BL21(DE3). This s		
BL21 ∆ <i>fur</i>	fur deletion mutant of BL21(DE3). This stud		
UPEC CFT073	Wild type.	Shigan Yanª	
UPEC ∆ <i>ydiV</i>	ydiV deletion mutant of UPEC CFT073. This stud		
UPEC Δ <i>slyD</i>	slyD deletion mutant of UPEC CFT073. This		
BTH101	F', cya-99, araD139, galE15, galK16, rpsL1(Str ^R), hsdR2, Beile G		
	mcrA1, mcrB1, relA1.		

¹¹⁷ ^aQilu University of Technology. ^bChinese Academy of Sciences, South China Sea Institute of

- 118 Oceanology.
- 119

120 **Supplementary Table S2.** Oligonucleotides used in this study for gene knockout. The letters

121 with underline represented homologous sequences for recombination.

Oligonucleotides	Sequence
Gene knockout	
<i>ydiV</i> -Kan-F	ATCCCTTTTAGCCGGATACTGAAAAACATCCTTCGAGAGGGACGGT
	TACCGTGTAGGCTGGAGCTGCTTC
<i>ydiV-</i> Kan-R	TTGATAGTGTAGACGGTTACTCTCGTCTTAAACACCAGCAAACAGA
	AGGGATGGGAATTAGCCATGGTCC
<i>slyD</i> -Kan-F	TTAAGCTAGTGAGTACACGGCTGCAGAATTCCGCTACAATCTGCG
	CCACTATTCTTCCCATGCTCAGGAGATATCGTGTAGGCTGGAGCT
	GCTTC
<i>slyD</i> -Kan-R	CGGTATTAGTGGCAACCGCAACCGCCGTTGCCTTTACCGCCACAG
	CAGCCTTCGCCACCGTGTTCATGACCGTGAATGGGAATTAGCCAT
	GGTCC
<i>fur</i> -Kan-F	TGTCACTTCTTCTAATGAAGTGAACCGCTTAGTAACAGGACAGATT
	CCGCGTGTAGGCTGGAGCTGCTTC
<i>fur</i> -Kan-R	CTTGCATAAAAAAGCCAACCCGCAGGTTGGCTTTTCTCGTTCAGGC
	TGGCATGGGAATTAGCCATGGTCC
Gene test	
<i>ydiV</i> -test-F	GCCCCGTGAAACCAACAAC
<i>ydiV</i> -test-R	GCCTCACTGGCGAGACTTT
<i>slyD</i> -test-F	ATATGCGGATGCTGCGAGAG
<i>slyD</i> -test-R	CATATCTCCAGGATCGGGGC
<i>fur</i> -test-F	GCGGGCTATCATTTCGAAGC
<i>fur</i> -test-R	ACCATCTTCTGATGCCCGAC

122 Supplementary Table S3. Plasmids used in this study.

Supplementary	Table 55. Plasifilus used in this study.	
Plasmids	Relevant characteristics	Source
pTKRED	Gene knockout plasmid, expression of three λ -Red	Qingsheng Qi ^a
	recombination enzyme.	
pCP20	Resistance gene remove plasmid, expression of	Qingsheng Qiª
	flippase recombination enzyme.	
pKD4	Amplification the kanamycin gene cassettes flanked by	Qingsheng Qiª
	FRT recognition target sites.	
pTrac99a	Cloning vector, <i>trc</i> promoter, <i>CoIE1</i> ori, <i>Amp.</i>	Qingsheng Qiª
pTrac <i>ydiV</i>	ydiV from MG1655 cloned into pTrac99a vector.	This study
pBAD24	Cloning vector, araBAD promoter, f1 ori, Amp.	Our lab
pBAD <i>ydiV</i>	ydiV from MG1655 cloned into pBAD24 vector.	This study
pCL1920	Cloning vector, <i>lac</i> promoter, <i>pSC101</i> ori, <i>spc.</i>	Qingsheng Qiª
pCL fepAp-lacZ	fepA promoter from MG1655 and lacZ cloned into	This study
	pCL1920 vector instead of <i>lac</i> promoter.	
pCL fhuFp-lacZ	fhuF promoter from MG1655 and lacZ cloned into	This study
	pCL1920 vector instead of <i>lac</i> promoter.	
pGL01	Expression vector, <i>T7 lac</i> promoter, N-terminal His tag,	Our lab
	PPase cleavage site between the His-tag and the	
	expressed protein, Amp.	
pGL01 <i>ydiV</i>	YdiV protein expression construct into pGL01 vector,	This study
	N-terminal His tag.	
pGL01 <i>slyD</i>	SlyD protein expression construct into pGL01 vector,	This study
	N-terminal His tag.	
pGL01 <i>fur</i>	Fur protein expression construct into pGL01 vector,	This study
	N-terminal His tag.	
pGL01 <i>fur</i> P18A	Fur P18A mutant protein expression construct into	This study
	pGL01 vector, N-terminal His tag.	
pGL01 <i>fur</i> P29A	Fur P29A mutant protein expression construct into	This study
	pGL01 vector, N-terminal His tag.	
pACYCDuet-1	Expression vector, <i>T7 lac</i> promoter, N-terminal His tag,	Our lab
	cmr.	
pACYC <i>ydiV</i>	YdiV protein expression construct into pACYCDuet-1	This study
	vector, no tag.	
pET29b	Expression vector, <i>T7 lac</i> promoter, c-terminal His tag,	Our lab
	Kan.	
pET29b <i>slyD</i>	SlyD protein expression construct into pET29b vector,	This study
	no tag.	
p <i>ydi</i> V	<i>ydiV</i> from UPEC cloned into pCL1920 vector.	This study
p <i>slyD</i>	<i>slyD</i> from UPEC cloned into pCL1920 vector.	This study
pKT25	lac promoter, <i>p15A</i> ori, N-terminal T25, <i>Kan.</i>	Beile Gao ^b
pUT18C	lac promoter, ColE1 ori, N-terminal T18, Amp.	Beile Gao ^b
pKNT25	lac promoter, <i>p15A</i> ori, C-terminal T25, <i>Kan.</i>	Beile Gao ^b
pCH363	lac promoter, pBR322 ori, C-terminal T18, Amp.	Beile Gao ^b
	· · · · · · · ·	

pKT25-zip	The leucine zipper region of the GCN4 from yeast	Beile Gao ^b		
	cloned into pKT25 vector. Positive control.			
pUT18C-zip	C-zip The leucine zipper region of the GCN4 from yeast Beile Gao ^b			
	cloned into pUT18C vector. Positive control.			
pKNT25- <i>slyD</i>	slyD from MG1655 cloned into pKNT25 vector.	This study		
pKNT25- <i>ydiV</i>	ydiV from MG1655 cloned into pKNT25 vector. This study			
pCH363- <i>ydiV</i>	ydiV from MG1655 cloned into pCH363 vector. This study			
pUT18C- <i>fur</i>	<i>fur</i> from <i>MG1655</i> cloned into pUT18C vector. This study			

^aShandong University. ^bChinese Academy of Sciences, South China Sea Institute of
Oceanology.

125

126 **Supplementary Table S4.** Oligonucleotides used in this study for plasmid construction. The

127 letters with underline represented homologous sequences for recombination.

Oligonucleotides	Sequence
pTrac99a-F	CGAGAGTAGGGAACTGCCAG
pTrac99a-R	GGTCTGTTTCCTGTGTGAAATTG
pTrac <i>ydiV-</i> F	AACAATTTCACACAGGAAACAGACCATGAAGATTTTTTTGGAGAATC
	TTTATC
pTrac <i>ydiV-</i> R	ATGCCTGGCAGTTCCCTACTCTCG TTATCGCTGAACCAACGTCGTTA
	TCTG
pBAD24-F	AAGCTTGGCTGTTTTGGCGGATGAG
pBAD24-R	GAATTCCTCCTGCTAGCCCAAAAAACG
pBAD <i>ydiV-</i> F	TTTTTTGGGCTAGCAGGAGGAATTCATGAAGATTTTTTTGGAGAATCT
	TTATC
pBAD <i>ydiV-</i> R	CTCATCCGCCAAAACAGCCAAGCTTTTATCGCTGAACCAACGTCGTT
	ATCTG
pCL1920-Np-F	TAAGCCAGCCCCGACACC
pCL1920-Np-R	ACGCGAATTCCCGACAGTAAGA
pCL <i>fepAp</i> -F	TTACTGTCGGGAATTCGCGTACCATAACCCCATGTTTACTGTG
pCL <i>fepAp-</i> R	GAATCCGTAATCATGGTCATTGTTTTATTCCTGCATTTTTGCCAC
pCL <i>fhuFp</i> -F	TTACTGTCGGGAATTCGCGTAATCCGCCACTGATCTGACG
pCL <i>fhuFp-</i> R	GAATCCGTAATCATGGTCATAATCGGGATAGTAATCTAAATGATAATG
pCL <i>lacZ</i> -F	GGCAAAAATGCAGGAATAAAACAATGACCATGATTACGGATTCACTG
	G
pCL <i>lacZ-</i> R	CGGGTGTCGGGGCTGGCTTATTATTTTTGACACCAGACCAACTGG
pGL01-F	CTCGAGTCTGGTAAAGAAAC
pGL01-R	GGATCCGGGCCCCTGGAA
pGL01 <i>ydiV</i> -F	TTCCAGGGGCCCGGATCCATGAAGATTTTTTTGGAGAATCTTTATC
pGL01 <i>ydiV-</i> R	TTCTTTACCAGACTCGAGTTATCGCTGAACCAACGTCGTTATCTG
pGL01 <i>slyD-</i> F	TTCCAGGGGCCCGGATCCATGAAAGTAGCAAAAGACCTGGTG
pGL01 <i>slyD-</i> R	TTCTTTACCAGACTCGAGTTAGTGGCAACCGCAACCG
pGL01 <i>fur-</i> F	TTCCAGGGGCCCGGATCCATGACTGATAACAATACCGCCCT
pGL01 <i>fur-</i> R	TTCTTTACCAGACTCGAGTTATTTGCCTTCGTGCGCATGTT
pGL01 <i>fur-</i> P18A-F	CCTGAAAGTAACGCTTGCCCGTTTAAAAATCCTGGAAGTTCTTCAGG

pGL01 <i>fur-</i> P18A-R	GGCAAGCGTTACTTTCAGGCCAGCTTTCTTTAGGGCG
pGL01 <i>fur-</i> P29A-F	GGCCGACAACCATCACGTCAGTGCGGAAGATTTATACAAACG
pGL01 <i>fur-</i> P29A-R	ACGTGATGGTTGTCGGCCTCCTGAAGAACTTCCAGGATTTTTAAAC
pACYCDuet-1-F	TAATTAACCTAGGCTGCTGCCAC
pACYCDuet-1-R	GGTATATCTCCTTATTAAAGTTAAACAAAATTATTTCTAC
pACYC <i>ydiV</i> -F	TTTAACTTTAATAAGGAGATATACCATGAAGATTTTTTTGGAGAATCTT
	TATC
pACYC <i>ydiV-</i> R	GTGGCAGCAGCCTAGGTTAATTATTATCGCTGAACCAACGTCGTTAT
	CTG
pET29b-F	CTCGAGCACCACCACCACCACTGAGATCCGGCTGCTAACAAAG
	С
pET29b-R	CATATGTATATCTCCTTCTTAAAGTTAAACAAAATTATTTCTAGAGGGG
	AATT
pET29b <i>slyD</i> -F	GAAGGAGATATACATATGAAAGTAGCAAAAGACCTGGTG
pET29b <i>slyD</i> -R	GTGGTGGTGGTGCTCGAGTTAGTGGCAACCGCAACCG
pCL1920-F	TAAGCCAGCCCCGACACC
pCL1920-R	AGCTGTTTCCTGTGTGAAATTGTTA
pCL1920 <i>ydiV</i> -F	ATTTCACACAGGAAACAGCTATGAAGATTTTTTTGGAGAATCTTTATC
pCL1920 <i>ydiV</i> -R	CGGGTGTCGGGGCTGGCTTATTATCGCTGAACCAACGTCGTTATCT
	G
pCL1920 <i>slyD</i> -F	ATTTCACACAGGAAACAGCTATGAAAGTAGCAAAAGACCTGGTG
pCL1920 <i>slyD-</i> R	CGGGTGTCGGGGCTGGCTTATTAGTGGCAACCGCAACCG
pUT18C-F	TAATATGGTGCACTCTCAGTACAATCTGCTC
pUT18C-R	CTCGAGATCTAGAGTCGACCTGCA
pUT18C- <i>fur</i> -F	GGTCGACTCTAGATCTCGAGATGACTGATAACAATACCGCCCT
pUT18C- <i>fur</i> -R	ACTGAGAGTGCACCATATTA TTATTTGCCTTCGTGCGCATGTT
pKNT25-F	TGCAGGTCGACTCTAGAGGATCCC
pKNT25-R	GGCATGCAAGCTTGGCGTAAT
pKNT25-slyD-F	ACGCCAAGCTTGCATGCCATGAAAGTAGCAAAAGACCTGGTG
pKNT25-slyD-R	TCCTCTAGAGTCGACCTGCA GTGGCAACCGCAACCG
pKNT25- <i>ydiV-</i> F	ACGCCAAGCTTGCATGCCATGAAGATTTTTTTGGAGAATCTTTATC
pKNT25- <i>ydiV-</i> R	TCCTCTAGAGTCGACCTGCA TCGCTGAACCAACGTCGTTATCTG
pCH363-F	ATTACGCCAAGCTTGCATGCC
pCH363-R	CATGGTCATAGCTGTTTCCTGTGTG
pCH363- <i>ydiV</i> -F	AGGAAACAGCTATGACCATGATGAAGATTTTTTTGGAGAATCTTTATC
pCH363- <i>ydiV-</i> R	GCATGCAAGCTTGGCGTAATTCGCTGAACCAACGTCGTTATCTG

Supplementary Table S5. Primers used in real-time quantitative PCR.

	-	-
Gene	Forward sequence $(5' \rightarrow 3')$	Reverse sequence $(5' \rightarrow 3')$
gapA	AACTGAATGGCAAACTGACTGGTA	TTTCATTTCGCCTTCAGCAGC
fur	ACTGACACAGCAACATCACCACG	ACTGTGGTTAGTCAGGCGAATGC
ydiV	GCAACTTACCGAGGAGCAACAT	CCTTCATTGAGATGCGGGTAA
slyD	TCACTGCGGTTGAAGACGAT	TGAACGTGACCATGAGCCAG
fepA	AACCTGACCGGTAACTCCACCA	GGCACCCAGGAAGTATCACCAC
fhuF	TGCTGGAGTTTATCCGCCTG	TCATCATCGGTTGGTTGCGA
fecB	CCCACTATCGCGAAGAGAGCAT	TAAGCGGCTGATGGTGGAAGAT

Supplementary Table S6. Representative MS analysis of His-Fur pull-down.

Accession	Gene	Coverage	Peptides	Gene product or Function
A0A0G3HUH8	fur	93.91	20	Ferric iron uptake regulon transcriptional
				repressor.
A0A0G3HNG0	ydiv	72.99	12	Anti-FlhD ₄ C ₂ factor, inactive EAL family
				protein.
A0A0G3HX96	flhd	97.41	10	Flagellar transcriptional regulator.
A0A0S1EZY8	slyD	35.71	4	Peptidyl-prolyl cis-trans isomerase.
P0ACJ8	crp	41.42	8	cAMP-activated global transcriptional
				regulator.
A0A0G3I191	fbaA	18.66	4	Class II fructose-bisphosphate aldolase.
P27250	ahr	8.55	2	Aldehyde reductase Ahr.
A0A0G3I0D1	rpIN	26.82	3	50S ribosomal protein L14.
P0A7L8	rpmA	29.41	2	50S ribosomal protein L27.
P64588	yqjl	18.35	4	Transcriptional regulator Yqjl.
P0A991	fbaB	18.57	5	Fructose-bisphosphate aldolase class 1.
P0A836	sucC	7.21	3	Succinyl-CoA ligase [ADP-forming]
				subunit beta.
A0A0G3HML4	rpmB	24.35	2	50S ribosomal protein L28.
A0A0G3HMH5	gatD	9.53	3	Galactitol-1-phosphate
				5-dehydrogenase.
P06610	btuE	18.03	2	Vitamin B12 transport periplasmic protein
				BtuE.
P62399	rplE	22.34	3	50S ribosomal protein L5.