Supplementary Information for:

Improvements and inter-laboratory implementation and optimization of blood-based single-locus age prediction models using DNA methylation of the *ELOVL2* promoter

Imène Garali^{1,2*}, Mourad Sahbatou^{3*}, Antoine Daunay⁴, Laura G. Baudrin^{2,4}, Victor Renault¹, Yosra Bouyacoub^{2,4}, Jean-François Deleuze¹⁻⁵ & Alexandre How-Kit^{3†}

¹ Laboratory for Bioinformatics, Foundation Jean Dausset – CEPH, Paris, France

² Laboratory of Excellence GenMed, Paris, France

³ Laboratory for Human Genetics, Foundation Jean Dausset – CEPH, Paris, France

⁴ Laboratory for Genomics, Foundation Jean Dausset – CEPH, Paris, France

⁵ Centre National de Recherche en Génomique Humaine, CEA, Institut François Jacob, Evry, France

* Both authors contributed equally to this work.

⁺*Correspondence to:*

Alexandre How-Kit, Ph.D., Laboratory for Genomics, Foundation Jean Dausset - CEPH, Paris, F-75010, France, Tel.: +33-(0)1- 53725146, email: <u>alexandre.how-kit@fjd-ceph.org</u>

Supplementary Figure 1. Variation of the DNA methylation of the 7 CpGs located in the *ELOVL2* promoter in the blood samples from the four previously published studies.

Supplementary Figure 2. *ELOVL2* DNA methylation pyrosequencing assay linearity assessment. **A**. DNA methylation patterns of the 7 analyzed CpGs in *ELOVL2* promoter using 0%, 25%, 50%, 75% and 100% DNA methylation standards (the 0% and 100% DNA methylation standards were purchased from Qiagen and mixed in 3:1, 1:1 and 1:3 equimolar ratios to obtain 25%, 50% and 75% DNA methylation standards). **B**. Boxplot of the expected and obtained DNA methylation values for the 7 analyzed CpGs in the *ELOVL2* promoter. The linear and polynomial regression curves and their corresponding equations and coefficients of determination R² are indicated. Experiments were performed in triplicate and vertical bars in the line graphs represent standard deviation.

Supplementary figure 3. Effect of PCR and pyrosequencing replicate experiments on *ELOVL2* promoter DNA methylation of the independent testing set (100 samples). **A**. Description of the experimental workflow. **B**. Correlation plots of DNA methylation values of each CpG obtained between every PCR and pyrosequencing replicate. The Pearson R coefficients and scatterplots between two replicates (A1, A2, B1, B2, C1 and C2) are given for each CpG. *** indicates p-value < 0.001 for the correlation tests.

CpG1	0.93***	0.87***	0.86***	0.89***	0.91***	0.87***
	CpG2	0.88***	0.85***	0.86***	0.89***	0.85***
		CpG3	0.91***	0.85***	0.90***	0.90***
		Í	CpG4	0.83***	0.88***	0.90***
	1			CpG5	0.88***	0.85***
					CpG6	0.91***
/						CpG7

Supplementary Figure 4. Correlation matrix of DNA methylation of the seven CpGs from the *ELOVL2* promoter used in our study using the training set. *** indicates *p*-value < 0.001

Supplementary Figure 5. Violin plots showing the distribution of Pearson correlation coefficients (CORR), mean absolute deviations (MAD) and root mean square errors (RMSE) obtained with the training and testing sets for the 17 018 age prediction models based on DNA methylation of the *ELOVL2* promoter. For each indicator, the values were grouped according to the statistical approach used.

Supplementary Figure 6. Scatterplots of predicted age and chronological age of the training and testing samples obtained with *ELOVL2* age-prediction models based on seven different statistical approaches. The plotted data were obtained from the combination of CpGs giving the best age prediction accuracy on the testing set. Z-P1, Zbiec-Piekarska model ¹ using multiple linear regression; MQR, multiple quadratic regression; SVM, support vector machine with radial kernel (r), linear (I) and polynomial (p) functions; GBR, gradient boosting regressor; mMDA, missMDA. Four out-of-scale values (y-axis) are missing for SVMp.

Supplementary Figure 7. Average DNA methylation of the 7 CpGs located in the *ELOVL2* promoter from the blood samples of the four previously published studies (Park ², Bekaert ³, Cho ⁴ and Zbiec-Pierkarska ⁵) and our independent testing set according to age groups in 5 year increments. At least 2 individuals are present in each age group.

Supplementary Figure 8. Effect of PCR and/or pyrosequencing replicate experiments on age prediction performances in an independent testing set of 100 blood samples. For each tested statistical model, the Pearson R correlation coefficient (**A**), the mean absolute deviation (**B**) and the root-mean-square error (**C**) of the predicted and chronological ages are shown according to the increased number of PCR and/or pyrosequencing replicates. The estimators are given for the combinations of CpGs giving the best age prediction performances (see Table 3).

Supplementary Figure 9. Principal component analysis (PCA) biplot of the first two principal component coefficients, observations and observed variables using the training dataset (1028 individuals). The PCA biplot shows both PC scores of samples (dots) and loadings of variables (vectors). The further away these vectors are from a PC origin, the more influence they have on that PC. Loading plots also hint at how variables correlate with one another.

Supplementary Table 1. Description of the samples and dataset used

Study	Blood S	amplesª	Traini	ng Set ^b	Testing Set (I) ^b		Independent Testing Set (II) ^c	
Study	N	Age range	N	Age range	N	Age range	N	Age range
Bekaert ³	206	0-91	150	0-89	56	0-75	-	-
Zbiec-Piekarska ⁵	420	2-75	299	2-75	121	2-75	-	-
Park ²	765	11-90	507	11-88	185	11-88	-	-
Cho ⁴	100	20-74	72	20-74	23	22-74	-	-
Daunay ⁶ & Garali	-	-	-	-	-	-	100	19-65
Total	1491	0-91	1028	0-91	385	0-88	100	19-65

^a The total number of samples from the original studies are indicated, regardless of the original training/testing sets.

^b New training and testing sets used in our study and randomly generated.

^c Independent validation set from the same samples analyzed in ⁶ but totally reprocessed in our study.

Supplementary Table 2. List of PCR and pyrosequencing primers used in the different studies

Study	Forward PCR Primer	Reverse PCR Primer	Pyrosequencing Primer	Sequence to Analyse
Zbiec-Piekarska et al., 2015	Biotin-GGGGAGTAGGGTAAGTGAGG	AACAAAACCATTTCCCCCTAATAT	АСААССААТАААТАТТССТААААСТ	$CCR_1TGAAACR_2TTGAAGACCR_3CCR_4CR_5CR_6AAACCR_7AC$
Bekaert et al., 2015	Biotin-AGGGGYGTAGGGTAAGTGAG	АААСССААСТАТАААСААААССАА	ΑΑΤΑΑΑΤΑΤΤΟΟΤΑΑΑΑCTCC	$\underline{R_1} TAAA\underline{CR_2} TTAAAC\underline{CR_3} C\underline{CR_4} C\underline{R_5} C\underline{R_6} AAAC\underline{CR_7} A\underline{CR} C\underline{CR} ACTAAACCTA$
Park et al., 2016	Biotin-GGGGAGTAGGGTAAGTGAGG	AACAAAACCATTTCCCCCTAATAT	АСААССААТАААТАТТССТААААСТ	$CCR_1TGAAACR_2TTGAAGACCR_3CCR_4CR_5CR_6AAACCR_7AC$
Cho et al., 2017	AGGGGAGTAGGGTAAGTGAGG	Biotin-AACCATTTCCCCCTAATATATACTTCA	GGGAGGAGATTTGTAGGTTT	AGTYGGYGTY7GGTTTY5GY5GY4GGY3GGTTTAAY2GTTTAY1GGA
Garali et al., 2020	Biotin-GGGGAGTAGGGTAAGTGAGG	AACAAAACCATTTCCCCCTAATAT	АСААССААТАААТАТТССТААААСТ	CCR₁TGAAACR₂TTGAAGACCR₃CCR₄CR₅CR ₆ AAACCR ₇ AC

				Linear				Quadratic			Exponential					
CpG	Chromosome location (GRCh38)	R²	<i>p</i> -value	Corr. Coeff. R	MAD	RMSE	R²	<i>p</i> -value	Corr. Coeff. R	MAD	RMSE	R ²	<i>p</i> -value	Corr. Coeff. R	MAD	RMSE
1	Chr6: 11,044,661	0.821	<2,2e-16	0.900	6.806	9.425	0.766	<2,2e-16	0.884	7.606	10.201	n,a	<2e-16	0.872	8.840	11.141
2	Chr6: 11,044,655	0.774	<2,2e-16	0.897	7.284	9.595	0.707	<2,2e-16	0.885	7.941	10.296	n,a	<2e-16	0.881	9.256	11.373
3	Chr6: 11,044,647	0.724	<2,2e-16	0.856	8.796	11.171	0.743	<2,2e-16	0.867	8.207	10.748	n,a	<2e-16	0.861	8.353	11.033
4	Chr6: 11,044,644	0.716	<2,2e-16	0.865	8.379	10.891	0.680	<2,2e-16	0.854	8.839	11.380	n,a	<2e-16	0.844	9.613	12.037
5	Chr6: 11,044,642	0.781	<2,2e-16	0.918	6.545	8.690	0.723	<2,2e-16	0.899	7.492	9.679	n,a	<2e-16	0.894	8.233	10.383
6	Chr6: 11,044,640	0.820	<2,2e-16	0.927	6.094	8.114	0.850	<2,2e-16	0.941	5.141	7.315	n,a	<2e-16	0.941	5.461	7.523
7	Chr6: 11,044,634	0.764	<2,2e-16	0.887	7.702	9.955	0.794	<2,2e-16	0.907	6.821	9.085	n,a	<2e-16	0.910	6.479	8.979

Supplementary Table 3. Comparison of linear, quadratic and exponential regressions of the chronological age of the training set on the DNA methylation of each CpG in the *ELOVL2* promoter.

The estimators of the three types of regressions giving the best performances have been bolded.

Methods Combinations ^{1,2}	R	MAD	RMSE
GBR + SVMr + MQR	0.955	4.364	6.363
GBR + SVMr	0.955	4.368	6.371
GBR + MQR	0.955	4.397	6.389
SVMr	0.953	4.410	6.492
SVMr + MQR	0.955	4.419	6.420
GBR	0.955	4.426	6.398
GBR + SVMI + SVMr + MQR	0.955	4.446	6.426
GBR + SVMI + SVMr	0.954	4.452	6.439
GBR + SVMr + mMDA + MQR	0.954	4.462	6.446
GBR + SVMr + mMDA	0.954	4.479	6.473
GBR + SVMI + MQR	0.954	4.531	6.480
SVMI + SVMr + MQR	0.953	4.547	6.512
GBR + mMDA + MQR	0.954	4.557	6.509
GBR + SVMI + SVMr + mMDA + MQR	0.953	4.559	6.516
SVMr + mMDA + MQR	0.953	4.568	6.541
MQR	0.953	4.574	6.559
GBR + SVMI	0.953	4.582	6.523
GBR + SVMI + SVMr + mMDA	0.953	4.595	6.560
SVMI + SVMr	0.952	4.611	6.585
GBR + mMDA	0.953	4.622	6.584
SVMr + mMDA	0.952	4.652	6.648
GBR + SVMI + mMDA + MQR	0.952	4.664	6.598
SVMI + SVMr + mMDA + MQR	0.952	4.679	6.626
GBR + SVMI + mMDA	0.951	4.751	6.693
SVMI + MQR	0.951	4.762	6.676
SVMI + SVMr + mMDA	0.950	4.779	6.739
mMDA + MQR	0.951	4.791	6.725
SVMI + mMDA + MQR	0.949	4.882	6.805
SVMI	0.945	5.130	7.058
SVMI + mMDA	0.944	5.167	7.119
mMDA	0.943	5.245	7.233

Supplementary Table 4. Age prediction performances obtained for the testing set by averaging the ages predicted with the different statistical models tested.

¹ for each statistical model, the ages were predicted using the combination of CpG giving the best age prediction performance according to the testing (V) set (see Table 2)

² age prediction performances of each statistical approach alone are indicated in bold.

Model p	Best age-prediction performance from Training	Number	CpG combination	Inder 1 replicate	Independent Testing set (1 replicates: 1 PCR and 1 PSQ/PCR)		
	(T)/Testing (V) sets ¹	of CpGs		R	MAD	RMSE	
Zbiec- Pierkarska 1	-	2	CpG _{5, 7}	0.880	5.445	6.870	
MOR	т	9	$CpG_{12\&46}\&CpG_{2^2,4^2,6^27^2}$	0.912	6.602	7.712	
MQR	V	8	$CpG_{4\text{-}6} \And CpG_{2^2\text{-}4^2\text{, }6^2\text{-}7^2}$	0.908	5.667	6.901	
C) / M / r	т	6	CpG _{1-3, 5-7}	0.906	6.666	7.950	
SVIVIr	V	5	CpG _{2-3, 5-7}	0.901	6.128	7.478	
C) (N 4)	т	7	CpG ₁₋₇	0.908	7.911	9.041	
SVIVII	V	5	CpG ₂₋₆	0.906	7.406	8.581	
DCD	т	7	CpG ₁₋₇	0.899	6.727	7.864	
BGR	V	5	CpG _{2, 4-7}	0.898	6.177	7.407	
	т	3	CpG _{1, 5-6}	0.905	7.973	9.094	
mMDA	V	3	CpG _{2, 5-6}	0.905	8.172	9.308	

Supplementary Table 5. Age prediction performances of the different statistical models on the independent testing set using the same CpG combinations as defined in Table 2.

¹ For each statistical model, both CpG combinations giving the best age prediction accuracy according to the training (T) and testing (V) sets were included in the table.

Method combination ¹	11	1 PCR and 1 PSQ/PCR (1 replicate)			3 PCR and 2 PSQ/PCR (6 replicates)		
	R	MAD	RMSE	R	MAD	RMSE	
MQR + SVMr	0.905	4.717	6.189	0.927	4.156	5.461	
MQR + SVMr + GBR	0.904	4.753	6.234	0.925	4.256	5.532	
SVMr	0.902	4.784	6.287	0.925	4.174	5.515	
MQR	0.904	4.786	6.225	0.927	4.232	5.504	
MQR + GBR	0.903	4.797	6.267	0.925	4.316	5.582	
SVMr + GBR	0.902	4.798	6.296	0.923	4.311	5.593	
MQR + SVMr + SVMI + GBR	0.905	4.889	6.293	0.926	4.436	5.658	
GBR	0.899	4.892	6.397	0.920	4.469	5.741	
MQR + SVMr + SVMI	0.906	4.927	6.307	0.927	4.434	5.671	
MQR + SVMr + GBR + mMDA	0.905	4.966	6.350	0.926	4.524	5.729	
SVMr + SVMl + GBR	0.905	4.966	6.356	0.925	4.528	5.731	
MQR + SVMI + GBR	0.906	4.971	6.346	0.926	4.539	5.756	
MQR + SVMr + mMDA	0.906	5.030	6.386	0.927	4.556	5.771	
MQR + SVMr + SVMI + GBR + mMDA	0.906	5.058	6.413	0.926	4.623	5.825	
SVMr + SVMI	0.904	5.062	6.429	0.926	4.573	5.794	
SVMr + GBR + mMDA	0.905	5.067	6.434	0.925	4.644	5.829	
MQR + GBR + mMDA	0.906	5.082	6.433	0.926	4.665	5.862	
MQR + SVMI	0.906	5.091	6.422	0.927	4.658	5.856	
SVMI + GBR	0.905	5.116	6.468	0.925	4.728	5.921	
MQR + SVMr + SVMl + mMDA	0.906	5.134	6.475	0.927	4.698	5.896	
SVMr + SVMl + GBR + mMDA	0.905	5.157	6.503	0.926	4.743	5.930	
MQR + SVMI + GBR + mMDA	0.906	5.174	6.504	0.926	4.775	5.964	
SVMr + mMDA	0.904	5.212	6.557	0.926	4.766	5.954	
MQR + mMDA	0.906	5.262	6.568	0.927	4.859	6.034	
GBR + mMDA	0.905	5.295	6.612	0.925	4.920	6.095	
SVMr + SVMI + mMDA	0.904	5.299	6.641	0.926	4.885	6.074	
MQR + SVMI + mMDA	0.905	5.337	6.649	0.926	4.953	6.137	
SVMI + GBR + mMDA	0.905	5.353	6.670	0.925	4.989	6.166	
SVMI	0.902	5.536	6.874	0.923	5.197	6.375	
SVMI + mMDA	0.902	5.728	7.049	0.923	5.422	6.583	
mMDA	0.902	5.936	7.240	0.923	5.654	6.806	

Supplementary Table 6. Age prediction performances obtained for the independent testing set by averaging the ages predicted with the different statistical models tested.

¹ age prediction performances of each statistical approach alone are indicated in bold.

Pagrossion equation1	n valuo	Varian	Variance Inflation Factor (VIF) analysis				
Regression equation-	<i>p</i> -value	Variables	Tolerance	VIF			
		1 CpG ₁	0.092740254	10.782804			
		2 CpG ₂	0.012957728	77.174025			
Predicted age = 0.960664 +		3 CpG ₄	0.009571836	104.473169			
$CpG_2 + 0.22014 \times CpG_4 + 0.275027$		4 CpG₅	0.162888166	6.139181			
x CpG ₅ - 1.098227 x CpG ₆ -	< 2.2e-16	5 CpG ₆	0.009365895	106.770364			
$0.006766 \times CpG_2^2 - 0.002802 \times CpG_2^2 + 0.013366 \times CpG_2^2 + 0.013366 \times CpG_2^2 + 0.013366 \times CpG_2^2 + 0.002802 \times CpG_2^2 \times CpG_2^2 + 0.002802 \times CpG_2^2$		6 CpG ₂ ²	0.01799795	55.561883			
0.002782 x CpG ₇ ²		7 CpG ₄ ²	0.012631093	79.169715			
		8 CpG ₆ ²	0.009072519	110.222973			
		9 CpG ₇ ²	0.102189798	9.785713			
		1 CpG ₄	0.009778364	102.266595			
Predicted age = 2.6012533 +		2 CpG₅	0.17607202	5.679494			
0.5762165 x CpG₄ + 0.3983775 x		3 CpG ₆	0.010169183	98.336313			
$CpG_5 - 0.9083127 \times CpG_6 +$	< 2.20.16	4 CpG ₂ ²	0.196257787	5.095339			
$CpG_3^2 - 0.0057862 \times CpG_4^2 +$	< 2.20-10	5 CpG ₃ ²	0.107450535	9.306608			
0.0126432 x CpG ₆ ² + 0.0032594 x		6 CpG ₄ ²	0.013652849	73.244786			
CpG ₇ ²		7 CpG ₆ ²	0.009591711	104.256689			
		8 CpG ₇ ²	0.104977366	9.525863			
Predicted age = 13.4944951 -		1 CpG ₆	0.01931145	51.782739			
0.8224263 x CpG ₆ - 0.0001978 x	< 2.20.16	2 CpG ₄ ²	0.20245162	4.939452			
$CpG_{4^2} + 0.0143482 \times CpG_{6^2} + 0.0143482 \times CpG_{6^2} + 0.0044289 \times CrG_{6^2}$	× 2.2e-10	3 CpG ₆ ²	0.01943566	51.451811			
0.0044380 x CpG7 ²		4 CpG ₇ ²	0.12580673	7.9487			

Supplementary Table 7. Detection of multicollinearity in the three MQR models presented in Tables 2 and 3.

¹ The equations use DNA methylation values expressed in percentage.

References

- 2 Zbiec-Piekarska, R. *et al.* Examination of DNA methylation status of the ELOVL2 marker may be useful for human age prediction in forensic science. *Forensic Sci Int Genet* 14, 161-167, doi:10.1016/j.fsigen.2014.10.002 (2015).
- 2 Park, J. L. *et al.* Identification and evaluation of age-correlated DNA methylation markers for forensic use. *Forensic Sci Int Genet* 23, 64-70, doi:10.1016/j.fsigen.2016.03.005 (2016).
- 3 Bekaert, B., Kamalandua, A., Zapico, S. C., Van de Voorde, W. & Decorte, R. Improved age determination of blood and teeth samples using a selected set of DNA methylation markers. *Epigenetics* 10, 922-930, doi:10.1080/15592294.2015.1080413 (2015).
- 4 Cho, S. *et al.* Independent validation of DNA-based approaches for age prediction in blood. *Forensic Sci Int Genet* 29, 250-256, doi:10.1016/j.fsigen.2017.04.020 (2017).
- 5 Zbiec-Piekarska, R. *et al.* Development of a forensically useful age prediction method based on DNA methylation analysis. *Forensic Sci Int Genet* 17, 173-179, doi:10.1016/j.fsigen.2015.05.001 (2015).
- 6 Daunay, A., Baudrin, L. G., Deleuze, J. F. & How-Kit, A. Evaluation of six blood-based age prediction models using DNA methylation analysis by pyrosequencing. *Sci Rep* 9, 8862, doi:10.1038/s41598-019-45197-w (2019).