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9th Apr 20201st Editorial Decision

RE: Manuscript MSB-20-9506, "Integrated regulatory models for inference of subtype-specific 
suscept ibilit ies in glioblastoma" 

Thank you again for submit t ing your work to Molecular Systems Biology. We have now heard back 
from the three referees who agreed to evaluate your manuscript . As you will see below, the 
reviewers raise substant ial concerns on your work, which unfortunately preclude its publicat ion in 
Molecular Systems Biology. 

The reviewers appreciate that inTRINSIC potent ially represents a useful tool for future analyses. 
However, they point out that as it stands the study seems rather preliminary and they are not 
convinced that the advantages and clinical relevance of inTRINSIC and the related findings are well 
supported. The reviewers rated the conclusiveness of the study as Medium/Low and are not 
support ive of publicat ion. As such, at this point we see no choice but to return the manuscript with 
the message that we cannot offer to publish it . 

Nevertheless, as the reviewers did acknowledge that the approach is potent ially relevant , we would 
not be opposed to considering a substant ially revised and extended manuscript based on this work, 
provided that the issues raised by the reviewers can be convincingly addressed. Some of the more 
essent ial issues that would need to be addressed include: 

- More recent datasets that more accurately reflect  GBM subtypes need to be used (see related
comments of reviewer #1 and #2).
- As reviewer #1 ment ions, the network should be compared to a network built  using an
independent dataset.
- A comparison to exist ing approaches is warranted in order to clearly demonstrate the superiority
and advantages of inTRINSIC.
- The clinical/t ranslat ional relevance of the proposed approach (e.g. applicability to tumor
heterogeneity data derived from single-cell analyses, relevance for therapeut ic development etc.)
needs to be better clarified and supported.
- Reviewers #1 and #2 point  out that  a major limitat ion at  this point  is the lack of follow up
validat ions of the model predict ions. Inclusion of such validat ions would significant ly enhance the
impact of the study. We understand that this requires a significant investment and may prove
challenging and we would be happy to discuss with you what type of analyses would be feasible to
perform in this direct ion.

All three reviewers provide construct ive suggest ions on how to address the points above and
improve the study. We recognize that thoroughly addressing the referees' concerns would involve
substant ial further analyses with unclear outcome and we understand if in light  of the substant ial
revisions required, you prefer to submit  your study elsewhere. As ment ioned above, if you are
interested in a re-submission, I would be happy to look at  a preliminary point  by point  response
delineat ing how the issues raised can be addressed, so that we can work together on how to move
forward. 



A resubmit ted work would have a new number and receipt date. It will be editorially evaluated 
afresh and its novelty will be re-assessed at the t ime of submission. As you probably understand, 
we can give no guarantee about its eventual acceptability. If you do decide to follow this course 
then we would ask you to enclose with your re-submission a point-by-point response to the points 
raised in the present review. 

I am sorry that  the review of your work did not  result  in a more favorable outcome on this occasion, 
but  I hope that  you will not  be discouraged from sending your work to Molecular Systems Biology in 
the future. In any case, thank you for t he opportunity to examine t his work. 

_______________________ 

Reviewer #1: 

Summary 

Liu and colleagues describe an in silico approach termed 'integrat ive modeling of t ranscript ion 
regulatory interact ions for systemic interference of suscept ibility in cancer (inTRINSiC). The 
authors focus on describing transcript ion factor act ivity and their interplay in the malignant brain 
cancer glioblastoma, that can be classified into 4 subtypes (classical, mesenchymal, proneural, 
neural) by t ranscript ional/mutat ional profiling (as published by Verhaak et al., Cancer Cell, 2010). 
The presented results show overlap as well as different ial regulatory act ivit ies of t ranscript ion 
factors according to glioblastoma subtype classificat ion, which may causally link this act ivity to 
tumor subtype format ion, also potent ially leading to computat ional ident ificat ion of glioblastoma 
molecular vulnerabilit ies (in a subtype-specific manner). MYBL2 is presented as an example of a 
potent ial
'drug target ' as based on its regulatory role ident ified in proneural glioblastoma. 

General remarks 

While computat ionally-ident ifying regulatory t ranscript ion factor networks fueling cancer growth is 
not novel per se, the inTRINSiC approach entails several innovat ive elements with regards to 
integrat ing gene and protein-based databases, non-linear regression analysis, and vector-based 
algorithms. The methodology appears sound from the perspect ive of an experimental biologist (I 
cannot comment on the mathemat ical aspects). The paper is of interest for the brain and 
computat ional cancer research communit ies. While I am convinced that the presented 
computat ional modelling provides a good basis for further development and validat ion, my major 
concerns revolve around the versat ility, t imeliness, and potent ial t ranslat ional aspects of the 
described in silico approach. 

Major points 



- The study appears to be based on gene expression data of The Cancer Genome At las Program
(TCGA) of the year 2014. Can the authors clarify the relevance of the accessed data six years later
(what changed since, is an update required)?

- How much overlap/difference can be found in the acitvit ies and networks of subtype-specific
t ranscript ion factors in an independent data set such as the Chinese Glioma Genome At las
(CGGA). A Venn diagram of this comparison should be provided and discussed.

- The combined focus on 'Verhaak subtypes' and 'bulk' gene expression data can be a limitat ion in
terms of t ranslat ional relevance. In part icular, the current study does not take recent glioblastoma
gene expression data at  the single level into account. Key studies from the past 3 years should be
cited (e.g., Darmanis et  al., Cell Rep. 2017, Neftel et  al., Cell, 2019) and the results should be
discussed in the context  of this recent literature. Along this line, the model would gain in
significance if cellular plast icity at  the single cell level as observed in pat ient  tumors (Neftel et  al.,
2019; note the presence of mesenchymal, neural, astrocyte, and oligodendrocyte progenitor-like cell
states) could be linked to t ranscript ion factor act ivity revealed by inTRINSiC.

- Funct ional characterizat ion, for example based on MYBL1B loss-of-funct ion and its effect  on the
proneural (versus other) signatures in pat ient-derived glioblastoma cell models would be required to
strengthen the claim of ident ifying a potent ial proneural glioblastoma drug target. Without
employing an experimental-computat ional cross-validat ion strategy, the authors should consider
'toning down' their claim of ident ifying 'drug targets' and current limitat ions of their approach
(including modelling assumptions) should be more clearly highlighted in the discussion (an adequate
limitat ion paragraph is current ly lacking).

Minor points 
- Why is the classical subtype flagged as an except ion in terms of negat ive feedback mechanisms
(changing regulatory behavior of t ranscript ion factors)? Wouldn't  these feedback loops be
expected independent of subtype profile? Can a sound explanat ion be provided?

- Why are immunotherapies (including Car T cells) described in the introduct ion - they are of no
further importance for the narrat ive?

- Sottoriva et  al., PNAS, 2013 should be cited for (first) ident ifying mixed glioblastoma subtype
profiles in pat ient  tumors (in addit ion to Patel et  al., Science, 2014).

- The statement 'see materials and methods for details' should be removed and the key
methodological concepts should be sufficient ly and adequately explained throughout the narrat ive
(ideally in a language that is also accessible for non-experts).

- Results: what is the context  of the 'brain tumor cell line' data - a citat ion and introduct ion of the
database (CCLE?) appears to be lacking?

- Page 3: replace 'logarithm space' with 'logarithmic space'.

- Page 6: correct  'mechanisms etc.33.'

- Figure 1: please introduce the sMAPE acronym.

- Figure 3: suggest to replace 'unique regulatory profiles with 'unique transcript ion factor regulatory



gene expression profiles' in the figure t it le. 

Reviewer #2: 

Manuscript  Review 

Date: 22 Mar 2020 
Manuscript  Number: MSB-20-9506 
Manuscript  Tit le: Integrated regulatory models for inference of subtype-specific suscept ibilit ies in
glioblastoma 

In this manuscript  the authors develop a computat ional method that infers t ranscript ional
regulatory networks, which they refer to as Integrat ive Modeling of Transcript ion Regulatory
Interact ions for Systemic Inference of Suscept ibility in Cancer (InTRINSiC). By developing this
method, the authors aim to clarify the underlying regulatory mechanisms associated with the
dist inct  molecular GBM subtypes, i.e., proneural (PN), classical (CL), neural (NE), and mesenchymal
(MES). InTRINSiC ut ilizes a non-linear, thermodynamically-based regression to ident ify the TF-
target gene relat ionships. The authors create a "basal" t ranscript ional regulatory network model
that includes candidate TF-target gene pairs. Using this method, the authors analyze bulk-level
omic-scale data of GBM samples (from TCGA) and ident ified dist inct  t ranscript ional regulatory
network architecture associated with each GBM subtype. 

In addit ion, the authors then connect this t ranscript ional network with a concomitant ly designed
protein signaling network which they use to infer what effects gene expression perturbat ions have
at the protein signaling level by incorporat ing a predict ive algorithm, based on an exponent ial
ranking algorithm, which allows the user to predict  how modulat ing TF expression will alter protein-
level network states. The authors subsequent ly use this capability to ident ify "essent ial" TFs by
simulat ing informat ion flow (gene expression to protein signaling state). From this analysis, they
were able to ident ify essent ial TFs like NFE2 and MYBL2, which were consistent with previously
generated experimental data in CCLE and DepMap. 

The authors have developed an interest ing method that provides users with a tool to invest igate
the gene- to protein-level network architecture of a tumor as well as test  and predict  how coarse-
grained perturbat ions of various TFs would affect  the expression-phenotype of a tumor. The
motivat ion of understanding the regulatory mechanisms associated with tumor heterogeneity,
part icularly in GBM, is indeed a highly relevant issue as this impedes treatment of the tumor. While
the authors present a potent ially useful tool, there are significant concerns related to the narrow
context  in which this tool is presented and the complete lack of experimental validat ions of model
predict ions. 

Major concerns/comments: 

• The authors use the original classificat ion of GBM tumors defined by Verhaak et  al. (2010).
However, more recent ly, the four molecular subtypes was reduced down to three, where the original
"neural" subtype was found to be an art ifact  of sampling of the leading edge of the tumor, which
included non-malignant brain t issue (Wang et  al. 2017). I'm concerned that the t ranscript ional
network architecture results may change using the revised subtype annotat ion.



• I am not fully convinced that the claims made by the author that their results "explain gene
expression variat ion in GBM" ("Transcript ion factor repurposing may be responsible for shaping
subtype-specific t ranscriptomes" sect ion). To a certain degree, yes, these results characterize
dist inct , bulk-level expression differences between subtypes, but there are other factors
contribut ing to gene expression variability. One primary factor driving expression variability is the
stochast ic nature of gene expression, which is reflected at  the single-cell level. The results
presented infer dist inct  TF-gene and TF-protein interact ions that dist inguish GBM subtypes, which
is one level of variat ion. However, because there are mult iple levels of variat ion and heterogeneity in
biology, the earlier statement is only somewhat substant iated. Perhaps a clarificat ion in that the
variat ion being characterized by the authors' analysis is at  the level of GBM subtypes, would help
clarify this claim.

• Mult iple regulatory network inference algorithms have been developed and have been used to
ident ify networks within the context  of GBM, e.g. Plaisier et  al. Cell Systems 2016 (which was
surprisingly not cited in this manuscript). In this example, the authors incorporated protein-, mRNA,
miRNA, and mutat ional data to construct  a mult i-omic scale t ranscript ional regulatory network,
encompassing a larger scope of data modalit ies and genomic features than what is presented here.
Here, the authors focus on gene-expression and protein-level characterizat ion, which are important
aspects governing transcript ional state. However, mutat ional profiles certainly impact the
transcript ional heterogeneity pervasive in GBM tumors, which is something that is not addressed by
the authors. As the authors are mot ivated to understand the regulatory mechanisms underlying
GBM tumor heterogeneity, I am surprised why such informat ion (mutat ional profiling of some kind) is
not considered at  all.

• Another major concern has to do with the complete lack of experimental validat ions. The authors
look for consistent patterns of t ranscript ional changes upon knockdown of relevant TFs in the
CCLE. While this analysis does provide support ing evidence that the regulatory interact ions are
likely to be funct ional they provide no insight into the biological and mechanist ic relevance of the
regulatory interact ions on cancer phenotypes. Thus, it  is not surprising the final sentence of the
results sect ion is a conjecture "...suggest ing that subtype-specific TF interact ions may be key to
maintaining cell state and viability in the corresponding subtype." In absence of such validat ions this
manuscript  is much better suited for a specialist  journal with a focus on computat ional biology.

• In a related comment, it  would help to add some text  that  would help dist inguish how this method
differs from others. For example - the predict ive capabilit ies of this methodology are very interest ing
and offer a tool that  would potent ially help to narrow in on specific targets. I'm not sure if this
capability is something that many of the pre-exist ing network inference algorithms have.
Ment ioning this dist inct ion would strengthen the claim of the ut ility of this algorithm.

• Given the predict ive capabilit ies of the model, have the authors considered how they might use
this tool to ident ify TFs that may cause a tumor to t ransit ion from one subtype to another?
Clinically, GBMs of a proneural or classical subtype often recur as a mesenchymal subtype. It  would
be interest ing to see if through their exponent ial ranking-based algorithm if the authors can ident ify
what TF(s) can cause a proneural subtype to t ransit ion to a mesenchymal subtype. This type of
analysis would add meaningful substance to this work as plast icity of tumor cells, part icularly in
GBM, is another related challenge in t reat ing cancers.

• The use of the basal CNS TF-gene network raises some concern/quest ions. As this highlights the



strongest TF-gene connect ions, it  averages away any of the dist inct  cell-type and region-specific
(amongst other crit ical dist inguishing features of the highly different iated brain) TF-gene
relat ionships. Because the cell-type of origin remains an open quest ion in the field, it  is somewhat
surprising that a "mass-averaged" basal TF-gene network works in inferring dist inct  network
structures for something as dysregulated as GBM. Further analysis is required in addit ion to in
depth discussion as to why using a mass-averaged basal network in describing such a
heterogeneous tumor like GBM works, as opposed to inferring a purely data-driven network. 

• Clarificat ion on heterogeneity levels: bulk vs single-cell and how bulk tumor heterogeneity should
be described at  the level of cell populat ion structure, proport ions of various cell types and tumor
cells of a part icular subtype. The authors discuss this issue of heterogeneity at  bulk and single-cell
levels, but the results highlight  the inferred network derived from bulk data, which represent an
amalgamation of dist inct  cell-types and subpopulat ions of PN, MES, CL tumor cells in different
proport ions. While interest ing, this type of algorithm would be more effect ive (clinically) if it  were
able to ident ify dist inct  regulatory mechanisms that are applicable to single-cell level
subpopulat ions of tumors.

Minor comments: 

Figure 1, panels e through h are illegible and, therefore, difficult  to interpret  

Page 7, 2nd paragraph - "We then trained an elast ic net regression model for each perturbed TF to
find a linear combinat ion of proteins [,] the changes of which best predict  the TF's gene
essent iality..." 

Page 11, "Inferring protein act ivity inferred from an integrated transcript ion regulat ion-signaling
network" - "To infer protein signaling act ivity, we used ... similar to PageRank algorithm47 [ref]." 

Reviewer #3: 

Summary 

GBM is a deadly malignancy that lacks effect ive t reatment. Despite previous work that strat ifies the
disease into four subtypes, the regulatory changes that underlie these differences are unclear.The
authors develop a new algorithm, inTRINSIC, that incorporates regulatory informat ion from mult iple
sources to build a network of t ranscript ional regulat ion in a subtype-specific manner. These
networks are parametrized with a non-linear regression, then coupled with a network of protein
signaling based on known protein-protein interact ions.These elements combine to form a mult ilayer
network that allows for in silico perturbat ion of t ranscript ion factor (TF) expression, opening the
door for invest igat ions of pat ient  data without requiring arduous or infeasible experiments. 

This novel method was leveraged to analyze GBM samples within the exist ing Verhaak subtypes.
inTRINSIC ident ified sets of TFs with different ial regulatory act ivity in each GBM subtype, including
both novel and known markers. The MYBL2 gene is highlighted as a regulatory TF for the Proneural
subtype; a gene that has both appeared in previous analyses and been shown to interact  with
ASCL1, another known regulatory TF of the Proneural subtype, in vit ro. 



More interest ing than the GBM-specific conclusions is the methodology, however. The inTRINSIC
algorithm can be broken down into five steps: 

1 - Inference of a regulatory network from the union of two sources; exist ing networks from the
FANTOM5 database and a novel network based on open-chromat in and TF binding mot if data. For
the lat ter network, chromat in informat ion came from DNase hypersensit ivity sequence (DHS-seq)
datasets from ENCODE, while mot if informat ion came from the JASPAR database. 

2 - The network from step 1 serves as a scaffold for nonlinear regressions. The expression of each
target is modeled as the independent sums of the effect  of saturable TFs. The regression will
assign both a sign and a strength to each regulatory interact ion. 

3 - A protein act ivity network is generated by combining databases of known protein-protein
interact ions; SPRING, which provides signed links between proteins; and FunCoup, which provides
likelihoods on each interact ion. The act ivity of the proteins in the result ing network are then inferred
with the Exponent ial Ranking algorithm, with p(0) (the init ial protein act ivity) given by the expression
of each protein scaled to sum to one. 

4 - Steps 1-3 create a mut li-layer network; changes in TF gene expression drive changes in target
expression, and the total vector of expression is fed into the protein act ivity network to analyze
how signaling act ivity changes based on perturbat ions to each TF. 

5 - An elast ic-net is t rained to predict  essent iality scores from downstream different ial act ivity
result ing from in silico perturbat ion of TF expression on CCLE cell lines. These regression are then
used to predict  gene essent iality scores from similar perturbat ions carried out in pat ient  data. 

General Remarks 

The inTRINSIC tool developed in this paper potent ially provides an incredible tool to researchers;
the ability to perturb t ranscript ional profiles in silico. Avoiding intractable, expensive, and/or t ime
consuming knock down experiments typically necessary to understand the full impact of a TF would
have a huge impact on our ability to parse out causat ive regulatory informat ion. To speak
colloquially for a moment, the ability to adjust  one lever of the t ranscriptomic architecture and model
how the rest  will adjust  is, simply put, cool. 

That said, the actual funct ional implicat ions of this technique are a bit  more nebulous. The authors
ut ilize these perturbat ions to predict  gene essent iality scores as a method of ident ifying regulatory
TFs that define GBM subtypes based on different ial act ivity. However, the VIPER algorithm] already
permits similar analyses and has been used to predict  master regulators (MRs) that control cell
state across a variety of malignancies. It  is unclear whether inTRINSIC provides a funct ional
improvement over exist ing methodology in terms of ident ifying these MRs, and the authors do not
perform any comparisons to ident ify the differences between them. 

Going further, the ability of this methodology to cut  down on the complexity of large scale
perturbat ional assays is not clear either. For instance, TFs are typically not direct ly targetable by
drugs, and predict ing which drugs will affect  which TFs in a given context  typically requires a
perturbat ional assay in a sample as cell line or t issue as close to the sample of interest  as possible.
As such, while this method should be able to predict  how a given sample's t ranscript ional
architecture will change if a TF is knocked down, bridging the gap to act ionable clinical informat ion



doesn't  seem possible. To be clear, the author's have made no such claims, but this avenue was
one of the immediate possible implicat ions that came to mind upon reading the paper that
unfortunately does not seem viable upon further scrut iny. 

Major Points 

In the first  step of the inTRINSIC pipeline, previously exist ing regulatory networks are combined with
both open chromat in data and known mot if-binding maps.The first  half of that  formula - the pre-
exist ing networks - come from brain t issues in the FANTOM5 project . While these networks are no
doubt more relevant to the GBM samples discussed, there are st ill major t ranscriptomic differences
between healthy and cancerous t issue. Meanwhile, the open chromat in data (from ENCODE) and
the mot if-binding informat ion (from JASPAR) suffer from similar problems of context  specificity,
though the cell lines in quest ion are likely a better model for the GBM t issue being studied than
healthy t issue. 

However, this approach based on pre-exist ing data for TFs with known binding mot ifs opens up an
obvious hole in the methodology; no proteins with unknown binding mot ifs can be studied. The final
t ranscriptomic network contains 518 TFs, but the human genome contains roughly 1800 TFs and
an addit ional 600 co-TFs that all can play major roles as checkpoint  modulators. Finally, the method
of mapping from mot if-binding graphs to a regulator-target graph - based on the nearest gene
method often employed in ATACseq or other similar techniques - is prone to even more issues
related to context  specificity, as well as an inability to resolve more complicated regulatory
structures in the chromat in itself]. 

All of these issues can be boiled down to one core issue; relying almost ent irely on the literature for
network construct ion is problemat ic due to the various bias associated with the construct ion of this
prior knowledge. These biases are unavoidable with the method presented in the paper, but
comparisons with more unbiased methods of network reconstruct ion are warranted. Various
correlat ion based network reconstruct ion algorithms, machine learning based methods (SCENIC), or
mutual informat ion based (ARACNe)] are all publicly available and could be used to infer networks
for comparison to the method proposed in the paper. It 's difficult  to go so far as to say which
method - biased or unbiased - is superior in a vacuum, but the authors should at  least  acknowledge
some of the limitat ions inherent in their approach and address them in some manner. 

As a final note, the author's crit iques of exist ing methods for regulatory network generat ion are not
ent irely accurate. ARACNe, for instance, has a pair of parameters that capture both the relat ive
certainty of an edge's existence and the direct ionality of its regulat ion. Taken together - along with
ARACNe's extremely low false posit ive rate - these two parameters essent ially capture the relat ive
strength of the TF-target interact ion. Similar to the previous paragraph, flaws in the manuscript 's
crit ique of other network generat ion methods could be resolved via a more direct  comparison
between them and a deeper discussion of the pros and cons of this novel method. 

Moving past the generat ion of the network framework, the use of non-linear regression to
parametrize regulatory edges is interest ing and appropriate. A brief comment discussing why a
method that included cross terms for co-regulatory effects was either not possible or not
at tempted would be relevant here. The subsequent method of determining the correlat ion of
regulators in order to determine co-regultory proteins also seems robust in theory. However, the
use of the RANSAC algorithm - a technique designed more to leave out out liers due to poor data
collect ion or signal loss - seems inappropriate here, as the vectors being correlated are not raw
data but an inferred stat ist ic. If RANSAC was implemented because methods based purely on



correlat ion were not sufficient , that could indicate a problem with overfit t ing in this context . 

Minor Points 

Beyond the more significant  challenges listed to the methodology discussed above, there are a few 
areas where explanat ions could be more clear, or where there has simply been an edit ing oversight. 
These are listed in bulleted form below: 

The explanat ion in the Results sect ion about subtype-specific regulatory profiles, part icularly the 
explanat ion about regulatory signatures versus co-regulatory signatures, is a bit unclear. A 
reorganizat ion that first explains the regulatory signature, then the co-regulatory signature, then 
the comparison between them - perhaps in different sect ions - might be easier to interpret . 

The reference for the PageRank algorithm is missing on page 11. 

Alvarez MJ, Shen Y, Giorgi FM, et al. Funct ional characterizat ion of somat ic mutat ions in cancer 
using network-based inference of protein act ivity. Nat Genet. 2016;48(8):838-847.
doi:10.1038/ng.3593 

Aibar S, González-Blas CB, Moerman T, et al. SCENIC: single-cell regulatory network inference and 
clustering. Nat Methods. 2017;14(11):1083-1086. doi:10.1038/nmeth.4463 

Lachmann A, Giorgi FM, Lopez G, Califano A. ARACNe-AP: gene network reverse engineering 
through adapt ive part it ioning inference of mutual informat ion. Bioinformat ics. 2016;32(14):2233-
2235. doi:10.1093/bioinformat ics/btw216 



Response to Reviewers – 

We are truly indebted to the reviewers for their thoughtful examination of this manuscript. 

Indeed, we believe that the revised manuscript has been considerably improved based on the 

insightful suggestions made during the initial review. In this Response to Reviewer section, we 

first summarize the major changes that are present in this revised manuscript. Subsequently, 

we provide a more detailed point-by-point response to the reviewers. Again, we would like to 

thank the reviewers for the time and effort made during their examination of this work. 

Major changes - 

1. We have reassessed our subtype classification reflecting the discovery by Wang et al.

(2017) that the Neural subtype may be an artifact of normal tissues surrounding tumors

as well as cell type mixtures. Here, “Neural” samples get reassigned to the other 3 labels

in the new classification scheme (Supplementary Figure 1b). Importantly, the addition of

these new samples to each subtype did not significantly skew our results

(Supplementary Figure 1d). Indeed, our data is consistent with that found in the Wang et

al study, and we believe that omission of the “Neural” samples in the TCGA dataset

most likely provides the best alternative. The Neural samples, while displaying a unique

expression signature, are unlikely to provide consistent insight on subtype-specific

regulatory programs due to cell state mixing effects. Additionally, we did not find

significant updates to the TCGA expression dataset we used in our initial analysis.

2. We have constructed a new set of network models using the Chinese Glioma Genome

Atlas (CGGA) GBM dataset consisting of 172 Classical, Proneural and Mesenchymal

subtypes, and compared network parameters with those from the TCGA samples. We

found significant concordance between the two (Figure 1, Supplementary Figure 1).

3. We have provided a systematic comparison of the network edges obtained from

ARACNe and that of our inTRINSiC pipeline (Supplementary Figure 2b-d). While

ARACNe is clearly a powerful analysis tool, we found that our method achieves a

broader range of TF-TF interaction discovery while maintaining the same accuracy at

capturing known BIOGRID interactions as ARACNe. We now include a discussion of

advantages/disadvantages of inTRINSiC compared to ARACNe. We have also added

discussion on unique features of inTRINSiC compared to other pipelines like SCENIC

and SYGNAL in our Introduction and Discussion sections.

4. We have included a comparative analysis of recent single cell expression-based studies

examining multiple layers of intratumoral heterogeneity in GBM. Specifically, we have

compared our discoveries with those from single cell studies (e.g. DDIT3 as a key

Mesenchymal factor in both our analyses and Neftel et al. (2019)) and further

demonstrated that our models, built on bulk expression data, are capable of generating

verifiable insights into the regulatory heterogeneity of GBM. Additionally, we have

implemented a plasticity analysis where we inspect how GBM transcriptomes shift in

2nd Jun 20201st Authors' Response to Reviewers



response to transcription factor perturbation. Here, one of the exciting and intriguing  

observations that emerges is the relevance of STAT3, a Mesenchymal signature TF, 

whose in silico knockdown induced a substantial shift of Mesenchymal samples towards 

the Classical subtype cluster (Figure 3e, Supplementary Figure 2e). 

 

 

5. Despite the current infeasibility of wet bench experimental validation, we now present a 

systematic and comprehensive analysis of the DepMap dependency data in Figure 5. 

This allowed us to bring an extensive set of experimental validation to bear on our 

analyses. In addition to scoring each transcription factor based on the concordance 

between their predicted essentiality and DepMap experimentally determined scores, we 

have also filtered for those TFs that show similar subtype-specificity in their predicted 

essentiality scores as that seen in DepMap scores. Notably, for the TF that scores 

among the top in all of the above criteria, MYBL2, we demonstrate that its expression 

can significantly segregate patient survival in both the TCGA and CGGA datasets in a 

Proneural subtype-specific way, suggesting that it indeed represents a potential drug 

target in this GBM subtype. 

 

 

Reviewer #1: 

 

Summary 

 

Liu and colleagues describe an in silico approach termed 'integrative modeling of transcription 

regulatory interactions for systemic interference of susceptibility in cancer (inTRINSiC). The 

authors focus on describing transcription factor activity and their interplay in the malignant brain 

cancer glioblastoma, that can be classified into 4 subtypes (classical, mesenchymal, proneural, 

neural) by transcriptional/mutational profiling (as published by Verhaak et al., Cancer Cell, 

2010). The presented results show overlap as well as differential regulatory activities of 

transcription factors according to glioblastoma subtype classification, which may causally link 

this activity to tumor subtype formation, also potentially leading to computational identification of 

glioblastoma molecular vulnerabilities (in a subtype-specific manner). MYBL2 is presented as an 

example of a potential 'drug target' as based on its regulatory role identified in proneural 

glioblastoma. 

 

General remarks 

 

While computationally-identifying regulatory transcription factor networks fueling cancer growth 

is not novel per se, the inTRINSiC approach entails several innovative elements with regards to 

integrating gene and protein-based databases, non-linear regression analysis, and vector-based 

algorithms. The methodology appears sound from the perspective of an experimental biologist (I 

cannot comment on the mathematical aspects). The paper is of interest for the brain and 

computational cancer research communities. While I am convinced that the presented 

computational modelling provides a good basis for further development and validation, my major 



concerns revolve around the versatility, timeliness, and potential translational aspects of the 

described in silico approach. 

 

We thank the reviewer for their comments regarding the quality and innovative potential of this 

work. We believe that our revisions in response speak directly to concerns regarding versatility, 

timeliness and translational potential our approach.  

 

Major points 

 

- The study appears to be based on gene expression data of The Cancer Genome Atlas 

Program (TCGA) of the year 2014. Can the authors clarify the relevance of the accessed data 

six years later (what changed since, is an update required)? 

 

We thank the reviewer for pointing this out. Upon further investigation of this database, TCGA 

has not added new samples since 2013. Our analysis used all of the samples in the repository 

that had microarray expression data (544 samples, 407 excluding the spurious Neural subtype), 

and these samples still constitute the largest well-annotated set of glioblastoma patient 

expression data.  

 

- How much overlap/difference can be found in the acitvities and networks of subtype-specific 

transcription factors in an independent data set such as the Chinese Glioma Genome Atlas 

(CGGA). A Venn diagram of this comparison should be provided and discussed. 

 

This is an important suggestion, and we have tried to find the best possible approach to 

effectively use the CGGA database. Since the CGGA database has about half (249) the number 

of TCGA GBM samples, it creates overfitting issues due to relatively small numbers of samples 

per subtype (~70 compared to more than 120 for TCGA). To most effectively use the CGGA 

dataset as an independent validation of our findings, we performed survival analysis of MYBL2 

scores in CGGA patients (Figure 5g). Here, we found a consistent, significant difference in 

survival between MYBL2-high and MYBL2-low patients. We believe that this result provides 

validation for the translational potential of our approach. 

 

- The combined focus on 'Verhaak subtypes' and 'bulk' gene expression data can be a limitation 

in terms of translational relevance. In particular, the current study does not take recent 

glioblastoma gene expression data at the single level into account. Key studies from the past 3 

years should be cited (e.g., Darmanis et al., Cell Rep. 2017, Neftel et al., Cell, 2019) and the 

results should be discussed in the context of this recent literature. Along this line, the model 

would gain in significance if cellular plasticity at the single cell level as observed in patient 

tumors (Neftel et al., 2019; note the presence of mesenchymal, neural, astrocyte, and 

oligodendrocyte progenitor-like cell states) could be linked to transcription factor activity 

revealed by inTRINSiC. 

 

In the revised manuscript, we now cite and discuss the above mentioned work in multiple 

sections of our revised manuscript. In our analysis, we built our models on bulk expression data 



due to its broad coverage of gene expression in large patient cohorts. However, when we 

compare bulk expression data with single cell analyses, we see significant concordance of our 

models with models built on single-cell expression data (revised Figure 1d). Indeed, this issue 

was of central importance to our analysis, given our interest (the Regev lab) in single cell data. 

 

Plasticity is a very interesting point, and we thank the reviewer for raising this issue. We 

performed systematic perturbation of 515 TFs and report the relative shifts in transcriptomes in 

TCGA patients (Figure 3e, Supplementary Figure 2e and Supplementary Table 1). Notably, we 

found that perturbing Mesenchymal ‘master regulators’ such as STAT3 in silico results in a shift 

of a substantial number of Mesenchymal samples towards the Classical subtype cluster (Figure 

3e). We believe that this result has significant relevance regarding the evolution of resistance 

towards subtype-specific therapies or the ability to move therapy-resistant subtypes towards a 

more responsive state. Notably, we also believe that this data speaks to the versatility of our 

approach. 

 

- Functional characterization, for example based on MYBL1B loss-of-function and its effect on 

the proneural (versus other) signatures in patient-derived glioblastoma cell models would be 

required to strengthen the claim of identifying a potential proneural glioblastoma drug target. 

Without employing an experimental-computational cross-validation strategy, the authors should 

consider 'toning down' their claim of identifying 'drug targets' and current limitations of their 

approach (including modelling assumptions) should be more clearly highlighted in the 

discussion (an adequate limitation paragraph is currently lacking). 

 

We thank the reviewer for this really important comment. We agree that the limitations in our 

model predictions need to be addressed in more detail. We highlight transcription factors that 

we predicted to show subtype-specific essentiality as potential ‘drug targets’ due to the apparent 

selective in vitro survival disadvantage conferred by loss of that factor in cell lines classified as a 

particular subtype, and this does not necessarily mean that loss of the factor will also elicit the 

same specific effects in patient samples in vivo. However, since we also observe that our model 

(built on in vitro cell line expression data) predicts similar selective disadvantages when applied 

to patient expression profiles and see clear segregation of survival for our top hit MYBL2 in 

patients, we gain some confidence in prioritizing these factors for future in vivo validation 

studies. This point is now emphasized, as are the limitations of our analysis, in the discussion. 

 

Minor points 

- Why is the classical subtype flagged as an exception in terms of negative feedback 

mechanisms (changing regulatory behavior of transcription factors)? Wouldn't these feedback 

loops be expected independent of subtype profile? Can a sound explanation be provided? 

 

We concede that negative feedback loops are indeed expected to operate independent of GBM 

subtype. However, in this particular analysis where we inspect the association between 

transcription factor and target gene expression, we speculate that the opposite changes we see 

in the Classical subtype compared to that in the other three may be due to a subset of subtype-

specific negative feedback loops that only operate in the Classical subtype. 



 

- Why are immunotherapies (including Car T cells) described in the introduction - they are of no 

further importance for the narrative? 

 

We apologize for the omission of a follow-up discussion on immunotherapy. In this revised 

manuscript (Page 10), we now implicate factors such as STAT3 (a signature TF discovered by 

inTRINSiC) in GBM. This gene been shown to play key roles in creating an immunosuppressive 

tumor microenvironment. This data, as well as a discussion of its relevance to immunotherapy, 

is now provided in this submission. Indeed, given the current relevance of immunotherapy, we 

believe that the identification of STAT3 here represents a very timely application of inTRINSIC 

towards immune-oncology. 

 

- Sottoriva et al., PNAS, 2013 should be cited for (first) identifying mixed glioblastoma subtype 

profiles in patient tumors (in addition to Patel et al., Science, 2014). 

 

Thank you for pointing this out. We have added this to our bibliography. 

 

- The statement 'see materials and methods for details' should be removed and the key 

methodological concepts should be sufficiently and adequately explained throughout the 

narrative (ideally in a language that is also accessible for non-experts). 

 

Thank you for the useful comment. We have clarified the description of technical terms 

throughout the main text for a broader audience. 

 

- Results: what is the context of the 'brain tumor cell line' data - a citation and introduction of the 

database (CCLE?) appears to be lacking? 

 

- Page 3: replace 'logarithm space' with 'logarithmic space'. 

 

- Page 6: correct 'mechanisms etc.33.' 

 

- Figure 1: please introduce the sMAPE acronym. 

 

- Figure 3: suggest to replace 'unique regulatory profiles with 'unique transcription factor 

regulatory gene expression profiles' in the figure title. 

 

We thank the reviewer for the above four points and have made all of the suggested 

changes/additions. 

 

 

 

Reviewer #2: 

 

Manuscript Review 



 

Date: 22 Mar 2020 

Manuscript Number: MSB-20-9506 

Manuscript Title: Integrated regulatory models for inference of subtype-specific susceptibilities in 

glioblastoma 

 

 

In this manuscript the authors develop a computational method that infers transcriptional 

regulatory networks, which they refer to as Integrative Modeling of Transcription Regulatory 

Interactions for Systemic Inference of Susceptibility in Cancer (InTRINSiC). By developing this 

method, the authors aim to clarify the underlying regulatory mechanisms associated with the 

distinct molecular GBM subtypes, i.e., proneural (PN), classical (CL), neural (NE), and 

mesenchymal (MES). InTRINSiC utilizes a non-linear, thermodynamically-based regression to 

identify the TF-target gene relationships. The authors create a "basal" transcriptional regulatory 

network model that includes candidate TF-target gene pairs. Using this method, the authors 

analyze bulk-level omic-scale data of GBM samples (from TCGA) and identified distinct 

transcriptional regulatory network architecture associated with each GBM subtype. 

 

In addition, the authors then connect this transcriptional network with a concomitantly designed 

protein signaling network which they use to infer what effects gene expression perturbations 

have at the protein signaling level by incorporating a predictive algorithm, based on an 

exponential ranking algorithm, which allows the user to predict how modulating TF expression 

will alter protein-level network states. The authors subsequently use this capability to identify 

"essential" TFs by simulating information flow (gene expression to protein signaling state). From 

this analysis, they were able to identify essential TFs like NFE2 and MYBL2, which were 

consistent with previously generated experimental data in CCLE and DepMap. 

 

The authors have developed an interesting method that provides users with a tool to investigate 

the gene- to protein-level network architecture of a tumor as well as test and predict how 

coarse-grained perturbations of various TFs would affect the expression-phenotype of a tumor. 

The motivation of understanding the regulatory mechanisms associated with tumor 

heterogeneity, particularly in GBM, is indeed a highly relevant issue as this impedes treatment 

of the tumor. While the authors present a potentially useful tool, there are significant concerns 

related to the narrow context in which this tool is presented and the complete lack of 

experimental validations of model predictions. 

 

We thank the reviewer for their comments regarding the relevance and potential utility of our 

approach. In our revised manuscript, we broadened the scope of experimental application of 

this approach within GBM, as well as provide significant preclinical validation in CGGA and 

DepMap databases. 

 

 

Major concerns/comments: 

 



• The authors use the original classification of GBM tumors defined by Verhaak et al. (2010). 

However, more recently, the four molecular subtypes was reduced down to three, where the 

original "neural" subtype was found to be an artifact of sampling of the leading edge of the 

tumor, which included non-malignant brain tissue (Wang et al. 2017). I'm concerned that the 

transcriptional network architecture results may change using the revised subtype annotation. 

 

We thank the reviewer for pointing out this important point. We carefully examined the revised 
subtype annotation for GBM samples in the revised manuscript and comprehensively reran the 
algorithm with the revised subtypes. Importantly, using this new annotation did not introduce any 
systematic bias or affect the F values for the three remaining “non-Neural” subtypes. Indeed, we 
can simply omit the Neural subtype, consistent with the currently accepted classification system. 
We believe that this data speaks to the potential robustness and versatility of this approach. 
 

• I am not fully convinced that the claims made by the author that their results "explain gene 

expression variation in GBM" ("Transcription factor repurposing may be responsible for shaping 

subtype-specific transcriptomes" section). To a certain degree, yes, these results characterize 

distinct, bulk-level expression differences between subtypes, but there are other factors 

contributing to gene expression variability. One primary factor driving expression variability is 

the stochastic nature of gene expression, which is reflected at the single-cell level. The results 

presented infer distinct TF-gene and TF-protein interactions that distinguish GBM subtypes, 

which is one level of variation. However, because there are multiple levels of variation and 

heterogeneity in biology, the earlier statement is only somewhat substantiated. Perhaps a 

clarification in that the variation being characterized by the authors' analysis is at the level of 

GBM subtypes, would help clarify this claim. 

 

We appreciate the reviewer’s useful comment. We fully agree that the differential TF regulatory 

profiles identified through our models only explain a small part of gene expression variation, and 

that we are capturing specific subtype-specific variations here. Additionally, since we are using 

a thermodynamic steady-state model to describe gene expression, our model currently does not 

take stochasticity in gene expression into account. We do like to reiterate, however, that since 

we integrated open chromatin data to infer candidate TF-target gene pairs, our model has taken 

multiple layers of regulation (TF-TF coregulation, chromatin remodeling etc.) into consideration, 

which are collapsed into the F-values inferred for each TF-gene pair. This issue is now clarified 

more extensively in the discussion. 

 

• Multiple regulatory network inference algorithms have been developed and have been used to 

identify networks within the context of GBM, e.g. Plaisier et al. Cell Systems 2016 (which was 

surprisingly not cited in this manuscript). In this example, the authors incorporated protein-, 

mRNA, miRNA, and mutational data to construct a multi-omic scale transcriptional regulatory 

network, encompassing a larger scope of data modalities and genomic features than what is 

presented here. Here, the authors focus on gene-expression and protein-level characterization, 

which are important aspects governing transcriptional state. However, mutational profiles 

certainly impact the transcriptional heterogeneity pervasive in GBM tumors, which is something 

that is not addressed by the authors. As the authors are motivated to understand the regulatory 



mechanisms underlying GBM tumor heterogeneity, I am surprised why such information 

(mutational profiling of some kind) is not considered at all. 

 

We are indeed aware of this important study in Cell Systems and have expanded our discussion 

to include a comparison between the approach used in the this study and that used in ours. We 

did not explicitly compare our study with that of Plaisier et al. because we recognize that we are 

in fact tackling the problem of understanding GBM heterogeneity from a vastly different angle. 

The SYGNAL pipeline introduced by Plaisier et al. focuses largely on genes with somatic 

mutations and asks how these alterations affect downstream regulation, and candidate TFs 

were filtered using known associations with GBM. In our inTRINSiC pipeline, we start with as 

few constraints/filtering on the input data as possible to decrease bias by prior knowledge, and 

use a largely data-driven approach to allow our model to discover GBM sample-specific 

regulatory edges. These two approaches complement each other in many aspects. In our 

models, we did not explicitly model the effects of genetic alterations for two reasons: 1) lack of 

knowledge of how certain mutations (which are also often sparse across samples) would affect 

gene function, and 2) explicit modeling of TF ‘regulatory activity’ as an abstract concept that 

encompasses multiple layers of regulation is expected to take the effects of mutation, if 

functionally relevant, into account. This seems to be the case in our analyses and we explicitly 

explore this important issue in our updated Discussion section. 

 

• Another major concern has to do with the complete lack of experimental validations. The 

authors look for consistent patterns of transcriptional changes upon knockdown of relevant TFs 

in the CCLE. While this analysis does provide supporting evidence that the regulatory 

interactions are likely to be functional they provide no insight into the biological and mechanistic 

relevance of the regulatory interactions on cancer phenotypes. Thus, it is not surprising the final 

sentence of the results section is a conjecture "...suggesting that subtype-specific TF 

interactions may be key to maintaining cell state and viability in the corresponding subtype." In 

absence of such validations this manuscript is much better suited for a specialist journal with a 

focus on computational biology. 

 

We appreciate the reviewer’s comment. While we have a limited ability to provide wet bench 

validation due to current circumstances, we now provide a more comprehensive analysis of how 

our predictions compare with DepMap data. Here, the TF that scores among the top in all of the 

above criteria, MYBL2, is a clear Proneural dependency. Additionally, we now demonstrate that 

MYBL2’s expression can significantly segregate patient survival in both the TCGA and CGGA 

datasets in a Proneural subtype-specific way, suggesting that it indeed represents a potential 

drug target in this GBM subtype. We believe that these analyses provide important preclinical 

validation of our approach.   

 

• In a related comment, it would help to add some text that would help distinguish how this 

method differs from others. For example - the predictive capabilities of this methodology are 

very interesting and offer a tool that would potentially help to narrow in on specific targets. I'm 

not sure if this capability is something that many of the pre-existing network inference algorithms 

have. Mentioning this distinction would strengthen the claim of the utility of this algorithm. 



 

We thank the reviewer for this constructive comment. Indeed, important inference algorithms 

including ARACNe exist to identify genes important for specific biological contexts. However, 

our pipeline provides information on the magnitude of regulation (i.e. magnitude of log2 F-

values) in addition to directionality. We now included comparison of these approaches 

(Supplementary Figure 2) and additional discussion of related methods and unique features of 

our methodology in the revised text. 

 

• Given the predictive capabilities of the model, have the authors considered how they might use 

this tool to identify TFs that may cause a tumor to transition from one subtype to another? 

Clinically, GBMs of a proneural or classical subtype often recur as a mesenchymal subtype. It 

would be interesting to see if through their exponential ranking-based algorithm if the authors 

can identify what TF(s) can cause a proneural subtype to transition to a mesenchymal subtype. 

This type of analysis would add meaningful substance to this work as plasticity of tumor cells, 

particularly in GBM, is another related challenge in treating cancers. 

 

We thank the reviewer for this very interesting point. We have now extended our analyses to 

understanding phenotypic plasticity in GBM, and we are excited to present the results in the 

revised manuscript. We performed systematic perturbation of 515 TFs and report the relative 

shifts in transcriptomes in TCGA patients (Figure 3e, Supplementary Figure 2e and 

Supplementary Table 1). Specifically, we found that perturbing Mesenchymal ‘master regulators’ 

such as STAT3 in silico results in a shift of a substantial number of Mesenchymal samples 

towards the Classical subtype cluster (Figure 3e). 

 

• The use of the basal CNS TF-gene network raises some concern/questions. As this highlights 

the strongest TF-gene connections, it averages away any of the distinct cell-type and region-

specific (amongst other critical distinguishing features of the highly differentiated brain) TF-gene 

relationships. Because the cell-type of origin remains an open question in the field, it is 

somewhat surprising that a "mass-averaged" basal TF-gene network works in inferring distinct 

network structures for something as dysregulated as GBM. Further analysis is required in 

addition to in depth discussion as to why using a mass-averaged basal network in describing 

such a heterogeneous tumor like GBM works, as opposed to inferring a purely data-driven 

network. 

 

We appreciate the reviewer’s comment present clarification regarding this concern in the 

revised manuscript. Indeed as one of our groups (the Regev lab) has done considerable work 

based on single cell analysis, it was very important for us to compare bulk and single cell 

approaches. While we do agree that using bulk expression data averages away effects of cell 

states in subpopulations, and that the cell-type of origin cannot be readily identified using 

analyses on bulk data, we argue that transcriptional heterogeneity, at least at a level that is also 

seen in single cell transcriptome profiling (as seen the 2014 study by Patel et al.), can be largely 

dissected using bulk expression profiles which capture genes with lower expression more 

effectively than single cell transcriptomics. In addition, now show a significant concordance 



between the models we built from bulk and single-cell data with respect to the genes covered by 

both datasets (Figure 1d).  

 

• Clarification on heterogeneity levels: bulk vs single-cell and how bulk tumor heterogeneity 

should be described at the level of cell population structure, proportions of various cell types 

and tumor cells of a particular subtype. The authors discuss this issue of heterogeneity at bulk 

and single-cell levels, but the results highlight the inferred network derived from bulk data, which 

represent an amalgamation of distinct cell-types and subpopulations of PN, MES, CL tumor 

cells in different proportions. While interesting, this type of algorithm would be more effective 

(clinically) if it were able to identify distinct regulatory mechanisms that are applicable to single-

cell level subpopulations of tumors. 

 

Again, we thank the reviewer for this important point. As mentioned in the previous comment, 

we would like to highlight the idea that the expression subtypes identified from bulk expression 

data may be a result of a single subpopulation of cells bearing the corresponding expression 

signature at the single cell level dominating the tumor sample, as seen from the analyses by 

Patel et al. (2014). In this sense, we believe that building our models upon bulk expression data 

with more comprehensive coverage of gene expression generates highly relevant insight. To 

address the reviewer’s final concern, our modeling pipeline is readily applicable to single-cell 

expression data whenever high coverage data from multiple patients are available. Again, we 

believe that this speaks to the versatility of our approach. 

 

 

Minor comments: 

 

Figure 1, panels e through h are illegible and, therefore, difficult to interpret 

 

Page 7, 2nd paragraph - "We then trained an elastic net regression model for each perturbed 

TF to find a linear combination of proteins [,] the changes of which best predict the TF's gene 

essentiality..." 

 

Page 11, "Inferring protein activity inferred from an integrated transcription regulation-signaling 

network" - "To infer protein signaling activity, we used ... similar to PageRank algorithm47 [ref]." 

 

We thank the reviewer for pointing out the above issues and we have implemented these 

recommendations in our revised manuscript. 

 

Reviewer #3: 

 

Summary 

 

GBM is a deadly malignancy that lacks effective treatment. Despite previous work that stratifies 

the disease into four subtypes, the regulatory changes that underlie these differences are 

unclear.The authors develop a new algorithm, inTRINSIC, that incorporates regulatory 



information from multiple sources to build a network of transcriptional regulation in a subtype-

specific manner. These networks are parametrized with a non-linear regression, then coupled 

with a network of protein signaling based on known protein-protein interactions. These elements 

combine to form a multilayer network that allows for in silico perturbation of transcription factor 

(TF) expression, opening the door for investigations of patient data without requiring arduous or 

infeasible experiments. 

 

This novel method was leveraged to analyze GBM samples within the existing Verhaak 

subtypes. inTRINSIC identified sets of TFs with differential regulatory activity in each GBM 

subtype, including both novel and known markers. The MYBL2 gene is highlighted as a 

regulatory TF for the Proneural subtype; a gene that has both appeared in previous analyses 

and been shown to interact with ASCL1, another known regulatory TF of the Proneural subtype, 

in vitro. 

 

More interesting than the GBM-specific conclusions is the methodology, however. The 

inTRINSIC algorithm can be broken down into five steps: 

 

1 - Inference of a regulatory network from the union of two sources; existing networks from the 

FANTOM5 database and a novel network based on open-chromatin and TF binding motif data. 

For the latter network, chromatin information came from DNase hypersensitivity sequence 

(DHS-seq) datasets from ENCODE, while motif information came from the JASPAR database. 

 

2 - The network from step 1 serves as a scaffold for nonlinear regressions. The expression of 

each target is modeled as the independent sums of the effect of saturable TFs. The regression 

will assign both a sign and a strength to each regulatory interaction. 

 

3 - A protein activity network is generated by combining databases of known protein-protein 

interactions; SPRING, which provides signed links between proteins; and FunCoup, which 

provides likelihoods on each interaction. The activity of the proteins in the resulting network are 

then inferred with the Exponential Ranking algorithm, with p(0) (the initial protein activity) given 

by the expression of each protein scaled to sum to one. 

 

4 - Steps 1-3 create a mutli-layer network; changes in TF gene expression drive changes in 

target expression, and the total vector of expression is fed into the protein activity network to 

analyze how signaling activity changes based on perturbations to each TF. 

 

5 - An elastic-net is trained to predict essentiality scores from downstream differential activity 

resulting from in silico perturbation of TF expression on CCLE cell lines. These regression are 

then used to predict gene essentiality scores from similar perturbations carried out in patient 

data. 

 

General Remarks 

 



The inTRINSIC tool developed in this paper potentially provides an incredible tool to 

researchers; the ability to perturb transcriptional profiles in silico. Avoiding intractable, 

expensive, and/or time consuming knock down experiments typically necessary to understand 

the full impact of a TF would have a huge impact on our ability to parse out causative regulatory 

information. To speak colloquially for a moment, the ability to adjust one lever of the 

transcriptomic architecture and model how the rest will adjust is, simply put, cool. 

 

That said, the actual functional implications of this technique are a bit more nebulous. The 

authors utilize these perturbations to predict gene essentiality scores as a method of identifying 

regulatory TFs that define GBM subtypes based on differential activity. However, the VIPER 

algorithm] already permits similar analyses and has been used to predict master regulators 

(MRs) that control cell state across a variety of malignancies. It is unclear whether inTRINSIC 

provides a functional improvement over existing methodology in terms of identifying these MRs, 

and the authors do not perform any comparisons to identify the differences between them. 

 

Going further, the ability of this methodology to cut down on the complexity of large scale 

perturbational assays is not clear either. For instance, TFs are typically not directly targetable by 

drugs, and predicting which drugs will affect which TFs in a given context typically requires a 

perturbational assay in a sample as cell line or tissue as close to the sample of interest as 

possible. As such, while this method should be able to predict how a given sample's 

transcriptional architecture will change if a TF is knocked down, bridging the gap to actionable 

clinical information doesn't seem possible. To be clear, the author's have made no such claims, 

but this avenue was one of the immediate possible implications that came to mind upon reading 

the paper that unfortunately does not seem viable upon further scrutiny. 

 

We thank the reviewer for their very thoughtful and encouraging comments. In response to their 

suggestions, we focused on two major issues : 1) Providing significantly greater detail and 

analysis regarding how this approach compares with and improves upon existing methodology 

and 2) Providing additional validation of putative biological cancer drug targets identified using 

this approach. Here, we used both DepMap perturbational data sets, as well as additional GBM 

clinical data. We completely concede that the identification of a TF dependency may be a long 

way from developing a drug that can target this dependency. However, TFs are increasingly the 

subject of drug development efforts, including the Myb-like TF identified in this study. This 

important issue is expanded upon in this discussion. 

 

 

Major Points 

 

In the first step of the inTRINSIC pipeline, previously existing regulatory networks are combined 

with both open chromatin data and known motif-binding maps.The first half of that formula - the 

pre-existing networks - come from brain tissues in the FANTOM5 project. While these networks 

are no doubt more relevant to the GBM samples discussed, there are still major transcriptomic 

differences between healthy and cancerous tissue. Meanwhile, the open chromatin data (from 

ENCODE) and the motif-binding information (from JASPAR) suffer from similar problems of 



context specificity, though the cell lines in question are likely a better model for the GBM tissue 

being studied than healthy tissue. 

 

We thank the reviewer for this comment, and we have clarified the rationale for our backbone 

network construction method in the revised manuscript. We used two distinct types of networks 

related to central nervous system cells, one from normal brain tissues and another inferred from 

open chromatin data in brain tumor cell lines. These networks were used to: 1) refine candidate 

edges to those most relevant to our tissue of interest (to reduce the dimensionality in our 

regression model) and 2) at the same time, ensure a more comprehensive coverage of the 

possible edges that our model can take into consideration - since tumor cells are also expected 

to retain at least part of the lineage programs inherited from their cell type of origin. 

 

However, this approach based on pre-existing data for TFs with known binding motifs opens up 

an obvious hole in the methodology; no proteins with unknown binding motifs can be studied. 

The final transcriptomic network contains 518 TFs, but the human genome contains roughly 

1800 TFs and an additional 600 co-TFs that all can play major roles as checkpoint modulators. 

Finally, the method of mapping from motif-binding graphs to a regulator-target graph - based on 

the nearest gene method often employed in ATACseq or other similar techniques - is prone to 

even more issues related to context specificity, as well as an inability to resolve more 

complicated regulatory structures in the chromatin itself]. 

 

All of these issues can be boiled down to one core issue; relying almost entirely on the literature 

for network construction is problematic due to the various bias associated with the construction 

of this prior knowledge. These biases are unavoidable with the method presented in the paper, 

but comparisons with more unbiased methods of network reconstruction are warranted. Various 

correlation based network reconstruction algorithms, machine learning based methods 

(SCENIC), or mutual information based (ARACNe)] are all publicly available and could be used 

to infer networks for comparison to the method proposed in the paper. It's difficult to go so far as 

to say which method - biased or unbiased - is superior in a vacuum, but the authors should at 

least acknowledge some of the limitations inherent in their approach and address them in some 

manner. 

 

We appreciate the reviewer’s insight here, and we address these issues more clearly in our 

revised manuscript. In our Supplementary Information, we have compared the performance of 

our models with the commonly used linear regression method for gene regulatory network 

inference. Here, we show a general superiority of our method in terms of recovering known 

regulatory interactions. In our revised manuscript we have provided a comparison with ARACNe 

(Figure 2 and Supplementary Figure 2) and discussed relative strengths and weaknesses of 

inTRINSiC compared to SCENIC (Discussion). It is noteworthy that networks built from 

ARACNe can no longer be applied to our downstream modeling of protein network activity, 

since it is not designed for predicting gene expression in response to perturbation. 

 

As a final note, the author's critiques of existing methods for regulatory network generation are 

not entirely accurate. ARACNe, for instance, has a pair of parameters that capture both the 



relative certainty of an edge's existence and the directionality of its regulation. Taken together - 

along with ARACNe's extremely low false positive rate - these two parameters essentially 

capture the relative strength of the TF-target interaction. Similar to the previous paragraph, 

flaws in the manuscript's critique of other network generation methods could be resolved via a 

more direct comparison between them and a deeper discussion of the pros and cons of this 

novel method. 

 

We thank the reviewer for pointing this out. As mentioned above, we have included a more 

detailed comparison between our methodology and existing approaches to better clarify the 

pros and cons of our models. 

 

Moving past the generation of the network framework, the use of non-linear regression to 

parametrize regulatory edges is interesting and appropriate. A brief comment discussing why a 

method that included cross terms for co-regulatory effects was either not possible or not 

attempted would be relevant here. The subsequent method of determining the correlation of 

regulators in order to determine co-regultory proteins also seems robust in theory. However, the 

use of the RANSAC algorithm - a technique designed more to leave out outliers due to poor 

data collection or signal loss - seems inappropriate here, as the vectors being correlated are not 

raw data but an inferred statistic. If RANSAC was implemented because methods based purely 

on correlation were not sufficient, that could indicate a problem with overfitting in this context. 

 

This is an important issue that we clarify in the revised manuscript. Cross terms for co-

regulatory effects were an initial consideration but would be computationally prohibitive for our 

regression models, especially if we were to move beyond second-order interactions. However, 

our method did still retain part of that information, since we still see strong correlation structures 

in the resulting F value profiles.  

 

As for the choice of RANSAC, despite it being commonly used for outlier detection, here we do 

not conceptually categorize data points filtered out by RANSAC as ‘outliers’ in the observations 

(in this case parameters, i.e. F values generated in our regression models). Rather, we use 

RANSAC to determine the local correlation structure between the regulatory activity of two 

transcription factors at a subset of target genes. The rationale behind this is that, even for 

broadly co-regulatory transcription factors, it is not unusual for them to act independently of 

each other in the modulating expression of some of their target genes. In addition, the use of 

RANSAC helps guard against highly skewed correlation computation arising from a small 

proportion of extreme values often present in the estimated F values. 

 

Minor Points 

 

Beyond the more significant challenges listed to the methodology discussed above, there are a 

few areas where explanations could be more clear, or where there has simply been an editing 

oversight. These are listed in bulleted form below: 

 



The explanation in the Results section about subtype-specific regulatory profiles, particularly the 

explanation about regulatory signatures versus co-regulatory signatures, is a bit unclear. A 

reorganization that first explains the regulatory signature, then the co-regulatory signature, then 

the comparison between them - perhaps in different sections - might be easier to interpret. 

 

We thank the reviewer for the constructive comment. We have made the recommended 

changes in the revised manuscript. 

 

The reference for the PageRank algorithm is missing on page 11. 

 

We apologize for the omission and have added the following references to the PageRank 

algorithm. 

 

 

Alvarez MJ, Shen Y, Giorgi FM, et al. Functional characterization of somatic mutations in cancer 

using network-based inference of protein activity. Nat Genet. 2016;48(8):838-847. 

doi:10.1038/ng.3593 

 

Aibar S, González-Blas CB, Moerman T, et al. SCENIC: single-cell regulatory network inference 

and clustering. Nat Methods. 2017;14(11):1083-1086. doi:10.1038/nmeth.4463 

 

Lachmann A, Giorgi FM, Lopez G, Califano A. ARACNe-AP: gene network reverse engineering 

through adaptive partitioning inference of mutual information. Bioinformatics. 2016;32(14):2233-

2235. doi:10.1093/bioinformatics/btw216 

 

 



24th Jul 20201st Revision - Editorial Decision

RE: Manuscript MSB-20-9506R, Integrated regulatory models for inference of subtype-specific 
suscept ibilit ies in glioblastoma 

Thank you again for sending us your revised manuscript . We have now heard back from the three 
reviewers who were asked to evaluate your revised study. As you will see below, the reviewers st ill 
raise substant ial concerns on your work, which preclude its publicat ion in Molecular Systems 
Biology. 

While reviewer #1 is support ive, unfortunately reviewers #2 and #3 are not convinced that the 
performed revisions have adequately addressed several of the previously raised major issues. 
Specifically, they st ill raise concerns regarding the overall level of validat ion and think that it seems 
insufficient to raise confidence in the performance of the approach and its ability to generate 
biologically relevant predict ions. Moreover, reviewer #3 points out that the superiorit y and 
advantages of inTRINSIC compared to alternat ive approaches are not convincingly demonst rated. 
As such, the reviewers indicated that they do not support publicat ion of the study in Molecular 
Systems Biology. 

Overall, and considering that our editorial policy allows in principle a single round of major revision, I 
am afraid I see no choice but to return the manuscript with the message that we cannot offer to 
publish it . I am sorry that the review of your work did not result in a more favorable outcome on this 
occasion, but I hope that you will not be discouraged from sending your work to Molecular Systems 
Biology in the future. In any case, thank you for the opportunity to examine this work. 



Reviewer #1: 

Liu et  al have addressed my concerns and the robustness and t imeliness of the study have been
improved by adding new cross-validat ion data and computat ional methods. I feel that  a further
substant ial revision may not be required; however, I strongly recommend addit ional edit ing in terms
of improving data presentat ion and transparency of report ing. 

Examples (main figures): 
- Please provide a Y-axis for Figure 1D (correlat ion coefficients?) - the legend should include a
statement as to how the p-values were calculated. 
-Please clarify whether Kaplan Meier plots show 'overall survival' (not  recurrence-free survival)? 
-Is a font size increase possible for Figure 1 (e) and Figure 2 (e)? 
- Figure 4 legend (c): 'TF pairs with F value correlat ion coefficients larger than 0.8 are visualized as
links': what is meant by 'visualized as links' (not clear to me)? Will hyperlinks be included? 
-Figure 5 legend: '(d) Bar plots of DepMap (grey) and predicted (color-coded according to subtypes
as in (c)': panel (c) does not seem to include colors/subtypes? 
- Figure 5: axis labelling appears to be missing for (b), (f); difficult  to read axis labels in (c), (d). Can
consistent labelling be used across the panels? 
-Figure 5 legend: what does '* - p = 0.044' mean? Correct? 
Figure 5 (e): Please consider rephrasing following statement with regards to improving clarity:
'Shown are the sixTFs that has the same subtype that is most dependent on its expression
(predicted by inTRINSiC) and that which shows the most negat ive correlat ion between expression
and pat ient  survival'. 

Reviewer #2: 

Manuscript  Number: MSB-20-9506R 
Manuscript  Tit le: Integrated regulatory models for inference of subtype-specific suscept ibilit ies in
glioblastoma 

It  is clear that  the authors have made progress in addressing some of the concerns raised in the
original review. Part icularly, the authors do make an effort  to validate their model predict ions by
comparing their model predict ions against  independent data sets (CCGA and DepMap), focusing on
a few TFs such as NFE2, MYBL2, NRF1, and ATF4 and comparing predicted vs. previously
determined essent iality scores. A good example of the computat ional validat ion performed is
presented in Figure 5g, showing the strat ificat ion of pat ient  survival based on MYBL2, a TF
ident ified from their network model. Unfortunately, there are st ill concerns associated with
validat ion that dampen enthusiasm for the revised manuscript : 

Major concerns/quest ions: 

• The authors claim to use DepMap data as a means to validate predict ions of TF and protein level
act ivity, however it  seems that the DepMap essent iality scores are used to fit  protein act ivity
scores. If the DepMap scores are used to fit  model outputs to decrease overfit t ing and ensure



sparsity, as described in the "Modeling effects of gene expression perturbat ion in silico", then this is
not really a t rue computat ional validat ion of the model predict ions. Further, there need to be a
number of tests that need to be run, including the shuffling of node labels on the iNTRINSiC
regulatory network and determining the threshold for a significant score, a hypergeometric test , etc.
The way they make their essent iality predict ion, you recursively propagate the effect  of a TF
knockout through the network of TF-TF interact ions. So, if you hit  a hub TF then any TF could be
deemed essent ial. So a network where node labels are shuffled, and TF and gene in/outdegree is
maintained will essent ially yield a similar number of essent ial TFs (at  least  I would expect it  to). The
distribut ion of essent ial/non-essent ial TFs could therefore look similar. In that regard a ROC
analysis with leave-one-out permutat ions would also be necessary to show sensit ivity and
specificity (and associated significance). If the model predict ions of TF essent iality were calculated
independent ly and then compared to DepMap, that would be better. If that  was indeed the case,
then that needs to be clarified further. As it  is current ly writ ten, it  is not clear that  is the case. 

• I'm concerned with the statement made about the relat ively low impact that  miRNAs have on
expression regulat ion: 

"1) the effects of miRNA regulat ion are est imated to explain only 7-13% of overall gene expression
variat ion49, and 2) since miRNAs act primarily via repressing mRNA levels50, regulat ion by miRNAs
may be absorbed into TF regulat ion in our model where a subset of TF-target regulatory
parameters may be due to indirect  regulat ion of the target by TFs through expression of
miRNAs50." 

While this may be true regarding the relat ionship between miRNAs and overall gene expression
variat ion, this may not hold for specific genes and miRNAs. Context  plays a role and to brush a
broad stroke on the perceived minimal impact of miRNAs on expression regulat ion may lead to
incorrect  conclusions of a part icular TFs role in gene regulat ion. It  seems that the role of miRNA
regulat ion is being confounded in the model. While one cannot account for every single detail of
regulat ion in a quant itat ive model, as it  would be intractable, this raises a concern. 

• Figure 1d - the effort  to show the similarit ies between bulk- and single-cell expression data via
correlat ion of F values is appreciated. However, there st ill seems to be a good port ion of the
correlat ion relat ionships that are either non-correlated or ant i-correlated. This is not the most
convincing figure to show the similarity between bulk and single-cell data. Is there some
permutat ion analysis or stat ist ical analysis to show that the number of F-correlat ions is indeed
stat ist ically significant? If so, at  what correlat ion level are the F-correlat ions between bulk and
single-cell data stat ist ically significant? It  would be interest ing to see what TF-TF relat ionships are
ant i-correlated or have no relat ionship and if that  is indicat ive of some technical or biological factor. 

• The pat ient  strat ificat ion of low and high MYBL2 looks good in the Kaplan-Meier plots (Fig 5G), but
the significance seems somewhat low (p-value (TCGA): 0.035 and p-value (CGGA): 0.0228. 

• Ult imately, to be convinced, I would need some targeted experiments to validate new subtype-
specific essent ial TFs. 

Minor comments: 

• There are quite a few separate algorithms used as part  of the overall workflow to generate a
regulatory network model and predict ions. It  would be helpful if some type of flow-diagram were
included, one that is a bit  more detailed than the one included in Fig 1a. A supplementary figure that



were to include in some way, shape, or form a general overview of the various algorithms,
databases, and steps involved (e.g., PIQ algorithm, RANSAC algorithm, BIOGRID database, etc., etc.,
etc.). 

• Supplementary Fig 1F is missing - no histograms showing overlap between TF-edges derived from
TCGA and CGCA data are shown. 

• Supplementary Fig 4C, which shows the percent ile ranking of NFE2 essent iality across CL, PN, and
MES subtypes, is not convincing. I would want to see a targeted essent iality test  on NEF2
knockdown in different GBM subtype cells. 

• Figure 5B axes are not labeled 

• Supplementary Figure 1e legend - is "Mean symmetric mean absolute percentage error" correct?
"Mean" is used twice in the sentence and may be a typo. 

Reviewer #3: 

In this revised manuscript , the authors have adequately addressed several points raised in our
earlier review. However, some key concerns remain unaddressed, which will be discussed in the
following. First , let 's start  by acknowledging the points that have been addressed: 

First , the authors now adequately explain why it  was not viable to include cross-terms in their
model. Also, while the use of RANSAC was quest ioned in the original review, the rebuttal clarifies
how it  was applied and shows that it  is appropriate for their data. Finally, even though this was not
specifically requested, in the original review, the new Figure S2e does a great job of illustrat ing how
the in silico perturbat ional assay can move cells in gene expression space. 

This reviewer had also quest ioned the lack of comparat ive analysis of inTRINSiC to other
established methods, such as ARACNe and SCENIC. As a result , it  was difficult  to weigh both
benefits and drawbacks associated with the new algorithm and, in part icular, to accurately assess
whether it  provided any improvements relat ive to the current state of the art . To address these
concerns, the authors now ut ilize the BIOGRID database to explicit ly compare the performance of
ARACNe and inTRINSiC, concluding that they have comparable performances. They also clarify
what they consider to be the specific advantages of their method. In part icular, they illustrate
inTRINSiC's ability to model the effect  of downstream effectors on gene expression. 

While these represents key improvements on the original manuscript  submission, some key
concerns remain unaddressed. For instance, the comparison between ARACNe and inTRINSiC
relies largely on TF-TF interact ions as a gold standard baseline, thus ignoring the vast majority of
interact ions which are between TFs and their t ranscript ional targets. BioGRID provides addit ional
data for interact ions between TFs and known targets, which could have been used for this
purpose. There are also addit ional databases, such as TRRUST, which report  informat ion about
TF-target interact ions. Given the general availability of these data, why was the comparison
performed using only a relat ively restricted set? 

While the authors discuss what they believe to be the advantages of the inTRINSiC approach
relat ive to SCENIC in the discussion sect ion, it  appears that no direct  comparison of their relat ive



performance was made. As a result , for two of the mainstream approaches, it appears that one is 
essent ially equivalent to the new methodology while the other was not tested at all. 

More important ly, the authors have not explored any further validat ion of their downstream 
predict ions, either experimentally or against other methods that ident ify key TFs that control cell 
state. This becomes more crit ical given that the ability of inTRINSiC to outperform other methods in 
terms of network reconstruct ion is not obvious from the new data. For instance, an obvious 
comparison would be to the SCENIC and VIPER algorithms which could also be benchmarked 
against DepMap, as done in Figure 5. This would establish an object ive baseline for different ial 
performance between inTRINSiC predict ions and predict ions generated by other methods. This is 
part icularly crit ical because some of the predict ions by inTRINSiC are not consistent with 
experimental validat ion. For instance, the algorithm predicts that silencing STAT3 in mesenchymal 
glioma samples would shift the phenotype towards a proneural phenotype. However, in the 
manuscript they cite (Carro et al. Nature 2010), experimental silencing of STAT3 alone failed to 
reprogram mesenchymal cells towards a proneural state and, as computat ionally predicted, joint 
silencing of both STAT3 and CEBPB was required to accomplish this goal. 

Similarly, while the example of MYBL2 is discussed at length, the authors do not provide any 
experimental validat ion to support these findings. Indeed, all validat ion at tempts provided by the 
manuscript are completely retrospect ive, e.g. using DepMap data. As a result , contrary to what has 
been done by numerous manuscripts that have used computat ional approaches to priorit ize cell 
dependencies or reprogramming factors and then validated these findings experimentally, this 
manuscript fails to provide any level of experimental validat ion support ing the claim that inTRINSiC 
predict ions can discovering new biology. 

Finally, I st ill feel that the authors do not adequately describe the real implicat ions and value of 
inTRINSiC. The ability to perturb gene expression profiles in silico is novel and potent ially 
interest ing, but the authors present the algorithm as a way to priorit ize essent ial TFs governing 
biological phenotypes and that would require either experimental validat ion to substant iate their 
claims or comparison to experimentally validated algorithms that perform similar tasks. As a result , 
proposing that inTRINSiC may be able to predict t reatments ent irely in silico seems tenuous and 
unsubstant iated by the data, especially given the difficult of direct ly target ing TFs, a point the 
authors concede in the rebut tal, but do not discuss at all in the revised manuscript . 



Thank you for the opportunity to respond to the reviewers’ concerns. As I mentioned in our 
previous correspondence, we believe that much of the final opinion of reviewers #2 and #3 
was motivated by the lack of requested cell culture-based experimental validation. Typically, 
if reviewers suggest experiments, we are anxious to perform them, and I would be highly 
critical of a revised manuscript that failed to address an experimental issue that I raised in 
review. This is particularly confounding, as my group has a major focus on in vivo 
experimental models of cancer therapy – work that has ground to a halt for the last 5 months. 
That being said, we believe that the DepMap data represents an extensive experimental data 
set that we have been able to use as a key validation tool. 

For the remainder of the reviewer concerns, we think there was some misunderstanding 
regarding The DepMap validation work, the inTRINSiC algorithm and data that is already 
present in this study. We have included a point by point response to all reviewer concerns. 
Again, we thank you for your editorial supervision of this work. We are more than ever 
convinced of the value of this approach to the cancer community and would be very excited 
to have this work published in MSB. 

Reviewer #1: 

Liu et al have addressed my concerns and the robustness and timeliness of the study have been 
improved by adding new cross-validation data and computational methods. I feel that a further 
substantial revision may not be required; however, I strongly recommend additional editing in terms 
of improving data presentation and transparency of reporting. 

Examples (main figures): 
- Please provide a Y-axis for Figure 1D (correlation coefficients?) - the legend should include a
statement as to how the p-values were calculated.
-Please clarify whether Kaplan Meier plots show 'overall survival' (not recurrence-free survival)?
-Is a font size increase possible for Figure 1 (e) and Figure 2 (e)?
- Figure 4 legend (c): 'TF pairs with F value correlation coefficients larger than 0.8 are visualized as
links': what is meant by 'visualized as links' (not clear to me)? Will hyperlinks be included?
-Figure 5 legend: '(d) Bar plots of DepMap (grey) and predicted (color-coded according to subtypes
as in (c)': panel (c) does not seem to include colors/subtypes?
- Figure 5: axis labelling appears to be missing for (b), (f); difficult to read axis labels in (c), (d). Can
consistent labelling be used across the panels?
-Figure 5 legend: what does '* - p = 0.044' mean? Correct?
Figure 5 (e): Please consider rephrasing following statement with regards to improving clarity:
'Shown are the sixTFs that has the same subtype that is most dependent on its expression
(predicted by inTRINSiC) and that which shows the most negative correlation between expression
and patient survival'.

We agree with the reviewer’s comments about the “robustness and timeliness” of this study. 
All of the data presentation changes can be made. 

27th Jul 2020Appeal: Authors' Response to Reviewers



 
Reviewer #2: 
 
Manuscript Number: MSB-20-9506R 
Manuscript Title: Integrated regulatory models for inference of subtype-specific susceptibilities in 
glioblastoma 
 
 
It is clear that the authors have made progress in addressing some of the concerns raised in the 
original review. Particularly, the authors do make an effort to validate their model predictions by 
comparing their model predictions against independent data sets (CCGA and DepMap), focusing on 
a few TFs such as NFE2, MYBL2, NRF1, and ATF4 and comparing predicted vs. previously 
determined essentiality scores. A good example of the computational validation performed is 
presented in Figure 5g, showing the stratification of patient survival based on MYBL2, a TF identified 
from their network model. Unfortunately, there are still concerns associated with validation that 
dampen enthusiasm for the revised manuscript: 
 
Major concerns/questions: 
 
• The authors claim to use DepMap data as a means to validate predictions of TF and protein level 
activity, however it seems that the DepMap essentiality scores are used to fit protein activity scores. 
If the DepMap scores are used to fit model outputs to decrease overfitting and ensure sparsity, as 
described in the "Modeling effects of gene expression perturbation in silico", then this is not really a 
true computational validation of the model predictions. Further, there need to be a number of tests 
that need to be run, including the shuffling of node labels on the iNTRINSiC regulatory network and 
determining the threshold for a significant score, a hypergeometric test, etc. The way they make their 
essentiality prediction, you recursively propagate the effect of a TF knockout through the network of 
TF-TF interactions. So, if you hit a hub TF then any TF could be deemed essential. So a network 
where node labels are shuffled, and TF and gene in/outdegree is maintained will essentially yield a 
similar number of essential TFs (at least I would expect it to). The distribution of essential/non-
essential TFs could therefore look similar. In that regard a ROC analysis with leave-one-out 
permutations would also be necessary to show sensitivity and specificity (and associated 
significance). If the model predictions of TF essentiality were calculated independently and then 
compared to DepMap, that would be better. If that was indeed the case, then that needs to be 
clarified further. As it is currently written, it is not clear that is the case. 
 
There are two issues here. First, how did we perform our DepMap validation -  and is it a true 
independent validation? Second, by looking at hub TFs, won’t all transcription factors be 
deemed essential? 
 
For the first issue, we would like to clarify that the design of the essentiality prediction part of 
inTRINSiC is to test if a particular combination of transcription regulatory and protein 
signaling activities could be used to predict the changes in fitness of the cell upon perturbing 
each TF. This involves, for any data set or tumor type, developing parameters for the 
essentiality prediction portion. The DepMap represents a powerful dataset for mining 
biological pathways that best predict TF perturbation outcomes, but it still needs to be 
parameterized for use. Thus, we generated training data using some data from the DepMap 
and then validated our findings using a completely independent set of data from the DepMap. 
It is, in fact, independent validation, as is performed in many contexts on many data sets. To 
further clarify our point, we would also like to emphasize that for each particular type of 
tissue/tumor, the inTRINSiC pipeline will have to be run independently to obtain specific 
parameters for the essentiality prediction portion. We could put in a supplementary figure to 
graphically represent our work flow. 



For the second issue, we agree that perturbing a TF that acts through a hub TF would 
potentially deem that TF significant. However, we would like to highlight two observations 
from our data that already address this concern: 1) perturbing many of the known hub/critical 
TFs themselves did not result in a striking amount of fitness decrease, for example MYC, 
which has thousands of regulatory targets and 2) Hub TFs, in fact, show different levels of 
essentiality in different tumor subtypes. Thus, we are able to capture differential biology 
between subtypes even in the case of hub TFs. 
 
• I'm concerned with the statement made about the relatively low impact that miRNAs have on 
expression regulation: 
 
"1) the effects of miRNA regulation are estimated to explain only 7-13% of overall gene expression 
variation49, and 2) since miRNAs act primarily via repressing mRNA levels50, regulation by miRNAs 
may be absorbed into TF regulation in our model where a subset of TF-target regulatory parameters 
may be due to indirect regulation of the target by TFs through expression of miRNAs50." 
 
While this may be true regarding the relationship between miRNAs and overall gene expression 
variation, this may not hold for specific genes and miRNAs. Context plays a role and to brush a 
broad stroke on the perceived minimal impact of miRNAs on expression regulation may lead to 
incorrect conclusions of a particular TFs role in gene regulation. It seems that the role of miRNA 
regulation is being confounded in the model. While one cannot account for every single detail of 
regulation in a quantitative model, as it would be intractable, this raises a concern. 
 
We agree with the reviewer that inclusion of a systematic map of miRNA-TF-gene interactions 
would be intractable for the scope of this paper. Indeed, this analysis would require a 
different type of quantitative modeling. However, we would emphasize that our approach is 
highly validated in the DepMap data set in the absence of miRNA data. While inclusion of 
miRNA may refine our data, we do not believe it will fundamentally alter our conclusions. 
 
• Figure 1d - the effort to show the similarities between bulk- and single-cell expression data via 
correlation of F values is appreciated. However, there still seems to be a good portion of the 
correlation relationships that are either non-correlated or anti-correlated. This is not the most 
convincing figure to show the similarity between bulk and single-cell data. Is there some permutation 
analysis or statistical analysis to show that the number of F-correlations is indeed statistically 
significant? If so, at what correlation level are the F-correlations between bulk and single-cell data 
statistically significant? It would be interesting to see what TF-TF relationships are anti-correlated or 
have no relationship and if that is indicative of some technical or biological factor. 
 
We have calculated p-values for the correlation coefficient distributions using a Mann-
Whitney U test to test if the medians deviate significantly from zero, and they are significant 
for all 3 subtypes. We would be sure to inspect the correlations that are near-zero or negative 
in a revised manuscript. 
 
• The patient stratification of low and high MYBL2 looks good in the Kaplan-Meier plots (Fig 5G), but 
the significance seems somewhat low (p-value (TCGA): 0.035 and p-value (CGGA): 0.0228. 
 
We would like to point out that the diminished significance is likely due to the relatively small 
sample sizes of these cohorts due to subsetting to the Proneural subtype. We are however 
confident that consistent observations in two completely independent datasets of two 
profiling platforms (micro-array and RNA-seq) and different demographics (largely non-Asian 
American and Chinese) are sufficient to prioritize MYBL2 for further investigation. Moreover, 
the p-value of <0.05 is a well-established cutoff for statistical significance. 



 
• Ultimately, to be convinced, I would need some targeted experiments to validate new subtype-
specific essential TFs. 
 
The reviewer clearly expects experimental validation, which we have been unable to perform. 
 
Minor comments: 
 
• There are quite a few separate algorithms used as part of the overall workflow to generate a 
regulatory network model and predictions. It would be helpful if some type of flow-diagram were 
included, one that is a bit more detailed than the one included in Fig 1a. A supplementary figure that 
were to include in some way, shape, or form a general overview of the various algorithms, 
databases, and steps involved (e.g., PIQ algorithm, RANSAC algorithm, BIOGRID database, etc., 
etc., etc.). 
 
• Supplementary Fig 1F is missing - no histograms showing overlap between TF-edges derived from 
TCGA and CGCA data are shown. 
 
• Supplementary Fig 4C, which shows the percentile ranking of NFE2 essentiality across CL, PN, 
and MES subtypes, is not convincing. I would want to see a targeted essentiality test on NEF2 
knockdown in different GBM subtype cells. 
 
• Figure 5B axes are not labeled 
 
• Supplementary Figure 1e legend - is "Mean symmetric mean absolute percentage error" correct? 
"Mean" is used twice in the sentence and may be a typo. 
 
All of these changes can be made and information provided, with exception of NEF2 
knockdown experiments. 
 
 
 
Reviewer #3: 
 
In this revised manuscript, the authors have adequately addressed several points raised in our 
earlier review. However, some key concerns remain unaddressed, which will be discussed in the 
following. First, let's start by acknowledging the points that have been addressed: 
 
First, the authors now adequately explain why it was not viable to include cross-terms in their model. 
Also, while the use of RANSAC was questioned in the original review, the rebuttal clarifies how it 
was applied and shows that it is appropriate for their data. Finally, even though this was not 
specifically requested, in the original review, the new Figure S2e does a great job of illustrating how 
the in silico perturbational assay can move cells in gene expression space. 
 
We appreciate the reviewer’s enthusiasm here. 
 
This reviewer had also questioned the lack of comparative analysis of inTRINSiC to other 
established methods, such as ARACNe and SCENIC. As a result, it was difficult to weigh both 
benefits and drawbacks associated with the new algorithm and, in particular, to accurately assess 
whether it provided any improvements relative to the current state of the art. To address these 
concerns, the authors now utilize the BIOGRID database to explicitly compare the performance of 
ARACNe and inTRINSiC, concluding that they have comparable performances. They also clarify 
what they consider to be the specific advantages of their method. In particular, they illustrate 



inTRINSiC's ability to model the effect of downstream effectors on gene expression. 
 
While these represents key improvements on the original manuscript submission, some key 
concerns remain unaddressed. For instance, the comparison between ARACNe and inTRINSiC 
relies largely on TF-TF interactions as a gold standard baseline, thus ignoring the vast majority of 
interactions which are between TFs and their transcriptional targets. BioGRID provides additional 
data for interactions between TFs and known targets, which could have been used for this purpose. 
There are also additional databases, such as TRRUST, which report information about TF-target 
interactions. Given the general availability of these data, why was the comparison performed using 
only a relatively restricted set? 
 
We chose TF-TF interaction as a standard for evaluating model performance as it contains a 
large body of experimental evidence. In contrast, the BioGRID data set is derived largely from 
predicted TF binding sites and physical binding experiments. Thus, our analysis focuses on a 
more extensively validated subset of the overall BioGRID data set. We would be happy to 
provide a parallel analysis using BioGRID regulatory interactions as reference standards to 
benchmark our networks, although we are quite confident in the superiority of our data set. 
 
While the authors discuss what they believe to be the advantages of the inTRINSiC approach 
relative to SCENIC in the discussion section, it appears that no direct comparison of their relative 
performance was made. As a result, for two of the mainstream approaches, it appears that one is 
essentially equivalent to the new methodology while the other was not tested at all. 
 
This data is already included in our manuscript. When comparing our models with other 
methods, we have taken into consideration the major categories of regulatory network 
construction methods. SCENIC essentially runs a correlation-based pipeline to unveil 
regulatory structures from single-cell expression profiles. We have provided in our 
supplementary materials (Figure S1c and Supplementary Methods) a comparison between 
our method and a purely linear correlation-based method, which captures the same type of 
variation as SCENIC does.  
 
More importantly, the authors have not explored any further validation of their downstream 
predictions, either experimentally or against other methods that identify key TFs that control cell 
state. This becomes more critical given that the ability of inTRINSiC to outperform other methods in 
terms of network reconstruction is not obvious from the new data. For instance, an obvious 
comparison would be to the SCENIC and VIPER algorithms which could also be benchmarked 
against DepMap, as done in Figure 5. This would establish an objective baseline for differential 
performance between inTRINSiC predictions and predictions generated by other methods. This is 
particularly critical because some of the predictions by inTRINSiC are not consistent with 
experimental validation. For instance, the algorithm predicts that silencing STAT3 in mesenchymal 
glioma samples would shift the phenotype towards a proneural phenotype. However, in the 
manuscript they cite (Carro et al. Nature 2010), experimental silencing of STAT3 alone failed to 
reprogram mesenchymal cells towards a proneural state and, as computationally predicted, joint 
silencing of both STAT3 and CEBPB was required to accomplish this goal. 
 
We would like to emphasize that, as stated in our Discussion, other network inference algorithms, 
including SCENIC, does not allow for predictive gene expression modeling, i.e. given a perturbation, 
predict the changes in the expression levels of downstream regulatory targets. A comparison with 
the VIPER algorithm might be useful for evaluating the performance of the protein network activity 
prediction method in our paper. This could be provided. 
 
We believe the reviewer has misread our data here. For the biology associated with STAT3, 
we would like to clarify that in our computational experiments, perturbing STAT3 caused a 



substantial shift towards the Classical subtype (Figure 3e) rather than the Proneural subtype 
(as argued by the reviewer). We also observed that some Proneural subtypes have also 
shifted towards the Mesenchymal subtype in Figure 3e upon loss of STAT3. We argue that 
this is consistent with two observations: 1) STAT3 has significant participation in both 
Mesenchymal and Proneural signature sets (Figure 3b), and 2) STAT3 is a part of the 
Mesenchymal master regulatory circuit and is required for maintaining the Mesenchymal 
state, which is shown in Carro et al (Nature 2010), Figure 4 where knocking down of either 
STAT3 or CEBPB would lead to a loss of Mesenchymal signature gene expression. 
 
Similarly, while the example of MYBL2 is discussed at length, the authors do not provide any 
experimental validation to support these findings. Indeed, all validation attempts provided by the 
manuscript are completely retrospective, e.g. using DepMap data. As a result, contrary to what has 
been done by numerous manuscripts that have used computational approaches to prioritize cell 
dependencies or reprogramming factors and then validated these findings experimentally, this 
manuscript fails to provide any level of experimental validation supporting the claim that inTRINSiC 
predictions can discovering new biology. 
 
Again, the reviewer clearly expects experimental validation, which we have been unable to 
perform. 
 
Finally, I still feel that the authors do not adequately describe the real implications and value of 
inTRINSiC. The ability to perturb gene expression profiles in silico is novel and potentially interesting, 
but the authors present the algorithm as a way to prioritize essential TFs governing biological 
phenotypes and that would require either experimental validation to substantiate their claims or 
comparison to experimentally validated algorithms that perform similar tasks. As a result, proposing 
that inTRINSiC may be able to predict treatments entirely in silico seems tenuous and 
unsubstantiated by the data, especially given the difficult of directly targeting TFs, a point the authors 
concede in the rebuttal, but do not discuss at all in the revised manuscript. 
 
We have perhaps understated the relevance and utility of inTRINSiC in the manuscript. The 
framework for predictive modeling of gene essentiality provided by inTRINSiC will not only 
serve as a powerful platform for predicting treatment outcome in silico, but will also prove 
highly valuable in at least two areas: First, it will allow one to leverage large-scale profiling 
datasets from primary human tumor samples where unbiased genetic screens are infeasible 
to perform. This analysis will identify “high value” genes and pathways to target in cell line or 
mouse/xenograft models. Second, with improvements in the scale and coverage of newer 
techniques such as Perturb-seq and single-cell epigenomics, the inTRINSiC pipeline can be 
extended to understand the source of phenotypic heterogeneity at the single-cell level 
through modeling multiple layers of regulation in the same cell.  
 
Finally, while targeting TFs themselves is challenging, such efforts are increasingly common 
and, as in the case of Brd4 inhibitors, represent a clinical reality. 
 
 

 



3rd Aug 2020Appeal - Editorial Decision

Manuscript Number: MSB-20-9506RR-Q, Integrated regulatory models for inference of subtype-
specific suscept ibilit ies in glioblastoma 

Thank you for your message asking us to reconsider our decision on your manuscript MSB-20-9506. 
I have now had the chance to evaluate the points raised in your appeal let ter and I have also 
discussed them with the editorial team. As I will explain below, we have decided to give you the 
chance to revise the study, in an except ional final round of revision. 

The main reasons underlying our previous decision to decline publicat ion were the issues raised by 
the reviewers on the overall level of validat ion and the somewhat limited evidence of
superiorit y/advantages of iNTRINSiC compared to alternat ive approaches. I would like to st ress out 
that our decision to decline publicat ion was not based on the lack of follow up experimental 
validat ions, as we had discussed before the submission of the revised version that performing such 
validat ions would be except ionally difficult due to the Sars-CoV-2 situat ion. However, in addit ion to 
reiterat ing their disappointment about the lack of follow up experimentat ion, in this round of review 
the reviewers also raised concerns on the computat ional aspects of the study which we thought 
represented significant limitat ions and dampened the confidence in the performance of the 
approach and its ability to generate biologically relevant predict ions. 

After having read your preliminary point by point response to the reviewers' concerns and given the 
overall support ive comments of the reviewers about the potent ial value of the approach (during 
both review rounds), we have decided to give you the chance to revise the study and to address 
the remaining issues raised by the referees regarding the performance of the method and its 
advantages over previous approaches. Specifically, it would be important to address the following: 

- The superiority and advantages of iNTRINSiC compared to SCENIC and ARACNE need to be
better explained and supported. Any features of iNTRINSiC that allow analyses that are not
possible to perform with alternat ive approaches should be clearly described so that it  is clear to the
reader how this method goes beyond what is current ly available. Any further computat ional
analyses that could provide support  for the performance of iNTRINSiC (e.g. comparison to VIPER)
would be beneficial.

- The answer regarding the use of DepMap data for validat ion seems sat isfactory. We would ask
you to make sure that it  is clearly described in the manuscript  that  independent data was used for
training and validat ion.

- An addit ional Figure depict ing the iNTRINSiC workflow in detail would be very beneficial for the
readers.

- Regarding the issue related to the effect  of miRNAs, we think that no further analyses are
required. It  is sufficient  to include a short  discussion on the expected minor effect  of miRNAs on the
conclusions.



- As we had previously discussed we think that follow up experimental validat ions are not
mandatory for the acceptance of the work.

- All minor issues raised by the reviewers regarding the data presentat ion etc. need to be
addressed.



Thank you again for the opportunity to submit a revised manuscript. We have included a 
detailed point-by-point response to your comments as well as those provided by the 
reviewers. We believe that we have been able to completely address all of the issues raised. 
As mentioned in our previous correspondence, there were a number of reviewer concerns 
that perhaps arose out of a misunderstanding of our approach or a lack of clarity on our part. 
We have endeavored to elaborate on these issues of confusion and provide graphical and 
table data presentation to provide additional clarity. We have also substantially extended our 
direct comparisons between inTRINSiC and existing algorithms – analyses that highlight the 
clear advantages of our approach. 

We are more than ever convinced of the value of this approach to the cancer community and 
are very excited to have this work published in MSB. We also truly appreciate your editorial 
supervision of this work. This manuscript has been greatly improved over the course of this 
process, and your guidance has significantly contributed to this process. 

Editor’s comments: 

Dear Mike, 

Thank you for your message asking us to reconsider our decision on your manuscript MSB-20-9506. 
I have now had the chance to evaluate the points raised in your appeal letter and I have also 
discussed them with the editorial team. As I will explain below, we have decided to give you the 
chance to revise the study, in an exceptional final round of revision. 

After having read your preliminary point by point response to the reviewers' concerns and given the 
overall supportive comments of the reviewers about the potential value of the approach (during both 
review rounds), we have decided to give you the chance to revise the study and to address the 
remaining issues raised by the referees regarding the performance of the method and its 
advantages over previous approaches. Specifically, it would be important to address the following: 

- The superiority and advantages of iNTRINSiC compared to SCENIC and ARACNE need to be
better explained and supported. Any features of iNTRINSiC that allow analyses that are not possible
to perform with alternative approaches should be clearly described so that it is clear to the reader
how this method goes beyond what is currently available. Any further computational analyses that
could provide support for the performance of iNTRINSiC (e.g. comparison to VIPER) would be
beneficial.

In the revised manuscript, we now provide additional text and a table that directly compares 
inTRINSiC with ARACNe, SCENIC and VIPER and describes the advantages of inTRINSiC 
relative to these other approaches. We also provide additional computational comparisons 
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between 1) inTRINSiC and GENIE3 (another state-of-the-art network inference method used 
by the SCENIC single-cell pipeline), showing that they are comparable in terms of the number 
of BIOGRID interactions captured from the pipelines (Figure EV2d and Table EV1, see below), 
and 2) inTRINSiC and VIPER for protein signaling activity inference, showing that inTRINSiC’s 
exponential ranking algorithm achieves wider coverage of signaling proteins and consistency 
with known (non-transcriptional regulatory) signaling relationships compared to VIPER 
(Figure EV2h-j). 

Network 
Construction 

Method 
inTRINSiC ARACNe 

SCENIC 
(GENIE3) 

SYGNAL 

Type of regulator-
target relationship 

captured 
Non-linear 

Mutual 
information 

Co-expression* 
Co-

expression 

Pre-select 
regulator-target 
edges based on 

experimental 
evidence 

Yes No No Yes 

Yields regulatory 
parameters with 
direct biological 
interpretations 

(magnitude and 
directionality etc.)? 

Yes No No No 

Allows in silico 
perturbation of 
transcriptional 

regulators? 

Yes No No No 

Allows explicit 
incorporation of 

additional 
mechanisms of 

transcription 
regulation (non-

coding RNA, 
epigenetic etc.)? 

Yes No No Yes 

Protein Activity 
Inference Method 

inTRINSiC VIPER 

Utilizes protein-protein 
signaling interactions 

Yes No 

Independent of 
transcription regulation 

inference? 
Yes No** 

*: co-expression here is defined as a (linear or non-linear) relationship between the 
regulator and target genes inferred using random forest regression, where the 
relationship does not take any particular analytical form. 
**: In an extension of the VIPER algorithm, residual post-translational signaling activities 
are inferred by regressing out transcriptional variance. However, the VIPER algorithm 



still relies on differential expression to infer either direct or indirect regulatory effects on 
protein activity. 
 
- The answer regarding the use of DepMap data for validation seems satisfactory. We would ask you 
to make sure that it is clearly described in the manuscript that independent data was used for 
training and validation.  
 
We have changed the text to make it clear that we are using a completely different test cell 
line set than was used in our initial training. We also provide a figure that clearly depicts our 
DepMap validation workflow. 
 
- An additional Figure depicting the inTRINSiC workflow in detail would be very beneficial for the 
readers.  
 
We completely agree and now provide additional figures (5a and Figure EV5) that describe 
the inTRINSiC workflow. 
 
- Regarding the issue related to the effect of miRNAs, we think that no further analyses are required. 
It is sufficient to include a short discussion on the expected minor effect of miRNAs on the 
conclusions.  
 
We have added text to the discussion to explain the possible impact of miRNAs and our 
reasons for not including miRNA analysis in this study. 
 
- As we had previously discussed we think that follow up experimental validations are not mandatory 
for the acceptance of the work.  
 
We thank you for this consideration during this difficult time for our laboratories. While 
experimental validation, particularly in vivo validation in mouse/PDX models would be nice, 
we think our DepMap analysis is both decisive and of considerable benefit for future analyses. 
The reason for this is two-fold. First, it represents a large-scale wet bench/experimental data 
set that we have used to validate our approach. Second, it provides a work-flow by which any 
patient tumor expression set can be analyzed for subtype dependencies by combining 
inTRINSiC with DepMap. This is one of the things that makes our approach different from any 
other – the ability to take patient tumor samples (GBM or otherwise) that cannot be 
genetically modified or chemically screened and test for dependencies. 
 
- All minor issues raised by the reviewers regarding the data presentation etc. need to be 
addressed.  
 
All of the minor issues raised by the reviewers have been addressed (see below). 
 
Reviewer #1: 
 
Liu et al have addressed my concerns and the robustness and timeliness of the study have been 
improved by adding new cross-validation data and computational methods. I feel that a further 
substantial revision may not be required; however, I strongly recommend additional editing in terms 
of improving data presentation and transparency of reporting. 
 
Examples (main figures): 
- Please provide a Y-axis for Figure 1D (correlation coefficients?) - the legend should include a 
statement as to how the p-values were calculated. 
-Please clarify whether Kaplan Meier plots show 'overall survival' (not recurrence-free survival)? 



-Is a font size increase possible for Figure 1 (e) and Figure 2 (e)? 
- Figure 4 legend (c): 'TF pairs with F value correlation coefficients larger than 0.8 are visualized as 
links': what is meant by 'visualized as links' (not clear to me)? Will hyperlinks be included? 
-Figure 5 legend: '(d) Bar plots of DepMap (grey) and predicted (color-coded according to subtypes 
as in (c)': panel (c) does not seem to include colors/subtypes? 
- Figure 5: axis labelling appears to be missing for (b), (f); difficult to read axis labels in (c), (d). Can 
consistent labelling be used across the panels? 
-Figure 5 legend: what does '* - p = 0.044' mean? Correct?  
Figure 5 (e): Please consider rephrasing following statement with regards to improving clarity: 
'Shown are the six TFs that has the same subtype that is most dependent on its expression 
(predicted by inTRINSiC) and that which shows the most negative correlation between expression 
and patient survival'. 
 
We appreciate the reviewer’s comments about the “robustness and timeliness” of this study. 
We have made numerous changes to improve the data presentation in the revised manuscript, 
including all of these suggested changes. 
 
 
Reviewer #2: 
 
Manuscript Number: MSB-20-9506R 
Manuscript Title: Integrated regulatory models for inference of subtype-specific susceptibilities in 
glioblastoma 
 
 
It is clear that the authors have made progress in addressing some of the concerns raised in the 
original review. Particularly, the authors do make an effort to validate their model predictions by 
comparing their model predictions against independent data sets (CCGA and DepMap), focusing on 
a few TFs such as NFE2, MYBL2, NRF1, and ATF4 and comparing predicted vs. previously 
determined essentiality scores. A good example of the computational validation performed is 
presented in Figure 5g, showing the stratification of patient survival based on MYBL2, a TF identified 
from their network model. Unfortunately, there are still concerns associated with validation that 
dampen enthusiasm for the revised manuscript: 
 
Major concerns/questions: 
 
• The authors claim to use DepMap data as a means to validate predictions of TF and protein level 
activity, however it seems that the DepMap essentiality scores are used to fit protein activity scores. 
If the DepMap scores are used to fit model outputs to decrease overfitting and ensure sparsity, as 
described in the "Modeling effects of gene expression perturbation in silico", then this is not really a 
true computational validation of the model predictions. Further, there need to be a number of tests 
that need to be run, including the shuffling of node labels on the iNTRINSiC regulatory network and 
determining the threshold for a significant score, a hypergeometric test, etc. The way they make their 
essentiality prediction, you recursively propagate the effect of a TF knockout through the network of 
TF-TF interactions. So, if you hit a hub TF then any TF could be deemed essential. So a network 
where node labels are shuffled, and TF and gene in/outdegree is maintained will essentially yield a 
similar number of essential TFs (at least I would expect it to). The distribution of essential/non-
essential TFs could therefore look similar. In that regard a ROC analysis with leave-one-out 
permutations would also be necessary to show sensitivity and specificity (and associated 
significance). If the model predictions of TF essentiality were calculated independently and then 
compared to DepMap, that would be better. If that was indeed the case, then that needs to be 
clarified further. As it is currently written, it is not clear that is the case. 
 



We think there are two separate and important issues here. First, how did we perform our 
DepMap validation - and is it a true independent validation? Second, by looking at hub TFs, 
won’t all transcription factors be deemed essential? 
 
For the first issue, we think there was a lack of clarity in our description. We would like to 
clarify that the design of the essentiality prediction part of inTRINSiC is to test if a particular 
combination of transcription regulatory and protein signaling activities could be used to 
predict the changes in fitness of the cell upon perturbing each TF. This involves, for any data 
set or tumor type, developing parameters for the essentiality prediction portion. The DepMap 
represents a powerful dataset for mining biological pathways that best predict TF 
perturbation outcomes, but it still needs to be parameterized for use. Thus, we generated 
training data using some data from the DepMap and then tested our findings using a 
completely independent set of data from the DepMap. It is independent validation, as is 
performed in many contexts on many data sets. To further clarify our point, we would also 
like to emphasize that for each particular type of tissue/tumor, the inTRINSiC pipeline will 
have to be run independently to obtain specific parameters for the essentiality prediction 
portion. We have modified the text for clarity and put in a supplementary figure to graphically 
represent our work flow. 
 
For the second issue, we agree that perturbing a TF that acts through a hub TF would 
potentially deem that TF significant. However, we would like to highlight two observations 
from our data that already address this concern: 1) perturbing many of the known hub/critical 
TFs themselves did not result in a striking amount of fitness decrease, for example MYC, 
which has thousands of regulatory targets and 2) Hub TFs, in fact, show different levels of 
essentiality in different tumor subtypes. Thus, we are able to capture differential biology 
between subtypes even in the case of hub TFs. 
 
• I'm concerned with the statement made about the relatively low impact that miRNAs have on 
expression regulation: 
 
"1) the effects of miRNA regulation are estimated to explain only 7-13% of overall gene expression 
variation49, and 2) since miRNAs act primarily via repressing mRNA levels50, regulation by miRNAs 
may be absorbed into TF regulation in our model where a subset of TF-target regulatory parameters 
may be due to indirect regulation of the target by TFs through expression of miRNAs50." 
 
While this may be true regarding the relationship between miRNAs and overall gene expression 
variation, this may not hold for specific genes and miRNAs. Context plays a role and to brush a 
broad stroke on the perceived minimal impact of miRNAs on expression regulation may lead to 
incorrect conclusions of a particular TFs role in gene regulation. It seems that the role of miRNA 
regulation is being confounded in the model. While one cannot account for every single detail of 
regulation in a quantitative model, as it would be intractable, this raises a concern. 
 
We agree with the reviewer that inclusion of a systematic map of miRNA-TF-gene interactions 
would be intractable for the scope of this paper. Indeed, this analysis would require a 
different type of quantitative modeling. However, we would emphasize that our approach is 
highly validated in the DepMap data set in the absence of miRNA data. We have added to the 
text on miRNAs in the discussion section to clarify these issues. 
 
• Figure 1d - the effort to show the similarities between bulk- and single-cell expression data via 
correlation of F values is appreciated. However, there still seems to be a good portion of the 
correlation relationships that are either non-correlated or anti-correlated. This is not the most 
convincing figure to show the similarity between bulk and single-cell data. Is there some permutation 
analysis or statistical analysis to show that the number of F-correlations is indeed statistically 



significant? If so, at what correlation level are the F-correlations between bulk and single-cell data 
statistically significant? It would be interesting to see what TF-TF relationships are anti-correlated or 
have no relationship and if that is indicative of some technical or biological factor. 
 
We have calculated p-values for the correlation coefficient distributions using a Mann-
Whitney U test to test if the medians deviate significantly from zero, and they are significant 
for all 3 subtypes. We have also inspected the correlations that are near-zero or negative in 
the revised manuscript and discussed their potential implications in our updated Discussion 
section. 
 
• The patient stratification of low and high MYBL2 looks good in the Kaplan-Meier plots (Fig 5G), but 
the significance seems somewhat low (p-value (TCGA): 0.035 and p-value (CGGA): 0.0228. 
 
The lower than anticipated significance is likely due to the relatively small sample sizes of 
these cohorts due to subsetting to the Proneural subtype. We are however confident that 
consistent observations in two completely independent datasets of two profiling platforms 
(micro-array and RNA-seq) and different demographics (largely non-Asian American and 
Chinese) are sufficient to prioritize MYBL2 for further investigation. Moreover, the p-value of 
<0.05 is a well-established cutoff for statistical significance. 
 
• Ultimately, to be convinced, I would need some targeted experiments to validate new subtype-
specific essential TFs. 
 
We agree that in vivo validation experiments would be meaningful. However, we have been 
unable to perform such experiments due to COVID-related lab shut downs. We do, however, 
believe that the DepMap validation is compelling. It represents a lot of experimental 
manipulation of cell lines – work that is similar to what is requested here. 
 
 
Minor comments: 
 
• There are quite a few separate algorithms used as part of the overall workflow to generate a 
regulatory network model and predictions. It would be helpful if some type of flow-diagram were 
included, one that is a bit more detailed than the one included in Fig 1a. A supplementary figure that 
were to include in some way, shape, or form a general overview of the various algorithms, 
databases, and steps involved (e.g., PIQ algorithm, RANSAC algorithm, BIOGRID database, etc., 
etc., etc.). 
 
• Supplementary Fig 1F is missing - no histograms showing overlap between TF-edges derived from 
TCGA and CGCA data are shown. 
 
• Supplementary Fig 4C, which shows the percentile ranking of NFE2 essentiality across CL, PN, 
and MES subtypes, is not convincing. I would want to see a targeted essentiality test on NEF2 
knockdown in different GBM subtype cells. 
 
• Figure 5B axes are not labeled 
 
• Supplementary Figure 1e legend - is "Mean symmetric mean absolute percentage error" correct? 
"Mean" is used twice in the sentence and may be a typo. 
 
We appreciate these comments. All of these changes have been made and information 
provided in the revised manuscript, with exception of the experimental knockdown of NFE2. 
 



 
 
Reviewer #3: 
 
In this revised manuscript, the authors have adequately addressed several points raised in our 
earlier review. However, some key concerns remain unaddressed, which will be discussed in the 
following. First, let's start by acknowledging the points that have been addressed: 
 
First, the authors now adequately explain why it was not viable to include cross-terms in their model. 
Also, while the use of RANSAC was questioned in the original review, the rebuttal clarifies how it 
was applied and shows that it is appropriate for their data. Finally, even though this was not 
specifically requested, in the original review, the new Figure S2e does a great job of illustrating how 
the in silico perturbational assay can move cells in gene expression space. 
 
We very much appreciate the reviewer’s comments. 
 
This reviewer had also questioned the lack of comparative analysis of inTRINSiC to other 
established methods, such as ARACNe and SCENIC. As a result, it was difficult to weigh both 
benefits and drawbacks associated with the new algorithm and, in particular, to accurately assess 
whether it provided any improvements relative to the current state of the art. To address these 
concerns, the authors now utilize the BIOGRID database to explicitly compare the performance of 
ARACNe and inTRINSiC, concluding that they have comparable performances. They also clarify 
what they consider to be the specific advantages of their method. In particular, they illustrate 
inTRINSiC's ability to model the effect of downstream effectors on gene expression. 
 
While these represents key improvements on the original manuscript submission, some key 
concerns remain unaddressed. For instance, the comparison between ARACNe and inTRINSiC 
relies largely on TF-TF interactions as a gold standard baseline, thus ignoring the vast majority of 
interactions which are between TFs and their transcriptional targets. BioGRID provides additional 
data for interactions between TFs and known targets, which could have been used for this purpose. 
There are also additional databases, such as TRRUST, which report information about TF-target 
interactions. Given the general availability of these data, why was the comparison performed using 
only a relatively restricted set? 
 
We chose TF-TF interaction as a standard for evaluating model performance as it contains a 
large body of experimental evidence. In contrast, the BIOGRID data set is derived largely from 
predicted TF binding sites and physical binding experiments. Thus, our analysis focuses on a 
more extensively supported subset of the overall BIOGRID data set. We now describe this 
rationale in the revised manuscript. 
 
While the authors discuss what they believe to be the advantages of the inTRINSiC approach 
relative to SCENIC in the discussion section, it appears that no direct comparison of their relative 
performance was made. As a result, for two of the mainstream approaches, it appears that one is 
essentially equivalent to the new methodology while the other was not tested at all. 
 
A comparison with the general SCENIC approach is provided in the manuscript. When 
comparing our models with other methods, we have taken into consideration the major 
categories of regulatory network construction methods. SCENIC essentially runs a co-
expression-based method (GENIE3) to unveil regulatory structures from single-cell 
expression profiles. We have also provided in our extended content (Figure EV1d and 
Materials and Methods) a comparison between our method and a linear regression-based 
method (Figure EV1c, EV2d).  
 



More importantly, the authors have not explored any further validation of their downstream 
predictions, either experimentally or against other methods that identify key TFs that control cell 
state. This becomes more critical given that the ability of inTRINSiC to outperform other methods in 
terms of network reconstruction is not obvious from the new data. For instance, an obvious 
comparison would be to the SCENIC and VIPER algorithms which could also be benchmarked 
against DepMap, as done in Figure 5. This would establish an objective baseline for differential 
performance between inTRINSiC predictions and predictions generated by other methods. This is 
particularly critical because some of the predictions by inTRINSiC are not consistent with 
experimental validation. For instance, the algorithm predicts that silencing STAT3 in mesenchymal 
glioma samples would shift the phenotype towards a proneural phenotype. However, in the 
manuscript they cite (Carro et al. Nature 2010), experimental silencing of STAT3 alone failed to 
reprogram mesenchymal cells towards a proneural state and, as computationally predicted, joint 
silencing of both STAT3 and CEBPB was required to accomplish this goal. 
 
We would like to emphasize that, as stated in our Discussion, other network inference 
algorithms, including SCENIC, does not allow for predictive gene expression modeling, i.e. 
given a perturbation, predict the changes in the expression levels of downstream regulatory 
targets. A comparison with the VIPER algorithm is indeed useful for evaluating the 
performance of the protein network activity prediction method in our paper. This is provided 
in the main text with results shown in Figure EV2h-j. When comparing protein signaling 
activity estimated from VIPER and that from our exponential ranking method, we found that 
exponential ranking was able to estimate protein activity changes for all 3,151 proteins 
covered by our signed, weighted model whereas VIPER only covered 218 proteins deemed as 
master regulators by the algorithm (Figure EV2h). Additionally, among the covered 
interactions, VIPER did not capture some of the well-established signaling activities, such as 
the EGFR/STAT3 and EGFR/KRAS axes, where EGFR is expected to activate these two 
downstream targets (Figure EV2i-j). 
 
We believe the that reviewer may have misread our data here (or we have not explained it 
clearly). For the biology associated with STAT3, we would like to clarify that in our 
computational experiments, perturbing STAT3 caused a substantial shift towards the 
Classical subtype (Figure 3e) rather than the Proneural subtype (as stated by the reviewer). 
We also observed that some Proneural subtypes have also shifted towards the Mesenchymal 
subtype in Figure 3e upon loss of STAT3. We argue that this is consistent with two 
observations: 1) STAT3 has significant participation in both Mesenchymal and Proneural 
signature sets (Figure 3b), and 2) STAT3 is a part of the Mesenchymal master regulatory 
circuit and is required for maintaining the Mesenchymal state, which is shown in Carro et al 
(Nature 2010), Figure 4 where knocking down of either STAT3 or CEBPB would lead to a loss 
of Mesenchymal signature gene expression. 
 
Similarly, while the example of MYBL2 is discussed at length, the authors do not provide any 
experimental validation to support these findings. Indeed, all validation attempts provided by the 
manuscript are completely retrospective, e.g. using DepMap data. As a result, contrary to what has 
been done by numerous manuscripts that have used computational approaches to prioritize cell 
dependencies or reprogramming factors and then validated these findings experimentally, this 
manuscript fails to provide any level of experimental validation supporting the claim that inTRINSiC 
predictions can discovering new biology. 
 
As stated above, we agree that in vivo validation experiments would be meaningful. However, 
we have been unable to perform such experiments due to COVID-related lab shut downs. We 
do, however, believe that the DepMap validation is compelling. It represents and extensive 
experimental manipulation of cell lines – work that is similar to what is requested here. 
 



Finally, I still feel that the authors do not adequately describe the real implications and value of 
inTRINSiC. The ability to perturb gene expression profiles in silico is novel and potentially interesting, 
but the authors present the algorithm as a way to prioritize essential TFs governing biological 
phenotypes and that would require either experimental validation to substantiate their claims or 
comparison to experimentally validated algorithms that perform similar tasks. As a result, proposing 
that inTRINSiC may be able to predict treatments entirely in silico seems tenuous and 
unsubstantiated by the data, especially given the difficult of directly targeting TFs, a point the authors 
concede in the rebuttal, but do not discuss at all in the revised manuscript. 
 
We have perhaps understated the relevance and utility of inTRINSiC in the manuscript. The 
framework for predictive modeling of gene essentiality provided by inTRINSiC will not only 
serve as a powerful platform for predicting treatment outcome in silico, but will also prove 
highly valuable in at least two areas: First, it will allow one to leverage large-scale profiling 
datasets from primary human tumor samples (GBM and otherwise) where unbiased genetic 
screens are infeasible to perform. This analysis will identify “high value” genes and pathways 
to target in cell line or mouse/xenograft models. We are unaware of other approaches that 
can effectively do this. Second, with improvements in the scale and coverage of newer 
techniques such as Perturb-seq and single-cell epigenomics, the inTRINSiC pipeline can be 
extended to understand the source of phenotypic heterogeneity at the single-cell level 
through modeling multiple layers of regulation in the same cell.  
 
Finally, while targeting TFs themselves is challenging, such efforts are increasingly common 
and, as in the case of Brd4 inhibitors, represent a clinical reality. 
 
All of these points are now included in the revised manuscript. 
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