Supporting Information

Pairing *Bacteroides vulgatus* LPS structure with its immunomodulatory effects on human cellular models

Flaviana Di Lorenzo,*†,‡ Molly D. Pither,† Michela Martufi,□ Ilaria Scarinci,□ Joan Guzman Caldentey,§ Ewelina Łakomiec,6 Wojciech Jachymek,6 Sven C.M. Bruijns,∞ Sonsoles Martín Santamaría,§ Julia-Stephanie Frick,↓ Yvette van Kooyk,∞ Fabrizio Chiodo,∞ Alba Silipo,†,‡ Maria Lina Bernardini,□ Antonio Molinaro*†,‡

[†]Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy

[‡]Task Force on Microbiome Studies, University of Naples Federico II, 80126 Naples, Italy

Department of Biology and Biotechnologies "C. Darwin", Sapienza-University of Rome, 00185 Rome, Italy

§Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas, CIB-CSIC, 28040 Madrid, Spain

⁶Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław 53-114, Poland

[∞]Department of Molecular Cell Biology and Immunology, Amsterdam Infection & Immunity Institute and Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.

↓Institute of Medical Microbiology and Hygiene, University of Tübingen, 72076 Tübingen, Germany

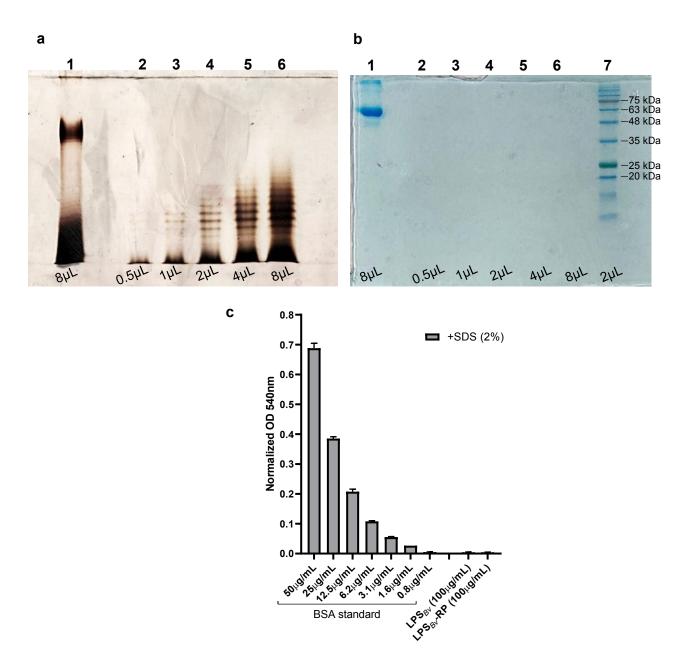
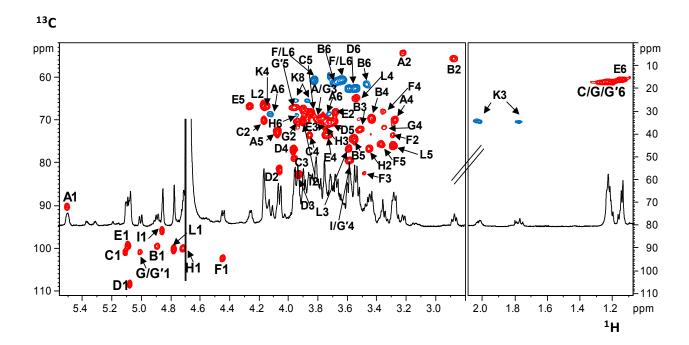
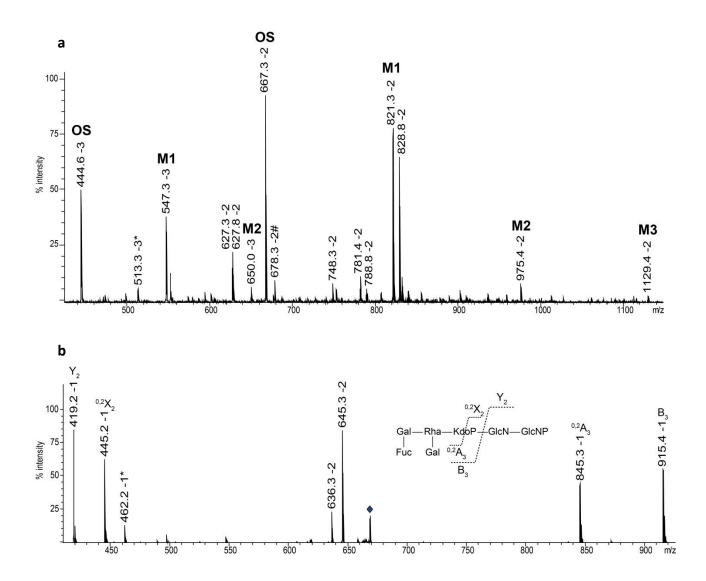
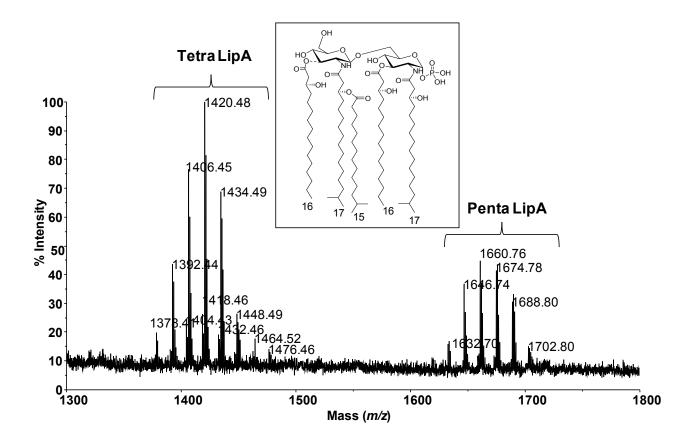

Supporting Tables Section

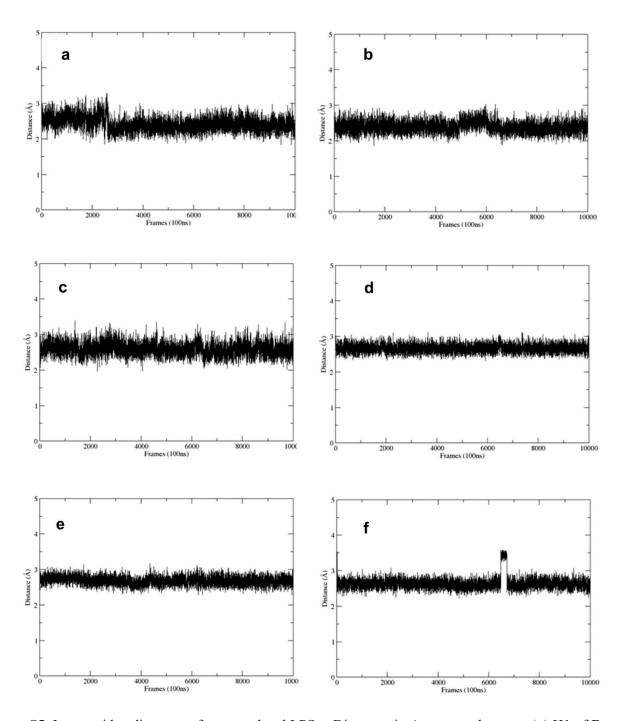
Table S1. Interpretation of ESI-IT mass spectra of the saccharide domain of the LPS_{Bv}


Oligosaccharide composition	Mass of the observed ion	Calculated mass of the ion	Monoisotopic mass of oligosaccharides (Da)	
	(m/z)	(m/z)	observed	calculated
Kdo·HexN ₂ ·Hex ₂ ·DeoxyHex ₂ ·P	627.3	627.19	1256.6	1256.39
Kdo·HexN·Hex ₃ ·DeoxyHex ₂ ·P	627.8	627.69	1257.6	1257.38
Kdo·HexN ₂ ·Hex ₂ ·DeoxyHex ₂ ·P ₂	444.6 (-3)	444.45 (-3)	1336.6	1336.36
	667.3 (-2)	667.18 (-2)	1336.8	
Kdo·HexN ₂ ·Hex ₂ ·DeoxyHex ₂ ·P ₂	678.3#	-	1336.6	1336.36
Kdo·HexN ₂ ·Hex ₃ ·DeoxyHex ₂ ·P ₂	748.3	748.20	1498.6	1498.41
Kdo·HexN ₂ ·Hex ₃ ·DeoxyHex ₃ ·P ₁	781.4	781.25	1564.8	1564.50
Kdo·HexN ₃ ·Hex ₃ ·DeoxyHex ₂ ·P ₁	788.8	788.76	1579.6	1579.52
Kdo·HexN ₂ ·Hex ₃ ·DeoxyHex ₃ ·P ₂	821.3	821.23	1644.6	1644.47
Kdo·HexN ₃ ·Hex ₃ ·DeoxyHex ₂ ·P ₂	828.8	828.74	1659.6	1659.48
Kdo·HexN ₂ ·Hex ₄ ·DeoxyHex ₄ ·P ₂	650.0 (-3)	649.86 (-3)	1953.0	1952.58
	975.4 (-2)	975.29 (-2)	1952.8	
Kdo·HexN ₂ ·Hex ₅ ·DeoxyHex ₅ ·P ₂	1129.4	1129.34	2260.8	2260.69

indicates [M-3H+Na]²⁻ ion.


Supporting Figures Section


Figure S1. Silver (a) and Coomassie Brilliant Blue (b) staining of SDS-PAGE of LPS_{Bν}. In the silver stained SDS-PAGE gel (a) LPS from *E. coli* O127:B8 (8 μL) (Lane 1) was used as a benchmark; 0.5 μL (Lane 2), 1 μL (Lane 3), 2 μL (Lane 4), 4 μL (Lane 5) and 8 μL (Lane 6) of 1 mg/mL solution of LPS_{Bν} were loaded on the gel. In the Coomassie Brilliant Blue stained SDS-PAGE gel (b) bovine serum albumin (BSA) (8 μL) (Lane 1) and BLUeye Prestained Protein Ladder (2 μL) (Lane 7) were used as references. Once again 0.5 μL (Lane 2), 1 μL (Lane 3), 2 μL (Lane 4), 4 μL (Lane 5) and 8 μL (Lane 6) of 1 mg/mL solution of LPS_{Bν} were loaded on the gel. (c) Micro BCATM Protein Assay executed in duplicate in presence of 2 % SDS. BSA at several concentrations has been used as standard. The graph shows the normalized optical density (OD) over the background signal from water samples.


Figure S2. ¹H and ¹H, ¹³C HSQC NMR spectrum of fully deacylated LPS_{Bv}. Key heteronuclear signals from the sugar backbone are indicated. Numbering of sugar residues is as reported in Table 1.

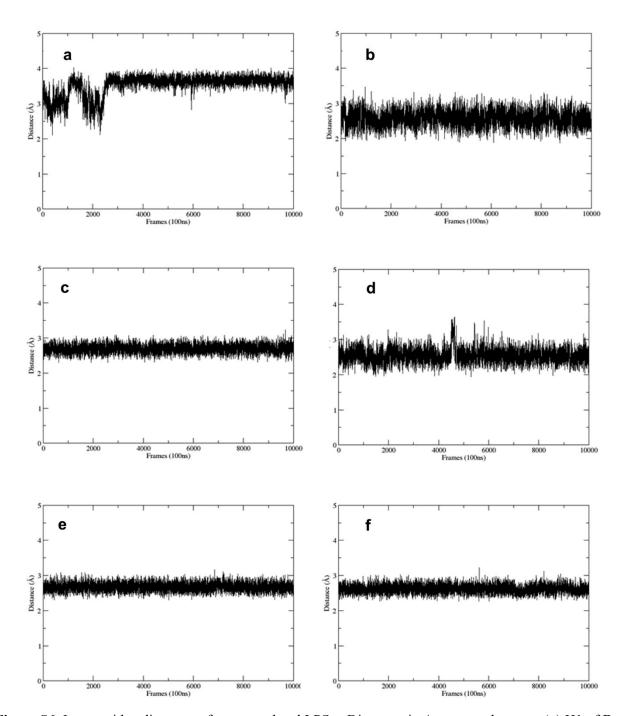

Figure S3. ESI-MS spectrum of fully deacylated LPS_{Bv} and ESI-MS² spectrum of core OS from LPS_{Bv}. (a) Zoom of mass spectrum with ions corresponding to core OS and core OS substituted with one, two and three O-chain repeating units (m/z 444.6 and 667.3 (OS), 547.3 and 821.3 (M1), 650.0 and 975.4 (M2), as well as 1129.4 (M3) respectively. # indicates [M-3H+Na]²⁻ ion. Ion indicated by asterisk was not interpreted. (b) Core OS was selected for MS² fragmentation. B₃ and Y₂ ions are indicated. Other ions indicate fragmentation inside the sugar ring (A₃ and X₂) with loss of formyl group (m/z 645.3, 636.3 and X₂). The inset structure represents general structure of core OS. The precursor ion (m/z 667.3) is indicated by diamond. Ion indicated by asterisk was not interpreted.

Figure S4. MALDI MS spectrum of *B. vulgatus* Lipid A. Zoom of reflectron MALDI TOF mass spectrum, acquired in negative polarity, of purified *B. vulgatus* mpk lipid A. Mass differences of 14 Da, indicative of lipid A species differing in their acyl chain length, are clearly visible. Assignment of the lipid A species is depicted as TetraLip A (tetra-acylated) and PentaLip A (penta-acylated). In the inset, structure of a representative *B. vulgatus* mpk lipid A species, relative to ion at *m/z* 1688.3 is depicted.

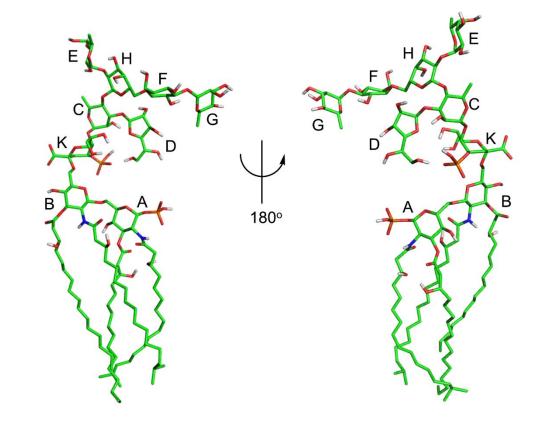


Figure S5. Inter-residue distances of tetra-acylated LPS_{Bv}. Distances in Angstroms between (a) H1 of **B** and H6 of **A**; (b) H1 of **D** and H3 of **C**; (c) H1 of **H** and H3 of **C**; (d) C2 of H and H1 of **E**; (e) C3 of **F** and H1 of **G**; (f) C6 of **H** and H1 of **F** during the 100ns MD simulation of tetra-acylated LPS_{Bv}.

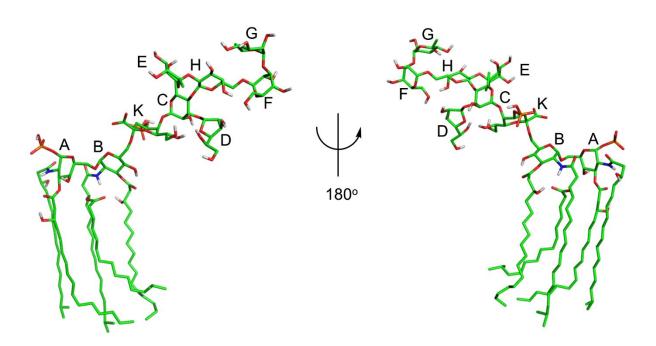
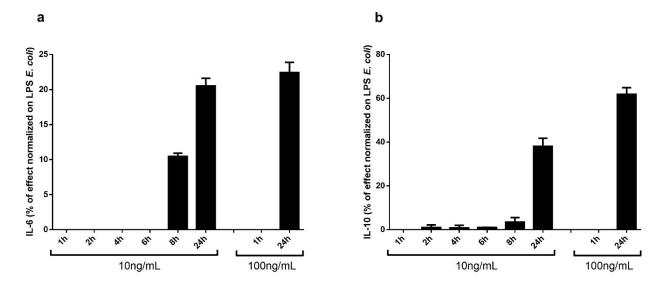
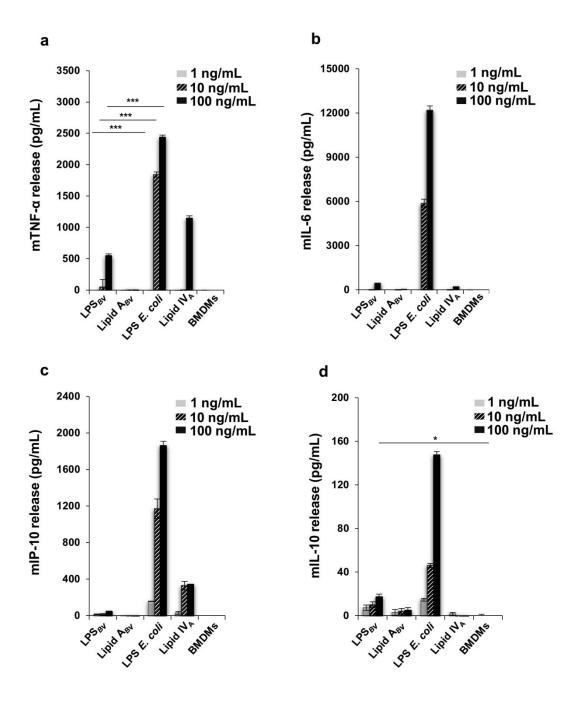
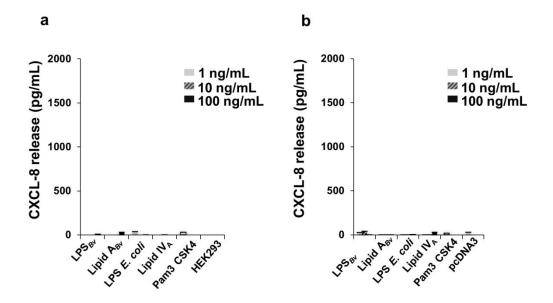


Figure S6. Inter-residue distances of penta-acylated LPS_{Bv}. Distances in Angstroms between (a) H1 of **B** and H6 of **A**; (b) H1 of **D** and H3 of **C**; (c) H1 of **H** and H3 of **C**; (d) C2 of **H** and H1 of **E**; (e) C3 of **F** and H1 of **G**; (f) C6 of **H** and H1 of **F** during the 100ns MD simulation of penta-acylated LPS_{Bv}.




b


Figure S7. 3D structure of tetra-acylated (a) and penta-acylated (b) LPS_{Bv} from MD simulation in water. Monosaccharide units are depicted.

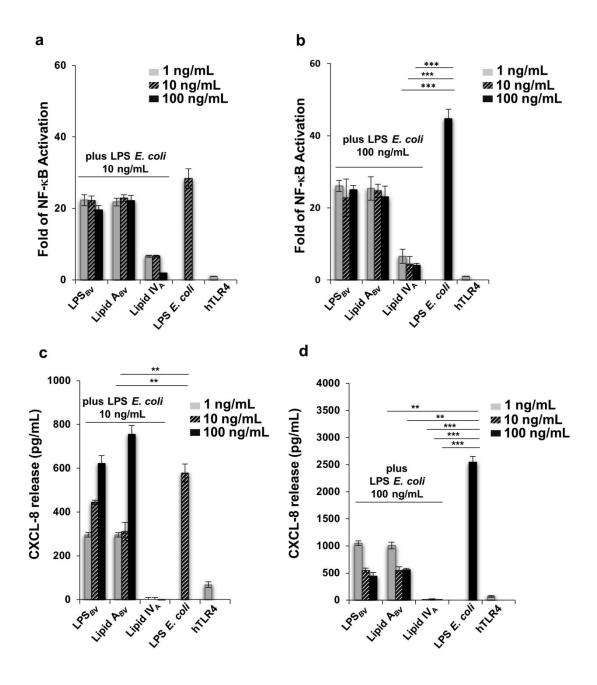

Figure S8. IL-6 (a) and IL-10 (b) release in Peripheral Blood-Monocyte-Derived Dendritic Cells (MoDCs) stimulated with LPS_{Bv} at different time points measured by ELISA. Data are expressed as percentage of effect and they are normalized over the MoDCs treated with *E. coli* LPS (10 ng/mL at 24 h) set at 100 %. The average results from two donors are shown. Error bars represent the standard deviation of the experiment performed in duplicate.

Figure S9. Cytokine and chemokine release induced by LPS_{Bv} and lipid A_{Bv} in murine Bone Marrow Monocyte-derived Macrophages (BMDMs). Release of Tumor Necrosis Factor-α (TNF-α) (**a**), IL-6 (**b**), IP-10 (**c**) AND IL-10 (**d**) in BMDMs free supernatants of BMDMs stimulated with LPS_{Bv} or lipid A_{Bv}, with *E. coli* LPS and with the synthetic antagonist tetra-acylated lipid IV_A at the concentration of 1, 10 and 100 ng/mL during 12 hours. Cytokine and chemokine release was analyzed through ELISA. Data are expressed as mean \pm SD of four independent experiments in triplicate. Untreated cells are the negative control in this experiment. *p<0.05, **p<0.01, ***p<0.001.

Figure S10. Analysis of immunopotential of LPS_{Bv} and Lipid A_{Bv} in HEK293 cells and HEK293 cells carrying pcDNA3. HEK293 cells (**a**) and HEK293 pcDNA3 (**b**) were treated for 6 hours with LPS_{Bv} or lipid A_{Bv}, with *E. coli* LPS or with the tetra-acylated lipid IV_A at the concentration of 1, 10 or 100 ng/mL, or with the synthetic TLR2 agonist Pam3 CSK4 (500 ng/mL) for 6 hours. After this time the release of the cytokine CXCL-8 was quantified through ELISA. Untreated cells were the negative control in these experiments.

Figure S11. Competition assay between LPS_{Bv} or lipid A_{Bv} with *E. coli* LPS for hTLR4 binding. Fold of NF-κB activation (**a** and **b**) and CXCL-8 release (**c** and **d**) in HEK293 hTLR4/MD2-CD14 cells primed with LPS_{Bv} or lipid A_{Bv} or with lipid IV_A at the concentration of 1, 10 and 100 ng/mL for 1 hour and then stimulated with 10 (**a** and **c**) or 100 ng/mL (**b** and **d**) of *E. coli* LPS for 4 hours. Data are expressed as mean ± SD of four independent experiments in triplicate. Untreated cells are the negative control in these experiments. *p<0.05, **p<0.01, ***p<0.001.