Who Participated?

## Warning: Removed 120 rows containing missing values (geom_point).

What is the average size of a NoMow Lawn Participant?

Were there more floral resourcess in NoMow Lawns?

#Floral Richness
kruskal.test(Floral_Richness ~ Mow_NoMow, data=NoMow)
## 
##  Kruskal-Wallis rank sum test
## 
## data:  Floral_Richness by Mow_NoMow
## Kruskal-Wallis chi-squared = 14.485, df = 1, p-value = 0.0001412
FR<- ggplot (NoMow, aes (x=Mow_NoMow, y=Floral_Richness)) + geom_boxplot()
ggplotly (FR)
#Floral Density
kruskal.test(Mean_Floral_Density ~ Mow_NoMow, data=NoMow)
## 
##  Kruskal-Wallis rank sum test
## 
## data:  Mean_Floral_Density by Mow_NoMow
## Kruskal-Wallis chi-squared = 16.828, df = 1, p-value = 4.092e-05
FD<- ggplot (NoMow, aes (x=Mow_NoMow, y=Mean_Floral_Density)) + geom_boxplot()
ggplotly (FD)

Are there more bees in NoMow homes compared to mowed greenspaces?

bee.abund <- ggplot (NoMow, aes (x=Mow_NoMow, y=Bee_Abundance, fill=Mow_NoMow)) +
    geom_boxplot (alpha=0.5, color="black") +  theme_bw() +xlab("") + ylab ("Bee Abundance") + 
    scale_fill_manual (values=c("black", "#FFCC00")) + 
    annotate ("text", x=1, y=25, label="A", size=16) + theme (legend.position = "none")

ggplotly (bee.abund)
kruskal.test(Bee_Abundance ~ Mow_NoMow, data=NoMow)
## 
##  Kruskal-Wallis rank sum test
## 
## data:  Bee_Abundance by Mow_NoMow
## Kruskal-Wallis chi-squared = 19.722, df = 1, p-value = 8.959e-06

Are there more species of bees in NoMow homes compared to mowed greenspaces?

bee.rich <- ggplot (NoMow, aes (x=Mow_NoMow, y=Bee_Richness, fill=Mow_NoMow)) +
  geom_boxplot (alpha=0.5, color="black") +  theme_bw() +xlab("") + ylab ("Bee Richness") + 
  scale_fill_manual (values=c("black", "#FFCC00")) + 
    annotate ("text", x=1, y=10, label="B", size=16) + theme (legend.position = "none")
ggplotly (bee.rich)
kruskal.test(Bee_Richness ~ Mow_NoMow, data=NoMow)
## 
##  Kruskal-Wallis rank sum test
## 
## data:  Bee_Richness by Mow_NoMow
## Kruskal-Wallis chi-squared = 16.686, df = 1, p-value = 4.41e-05

Figure2

What are the variables that best predict increases in abundance of bees?

NoMow_GLM_abund<-glm (Bee_Abundance ~ Mow_NoMow + NoMowArea + Mean_Floral_Density + Floral_Richness, 
      family="poisson", data=NoMow)
summary (NoMow_GLM_abund); stepAIC (NoMow_GLM_abund)
## 
## Call:
## glm(formula = Bee_Abundance ~ Mow_NoMow + NoMowArea + Mean_Floral_Density + 
##     Floral_Richness, family = "poisson", data = NoMow)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -3.3590  -0.6962  -0.0081   0.5849   3.4899  
## 
## Coefficients:
##                       Estimate Std. Error z value Pr(>|z|)    
## (Intercept)          0.7597283  0.2147124   3.538 0.000403 ***
## Mow_NoMowNoMow       1.3117012  0.2233405   5.873 4.28e-09 ***
## NoMowArea            0.0029964  0.0006842   4.380 1.19e-05 ***
## Mean_Floral_Density  0.0018254  0.0036037   0.507 0.612479    
## Floral_Richness     -0.0353788  0.0220109  -1.607 0.107982    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for poisson family taken to be 1)
## 
##     Null deviance: 170.454  on 34  degrees of freedom
## Residual deviance:  59.062  on 30  degrees of freedom
## AIC: 201.26
## 
## Number of Fisher Scoring iterations: 4
## Start:  AIC=201.26
## Bee_Abundance ~ Mow_NoMow + NoMowArea + Mean_Floral_Density + 
##     Floral_Richness
## 
##                       Df Deviance    AIC
## - Mean_Floral_Density  1   59.319 199.51
## <none>                     59.062 201.25
## - Floral_Richness      1   61.711 201.91
## - NoMowArea            1   76.893 217.09
## - Mow_NoMow            1   95.981 236.17
## 
## Step:  AIC=199.51
## Bee_Abundance ~ Mow_NoMow + NoMowArea + Floral_Richness
## 
##                   Df Deviance    AIC
## <none>                 59.319 199.51
## - Floral_Richness  1   61.718 199.91
## - NoMowArea        1   77.194 215.39
## - Mow_NoMow        1  115.455 253.65
## 
## Call:  glm(formula = Bee_Abundance ~ Mow_NoMow + NoMowArea + Floral_Richness, 
##     family = "poisson", data = NoMow)
## 
## Coefficients:
##     (Intercept)   Mow_NoMowNoMow        NoMowArea  Floral_Richness  
##        0.795850         1.363919         0.002909        -0.032357  
## 
## Degrees of Freedom: 34 Total (i.e. Null);  31 Residual
## Null Deviance:       170.5 
## Residual Deviance: 59.32     AIC: 199.5
area.abund<- ggplot (NoMow, aes (x=NoMowArea, y=Bee_Abundance, color=Mow_NoMow)) + geom_point() + 
  geom_smooth(method="lm") + theme_bw() + scale_color_manual(values=c("grey", "black")) + 
   xlab("Size of Now Mow Area in sq. meters") + ylab ("Bee Abundance")
ggplotly (area.abund)
## `geom_smooth()` using formula 'y ~ x'
floral.abund<-ggplot (NoMow, aes (x=Floral_Richness, y=Bee_Abundance, color=Mow_NoMow)) + 
  geom_point() +  geom_smooth(method="loess") + theme_bw() + 
  scale_color_manual(values=c("grey","black")) + xlab("Number of Flowering Species in Lawn") + 
  ylab ("Bee Abundance")

ggplotly (floral.abund)
## `geom_smooth()` using formula 'y ~ x'

What are the variables that best predict increases in species richness of bees?

NoMow_GLM_rich<-glm (Bee_Richness ~ Mow_NoMow + NoMowArea + Mean_Floral_Density + Floral_Richness, 
      family="poisson", data=NoMow) 
summary (NoMow_GLM_rich); stepAIC (NoMow_GLM_rich)
## 
## Call:
## glm(formula = Bee_Richness ~ Mow_NoMow + NoMowArea + Mean_Floral_Density + 
##     Floral_Richness, family = "poisson", data = NoMow)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -1.7989  -0.4207  -0.1673   0.3986   1.6515  
## 
## Coefficients:
##                      Estimate Std. Error z value Pr(>|z|)   
## (Intercept)         0.3237348  0.2744211   1.180  0.23812   
## Mow_NoMowNoMow      0.5351049  0.2875111   1.861  0.06272 . 
## NoMowArea           0.0025685  0.0009689   2.651  0.00803 **
## Mean_Floral_Density 0.0052839  0.0051391   1.028  0.30386   
## Floral_Richness     0.0160131  0.0293954   0.545  0.58593   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for poisson family taken to be 1)
## 
##     Null deviance: 56.479  on 34  degrees of freedom
## Residual deviance: 21.879  on 30  degrees of freedom
## AIC: 146.98
## 
## Number of Fisher Scoring iterations: 4
## Start:  AIC=146.98
## Bee_Richness ~ Mow_NoMow + NoMowArea + Mean_Floral_Density + 
##     Floral_Richness
## 
##                       Df Deviance    AIC
## - Floral_Richness      1   22.173 145.27
## - Mean_Floral_Density  1   22.945 146.04
## <none>                     21.880 146.98
## - Mow_NoMow            1   25.362 148.46
## - NoMowArea            1   28.472 151.57
## 
## Step:  AIC=145.27
## Bee_Richness ~ Mow_NoMow + NoMowArea + Mean_Floral_Density
## 
##                       Df Deviance    AIC
## - Mean_Floral_Density  1   23.595 144.69
## <none>                     22.173 145.27
## - Mow_NoMow            1   26.508 147.61
## - NoMowArea            1   29.945 151.04
## 
## Step:  AIC=144.69
## Bee_Richness ~ Mow_NoMow + NoMowArea
## 
##             Df Deviance    AIC
## <none>           23.595 144.69
## - NoMowArea  1   30.376 149.48
## - Mow_NoMow  1   38.171 157.27
## 
## Call:  glm(formula = Bee_Richness ~ Mow_NoMow + NoMowArea, family = "poisson", 
##     data = NoMow)
## 
## Coefficients:
##    (Intercept)  Mow_NoMowNoMow       NoMowArea  
##       0.509296        0.778409        0.002487  
## 
## Degrees of Freedom: 34 Total (i.e. Null);  32 Residual
## Null Deviance:       56.48 
## Residual Deviance: 23.59     AIC: 144.7
area.rich<- ggplot (NoMow, aes (x=NoMowArea, y=Bee_Richness, color=Mow_NoMow)) + geom_point() + 
  geom_smooth(method="loess") + theme_bw() + scale_color_manual(values=c("grey", "black")) + 
   xlab("Size of Now Mow Area in sq. meters") + ylab ("Bee Richness")
ggplotly (area.rich)
## `geom_smooth()` using formula 'y ~ x'