Supplementary Information (SI)

for

Cross-regulation of viral kinases with cyclin A secures shutoff of host DNA synthesis

Bogdanow et al.

Correspondence to Lüder Wiebusch (email: lueder.wiebusch@charite.de)

Supplementary Fig. 1. Quality controls of the protein-protein interactome of HHV kinases. (a-b) HEK293T cells were transfected with the indicated expression plasmids. Bait abundance levels in the extracts (a, b top) and the eluates from affinity purification columns (b, lower) were analyzed by quantitative imaging of anti-HA immunoblots. (c) Violin plot showing normalized iBAQvalues of all proteins quantified in the eluates of CHPK-IPs. SILAC channels of empty vector controls are not depicted. Violin plots are combined density and boxplots. Center: median, thick lines: upper and lower quartiles, thin lines: 1.5x interquartile range. (d) The number of quantified protein groups is depicted for the indicated AP-MS experiments. The barplots represent single values. (c, d) All n=3 replicates are depicted individually.

Supplementary Fig. 2. Data analysis of the protein-protein Interactome of HHV kinases. (a) Pearson's correlation coefficients (Pearson's R) comparing individual AP-MS experiments and replicates. **(b)** SILAC fold-change cut-offs when a t-test p-value of 0.05 and a FDR at 1% was used. **(c)** Individual volcano plots for IPs with six different herpesviral kinases. Candidate interaction partners above the fold-change and p-value cut-offs (indicated by red dotted lines) are highlighted orange.

Supplementary Fig. 3. Validation of selected unique CHPK interactors. (a) Experimental design. Expression plasmids encoding HA-tagged versions of HHV5-UL97 and HHV4-BGLF4 were transfected into full SILAC-labeled (Light and Heavy) HEK293T cells. The experiment was designed in label-swap duplicates (n=2). (b) Scatterplot of AP-MS SILAC log2 fold-changes directly comparing both CHPKs for both replicates. Highlighted are the baits and unique interactors to HHV5 (green dots, see cluster in Fig.1c labeled as "SUMOylation of transcription cofactors", "Polycomb repressive complex 1") and HHV4 CHPKs (orange dots, see cluster in Fig. 1c labeled as "Chromatin silencing", "DNA replication"). **(c-f)** Validation of select interactors to HHV5-UL97. The indicated expression plasmids were (co-)transfected into HEK-293T cells and co-IPs were performed by precipitating the HA-tagged kinases. Bait and prey proteins were detected by immunoblot analysis.

	1																	bi	par	tite	NL	S	R)	XL	_	70
	MEN	I – X X	TPQ	GQ-	K	TXP	XNL	<u> P P - </u>				- <u>R</u> -			- K I	PL	RKR	1 – A	IX:	XG-		- – K	VKR	K I X	S X	
		GVE	TPO	GQ-	<u>K</u>	TQP			V			- <u>R</u> -			- <u>K I</u>		RK	IEG	L G	KG-		-	VKRI	KI-	A	
	MEC	$\dot{\mathbf{D}} - \mathbf{L} \mathbf{K}$	TPQ	NQ-	K	TRP	RNMI	L P - 1	к	-к-		-K-			G	EL	KKR	PC				–ĸ	VKRI		G	
	MEN	/ E L 1 — — —	PPR	SDG PSA	SVG: SP R :	F A P F R P	V V VI R L L I	P P A R P G I	RSI	-P- SPI	AE		RIV	 7AA	-K PRI	- P L P P	R R R R K R	R – A S A	VSI VEI	DLE DG-	AVS	Z – K S P K	VKRI VRRI		GAD DNE	DG N-
	MEV	7	ΤPΒ	R R –		IEP	DGVI	P				-R-		A	P K I	P P	RRR	- A	LS	EIV	TVS	ND	VKRI	R I V	DAN	NG
	71 •																					.			CXE	140
		- ED2	SXL	х к –	QIX	AXS	DXD	XXU	SSI	2 \ 2	SE	CSS	SR-		SX	K AU	хх-		xc	хнх	CA	ΤF	'S <u>A</u> -1	RH	TCX	xx
		- ED - ED	SPL	KK – KK –	QIS OIP	ACS ACS	DMD' DMD'	T – II T – II	SSI	PVI PVI	K S E K F G	CES	SR- SR-		SA	S-L SAL	DES	G F G	KC	K H F K H F	IA TA		SAI	E F II	ЬСНІ БСНІ	
		-SEL	IRP	NK-	κ Γ Γ Γ Γ				EKE	KRO	SSM	IRI	KR-		SE				HC			ΡD	PSV		LCHE	
		EPO	DEV	AER	AAG	GTG	DGD	DC	QVI	PPI	SS	CS	SS-		DG	SAV	TQ-			ILS	CG	ΤP	ES-1	RE		ĽV
	1/1		KE-			5	TGD	NEL	VEL	NS G	j D E	GSI	BRI	Ľ – –	- E		T		нс	V H 1	CV	T.F	S <u>A</u> -1	RH		210
	SLI	DS	- x 🕅	SVA	XCP	FC-											X	<							- x x w	
	STI	. DIST	MKI	SNA	нтт	FS_																			NKW	JKT.
	SLI	DS	MK	SNA	HTI	FS-												s							-DKW	KL
	SI		V	SVA	GLS. RCP	AC- LCS	LGI	STT	YLS	SRG	GCC	RGE	RSI	KVT	GGI	DED	- T - E E D	DED	ΕE	ENS	QDI	 E D R	DEEI	EAA	SASS	SSG
	SLI SLI	GS-	<u>V</u> V	SVA SVA	RCP KCP	L С Ү F С -					Е-			- – D	GES	SDS	SGI)GG	SR	PVS R	T	P) <u> </u>	-PL	SASE	'RR SAR
	211		_																							280
	ELI	KX	DSX	XIX	LXS	DEN	X 🛛 – -	-LS	XEX	KGI	XC	NL	XX	E IS K	IX S	5 <mark>P</mark> F	F-	- X D	XG	XRS	YXX	K V Y	XPHI	BXS	F <mark>C</mark> GÇ) F C
	ELI	KIJ	ASK	QIF	LDM	SEN	- <u>A</u> -1	ELA	AYC	GEI	ΓLC	NL	RI	EK	IS	SPF	FI	vQ	SE	ERS	YS	7 V Y	VPH	NKE	L℃GÇ)FC
	ELE	SKI] SNFN	IDTR	QIF	LDM LSR	S DN N DK	-V-I SVTI	ELV	AMC AHY	GEI YP N	LC LC	NL	RI GI	E E R	IS: IH:	SPF SPF	F I F S	DVO SIH	IS E	ERS TQS	YS FS	7VY 7VY	VPH VPH	NKE: KES	L C GÇ S C SÇ)FC)FC
	GLI	WSI		SAL	SWS	D N D H		-IS -VS	PEI	PGI	KC	YV: HMS	ΓΤI STI	EDG		2 PV 5 PT	I I R -	- L P	TG	S – A T S G	YLI YLI		APY	DES	FCRN	
	SI	PASI	IDSF	KPT	TWS	DDK	ill-	-VS	PFI	PGI	KC	ΥV	ГТ	ES	LN	PI	I	LE	ΤG	G K -	YLI	VY	APRI	PPS	FCKI	KC
	281		77 17	v 1								W A	T 177 N		v		TOT		a 🖂					lat :		350
	XPE		- K X	M	ARV.	GK	GSX	GQV	WXI	- X	DK	XA	1 K 3	(AN	x	D	ESI	JS	AW	ISG		(<u>4</u>)X	4 – X	GL.		· – X
	Q P E O P E	S — — — — S — — — —	- K T - K T	M M	ARV ARV	LGV LGV	GAY GAY	<u>GKV</u> GKV	FDI FDI		- D K	VA VA		IAN IAN	E E	D D	ESV ESV	7IS 7IS	AF AF	IAG IAG	VII	RAK RAK	S-G	DL:	LSH- LSH-	· – E
	EPE		-KN	M	ARI.	LGS	GSY	GMV	YDI		NN	VA TAT	IK A		DL-		ESC	IS	SY	VSG	VVI	RAK	A-G	QL	ISR-	<u> </u>
	RRF	(-NP	ADG	AVV	IGK	GSF	GQV	WRI	GI	GR	TAI	K	/GK	D - 1	LD	EAI	ΪŤ	LW	VSG	VVI	G	ALD	GF	AGEV	/ND
	R M -		- K D	AAS	SVL	LGK	GSF(GQV	WRI	RD	DEH	TAI	IK V		G – S	SID	ETI		IW	ISG	VVI	KAR	AQD	GF	IGDF	'G 🖸
	XVY	CNJ	LIA	ххх	CLR	: XV	хгхх	XTY	DR	ЪГÄ	xx	RX	DX	xxx	хмх	xx	XA	CG	LA	DAV	RFI	NL	KCG	I N H	DIX	420 PM
	CVI	NNT	TIS	NSV	CMS	IKV	51.51	R TH V)T.F	ĸ	EDV	עסע	TRN	W M	vv	SV	Сĸ	Τ.Α		RFT	NT	KCR	N	an t s	рм
		NNI	LIS	NSV	CMD	IKV	SLSI	RTY	DVD	<u>DL Y</u>	ΚF	ED	DV	7RN	VM	ŶŶŶ	sv	CK	LA	DAV	RFI	NL	KCR	N	DIS	ΡM
	SVI	CNI		NGS		NI	VSF1	ASF	DR) Г Я) Г Я	NY	RG	V K L V H Y	AG	LA	Y Y R	RA	SG	IA	DAT	RFI	NI	RCG	7G H		LA PM
	SVY		LTA	TGS		INV NI	VAF1 VSF1	PAL	DS GR	DLY DMY	NY	R G V R G V	D F H F	r S G r S G	LS LP	YR YR	RA RA	ΤG TG	LA IA	DGI	RFI RFI	NL	QCG KCG	ALI	TID:	PM PM
	421								_			_	-				_	-								490
	NII	INI	KXE	X – X	IIF	RAV	LXD	YSL	S Z J	Z 🗄 E	РЕ-	YN-	[EX C	VX	7 FZ	XXE	(TV	ХA	XPK	SX1	XI	XDM	XXP	XFXI	ΠV
	NIE	LNI	KKE		IIF	DAV	LAD	YSL	SEN	4 🗄 I	? N -	YN-	0	ТС	AT/	AKD	YDE	NI	Qг	VP I	SRI	N K F	CDM	FNP	GFRI	ΣV
aii	NIE	I HI	K K E K E G		IIF IIL	DAV EAV		YSL YSL	SE] AE	I ₿ E 7 ₿ E	?E- ?Q-	YN- YN-	@	TOK	AI/ GII	A K E	YDL FDH	IRI	0L QI	V P I V P K	SR1 SY1	N K F N K I	CDM CDM	FNP FNP	G <u>FRI</u> G <mark>FRI</mark>	E V PMI
E C	NVI	INY	DRA	DDR DGR	QIA	RAV		FSL YSL	SQ AOS	CHI ZNG	CEG SPH	TT-	@	H (VV	7 F Q 7 F O	Q T C	K T V R T V	RA	I P K	SAY	YYI YYI	TDI	YHP YHP	A F K B A F K B	ШM
ď,	NFI	IÑV	NPS	DDR	ΗIΕ	RAV	ICD	FSL	SQ	Z II C	DG	GNI	KD	R	vv	7F	ĒΤΕ	τv	RA	Τĸ	STI	YI	TDI	YHP	AFKI	Γ
tic	491								-									Jan								560
<u>N</u>	xQI		JVEX	RAX	FXX	XPN	PLR.	нсх			AT X	QV	VXI	r Cx	VR	X ED	BRC	CR	XX	хгх	YE	XX	FAX	AXX.	XC-2	(NX
ata	ANA ANA	AMII AMII	V N V V N V	CGA	FDG FDG	ENN ENN	PLR	H C N H C N	LDI LDI		FA		VLS VLI		LR	MTD MTD	KRC KRC	C R C R	DA DA	OLY OLY	YDI	K R I K R I	FAL	ANE. ANE.	ACRI ACRI	NP NP
Ö	AHI		VEV	YAE	FDG	KGN		HCN FCV			LA	QVI	FLI		IRI	MLD	ERC	CR	EA	OK Y	YDI	IR	FTY	SNE.	ACTI	NP
	LQ		VEP	RAR	FP-	HPS	ARR	FCV	TDI	LCI	LG	SV	VAI	CI	VR	VLD	DRO	LP	KV	RAI	T	IA	FAV	ARK	T C	- EA
	561	C 1	RP	кмQ	F P -	NPT	EKR.	LCV	AD		an c	NV	VAI	CI.	VR		ERC	Qr	K V	1. 1	50	JA	T S T	ARK	T C	- DA
	<u>1</u> -E	XPF	YAX	ABA	CXX	VLA	ххт	xxx	G – 🛙	T X	XYR	xvv	703	Σ	хт	K D F	xxx	RG	DF	XAR	DX	XA	т У -2	x – x	RAL	RZ
	1 – R	V P F	'- A Y	RDA	CCK	VT.A	εн	V T. T.	G – 1	A A B	Y R	DŴ	7 12 1	YE	KI	ZDE	T. D F	RG	D F	GSR	DT.F	ТЕА	т ат. т	NNS	ат. т. г .	RO
	-	Y P F	'-AY	RDA	CCK	VL A	EHV	VLL	G-	Ē	YR	DV	7D]	Ϋ́Е	KI	7DF	LDE	ERG	F	GLR	DL	EA	TELI	NNS	LTL	RÕ
	T AI	S V	DEV	ANF	CSL	LIT	RQL	AYT.	AT		SD	DMI		PMA	RL	DY	FEI	VS	DK	DAP	DR	RS	vy		RA	RE
	GI	D E H C I	DDI	ANW ANM	SSL CSL	VI P	RQU RQU	AYA AYF	V SI A T V	71 (SSS	DA I	K DE A E G I	AVA VS	DI (CDF	FAT	ANA ES	DH DE	EAV EAP	DR ER	R C R V	:⊥ <u>थ</u> –- 'V⊻–-	[RA	GE
	631																	6	79							
	X – X	XXI		LLA	ALQ	II X X	-GX	YIII	ХВ	RA	XC	LI	7SS	5 E D	LDI	KDP	YSI	FP	- 0	onse	ensus	S ion				
		· Į		GLA	SLQ	SSE	YGEI	K	HDI	RE	LF	LI	ISI			KDT	SSI	FH	MU	69 (HHV	6A)			1000	
		E	IRY	RHA	ÖTŐ	RHD	IGQ		NDI	O C) L L	s		SD	LEI	KDP	YSV	FR	VU	69 (HHV	7)			1969	
		SYN	VRL	LLA LKE	ASE ALA	I E D		Y III Y III	DN ENV	R A 7 R A	ATC ATC		DS RI	5 ED L ED		/DP /GP	YKI FSI	F P	– N – R	197 (197 (ı∕⁄uUH MuH'	v1/ľ V2/F	NCMV RCMV-) -M)	muro- mega	lo-
	IDO	SYN	IRL	LQS	ALK	ĽDD	- C N 1	YLV	ENV	7RF	TC	ĹΤΙ	ED) E D	LDI	K D P	YSI	FΡ	- E	97 ÌI	MuH	V8/F	RCMV-	E)	viruse	s

Supplementary Fig. 4. Multiple sequence alignment of β -herpesviral kinases. Multiple sequence alignment was performed including kinases of roseolo- and muromegaloviruses. The conserved catalytic domain is indicated by brackets. The conserved bipartite NLS (blue), the RXL/Cy motif (red) and LXCXE motif (yellow) localize to the otherwise less-conserved N-terminal domain.

Supplementary Fig. 5. The RXL/Cy-motif assembles higher-order Cyclin-CDK complexes. SILAC-labeled HEK293-T cells were transfected with WT or R37A/L39A mutant versions of HHV6-U69 in label-swap duplicates (n=2). 24 h post transfection samples were subjected to AP-MS and shotgun proteomics. The enrichment of proteins co-purifying with WT versus vector control was plotted against the enrichment of mutant versus vector control SILAC log2 fold-changes. Gene names are given for proteins that are interacting with any of the herpesviral kinases (Supplementary Data 1). Cyclins, CDKs and associated factors are highlighted green. Data represent means of n=2 replicates.

Supplementary Fig. 6. The time-resolved interactome of M97 during infection. (a) Experimental setup. SILAC heavy and light labeled cells were infected with MCMV-WT virus or a MCMV strain that expresses HA-tagged M97. Samples were subjected to AP-MS. The experiment was designed in triplicates (n=3). (b, d) The SILAC ratio MCMV-HA-M97 / MCMV-WT served to discriminate interactors of M97 from background binders. The average (n=3 replicates) SILAC fold change and the p-value of a one sample two-sided t-test of the three biological replicates is depicted for the AP at 12 (b) and 36 (d) hours post infection. (c, e) iBAQ values were calculated in HA-M97 MS samples at 12 h (c) and 36 h (e) post infection. Specific interactors at 12 and 36 h post infection are highlighted in red. The sum of n=3 replicates is depicted. iBAQ values correlate with the molar amount of proteins in a sample and thus give estimates on the stoichiometry between individual protein complex members.

Supplementary Fig. 7. Sanger Sequencing of mutated MCMV-strains. DNA-sequence chromatograms resulting from Sanger sequencing of the mutated M97 gene region from the indicated recombinant viruses. The amino acids marked in orange highlight the introduced mutations.

Supplementary Fig. 8. Differences in subcellular phosphoproteomic profiles upon infection with M97 mutant viruses. (a) Experimental setup. SILAC Heavy, Medium and Light labeled cells were infected with MCMV-WT, M97-R45A/L47A or M97-L47A/F49A viruses in label-swap duplicates (n=2). At 24 h post infection cells were either subjected to a phosphoproteomics workflow or whole proteome analysis. Note that only the direct SILAC ratio M97-R45A/L47A / M97-L47A/F49A was used for further analysis. (b) Quantified phosphosites and proteins in both replicates in the SILAC comparison M97-R45A/L47A versus M97-L47A/F49A. (c) Quantified phosphosites were corrected by the SILAC fold-change of the respective source protein for both replicates. (d) Quantified proteins (left panel) and phosphosites (right panel) were classified as cytosolic, nuclear or "no category" (no clear nuclear or cytosolic GO annotation). The number of proteins or phosphosites that were classified in at least one of the replicates is given (single values). (e) Global comparison of phosphosites on nuclear proteins with phosphosites on cytosolic proteins by screening any possible amino acid flanking the phosphorylated residue. Upper left panel: Schematic depiction for the calculation of significance estimates (see also Figure 4c). A p-value was calculated to assess the statistical significance of nuclear to cytosolic sites (one-sided Wilcoxon rank sum test). Right panel: Log10 p-values of each amino acid in the region -4 to +4 flanking a Serine or Threonine (position: 0) are depicted. Comparisons were not considered when there were below 19 phosphosites for nuclear and cytosolic proteins (highlighted in grey). We found significant differences for phosphorylated Serines, followed by Prolines at position +1, Lysines at positions +2 and +3 as well as hydrophobic residues at positions -2/-3/+3. (c-e) Data represent the averages of n=2 replicates.

Supplementary Fig. 9. Hierarchical gating strategy for cell cycle analysis of infected cells by flow cytometry. First, a contour plot was created displaying on a linear scale the forward light scatter (FSC) and sideward light scatter (SSC) of measured particles. A region R1 was set that excludes damaged cells and cell aggregates from further analysis. Based on the area (A) and width (W) of the propidium iodide (PI) fluorescence signal (PE channel), a R2 region was defined that excluded cell doublets from further analysis (upper right contour plot). Based on the Alexa Fluor 647 fluorescence (APC channel) of IE1 or M57 immunostaining, a region R3 was set that excludes non-infected and abortively infected cells (lower right contour plot). The P3 population was analyzed for PI fluorescence to create DNA histograms of infected cells. In the case of mock infected cells, DNA histograms include all R2 events. The described gating strategy was used for all data presented in Fig. 5b-c and Supplementary Fig. 10c. Contour levels were set to 15% probability. Outliers falling outside the lowest contour level are displayed as dots.

Supplementary Fig. 10. Cyclin A is the key target of M97-RxL/Cy-dependent cell cycle control. (a) Experimental setup. **(b)** Stable lentiviral transduction of the Cyclin A-specific small hairpin RNA (shRNA) sh5 but not of scrambled shRNA (shScr) or the empty shRNA expression vector (pLKO.1) prevents the induction of Cyclin A protein expression by MCMV. **(c)** At 48 h post infection (hpi) with the indicated MCMV variants the DNA content of untreated (left panel) and ganciclovir (GCV) treated cells was analyzed by flow cytometry. Displayed are DNA histograms and the percentages of cells with a G2/M DNA content.

Supplementary Fig. 11. Loss of M97-Cyclin A interaction leads to unscheduled cellular DNA synthesis and over-replication in primary cells. Mouse embryonic fibroblasts (MEF) or NIH-3T3 fibroblasts were synchronized in G0/G1 phase by growth factor deprivation (0.05% serum for 2 days). Cells were infected with M97-RXL/Cy mutant MCMV or the parental WT virus (MOI=2). After removal of the virus inoculum, low serum conditions were maintained. Where indicated, 50 μ M ganciclovir (GCV) was added to the culture medium. At 48 h post infection, cells were harvested and analyzed by flow cytometry for DNA content and viral infection markers (IE1 for GCV-treated cells, M57 for untreated cells). DNA histograms of infected and non-infected cell populations are shown.

Supplementary Fig. 12. Overlapping NLS-RxL/Cy sequence motifs are conserved features of some key cell cycle regulators. Multiple sequence alignments of NLS-RxL/Cy containing sequences from animal homologues of CDT1, RB1, P21 and E2F1 were generated using the web-based visualization tool ProViz.

SI Methods

Plasmids. The CCAR2 expression plasmid pcDNA-Myc-DBC1 was a gift from Osamu Hiraike (Addgene plasmid #35096)¹. pEGFPC1-SPOP was a gift from Aimin Liu (Addgene plasmid #128872). Flag-TRIM28 was a gift from Michelle Barton (Addgene plasmid #124960)². pCIneoGFP-BMI1 was a gift from Yutaka Hata (Addgene plasmid #128328). The pLKO.1 - TRC cloning vector was a gift from David Root (Addgene plasmid #10878)³. To generate pLKO.1-sh5⁴, the oligonucleotides CCNA2-sh5-fw (5'cccgcgcttcgaagtttgaagaaatactcgagtatttctaaacttcgaagcttttta-3') and CCNA2sh5-rv (5'-AATtcAAAAagcttcgaagtttgaagaaatactcgagtatttctaaacttcgaagtatttctaaacttcgaagcts') were annealed and ligated into the Agel/EcoRI-digested pLKO.1 backbone. The plasmids psPAX2 and pMDM2.G were gifts from Didier Trono (Addgene plasmids #12260 and #12259).

Lentivirus transduction. For producing recombinant lentiviruses, the pLKO.1 constructs were co-transfected with psPAX2 and pMD2.G into HEK-293T cells. At 2 days post transfection, virus containing cell culture supernatants were harvested and clarified by ultrafiltration. Lentivirus infection of NIH-3T3 cells was performed overnight. The following day, cells were re-plated at lower density and subjected to puromycin (4 µg/ml) selection. Stably transduced cell pools were used for experiments.

Antibodies. For immunoblot analysis, the following antibodies were used: Anti-Myc (clone 4A6, Sigma Aldrich), anti-GFP (ab290, rabbit polyclonal, Abcam), anti-Flag (clone M2, Sigma Aldrich), anti-HA (clone 3F10, Sigma Aldrich). All antibodies were diluted to 1 µg per ml.

Quantitative imaging. For quantitative imaging of immunoblots, a Fusion FX system from Vilber Lourmat was used according to the manufacturer's instructions.

SI References

- Hiraike, H. *et al.* Identification of DBC1 as a transcriptional repressor for BRCA1.
 Br. J. Cancer **102**, 1061–1067 (2010).
- 2. Li, J. *et al.* TRIM28 interacts with EZH2 and SWI/SNF to activate genes that promote mammosphere formation. *Oncogene* **36**, 2991–3001 (2017).
- 3. Moffat, J. *et al.* A Lentiviral RNAi Library for Human and Mouse Genes Applied to an Arrayed Viral High-Content Screen. *Cell* vol. 124 1283–1298 (2006).
- Ludwig, L. S. *et al.* Genome-wide association study follow-up identifies cyclin A2 as a regulator of the transition through cytokinesis during terminal erythropoiesis. *American Journal of Hematology* vol. 90 386–391 (2015).