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Supplementary Figure 1

Supplementary Fig. 1. Quality controls of the protein-protein interactome of HHV kinases. 
(a-b) HEK293T cells were transfected with the indicated expression plasmids. Bait abundance 
levels in the extracts (a, b top) and the eluates from affinity purification columns (b, lower) were 
analyzed by quantitative imaging of anti-HA immunoblots. (c) Violin plot showing normalized 
iBAQvalues of all proteins quantified in the eluates of CHPK-IPs. SILAC channels of empty vector 
controls are not depicted. Violin plots are combined density and boxplots. Center: median, thick 
lines: upper and lower quartiles, thin lines: 1.5x interquartile range. (d) The number of quantified 
protein groups is depicted for the indicated AP-MS experiments. The barplots represent single 
values.  (c, d) All n=3 replicates are depicted individually.
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Supplementary Figure 2

Supplementary Fig. 2. Data analysis of the protein-protein Interactome of HHV kinases. (a) Pearson’s 
correlation coefficients (Pearson’s R) comparing individual AP-MS experiments and replicates. (b) SILAC 
fold-change cut-offs when a t-test p-value of 0.05 and a FDR at 1% was used. (c) Individual volcano plots for 
IPs with six different herpesviral kinases. Candidate interaction partners above the fold-change and p-value 
cut-offs (indicated by red dotted lines) are highlighted orange.
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Supplementary Fig. 3. Validation of selected unique CHPK interactors. (a) Experimental 
design. Expression plasmids encoding HA-tagged versions of HHV5-UL97 and HHV4-BGLF4 were 
transfected into full SILAC-labeled (Light and Heavy) HEK293T cells. The experiment was designed 
in label-swap duplicates (n=2). (b) Scatterplot of AP-MS SILAC log2 fold-changes directly compa-
ring both CHPKs for both replicates. Highlighted are the baits and unique interactors to HHV5 (green 
dots, see cluster in Fig.1c labeled as “SUMOylation of transcription cofactors”, “Polycomb repressi-
ve complex 1”) and HHV4 CHPKs (orange dots, see cluster in Fig. 1c labeled as “Chromatin silen-
cing”, “DNA replication”). (c-f) Validation of select interactors to HHV5-UL97. The indicated expressi-
on plasmids were (co-)transfected into HEK-293T cells and co-IPs were performed by precipitating 
the HA-tagged kinases. Bait and prey proteins were detected by immunoblot analysis.
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Supplementary Fig. 4. Multiple sequence alignment of β-herpesviral kinases. Multiple sequence 
alignment was performed including kinases of roseolo- and muromegaloviruses. The conserved catalyt-
ic domain is indicated by brackets. The conserved bipartite NLS (blue), the RXL/Cy motif (red) and 
LXCXE motif (yellow) localize to the otherwise less-conserved N-terminal domain.
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Supplementary Figure 5

Supplementary Fig. 5. The RXL/Cy-motif assembles higher-order Cyclin-CDK complexes. 
SILAC-labeled HEK293-T cells were transfected with WT or R37A/L39A mutant versions of HHV6-U69 
in label-swap duplicates (n=2). 24 h post transfection samples were subjected to AP-MS and shotgun 
proteomics. The enrichment of proteins co-purifying with WT versus vector control was plotted against 
the enrichment of mutant versus vector control SILAC log2 fold-changes. Gene names are given for 
proteins that are interacting with any of the herpesviral kinases (Supplementary Data 1). Cyclins, CDKs 
and associated factors are highlighted green. Data represent means of n=2 replicates.
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Supplementary Figure 6

Supplementary Fig. 6. The time-resolved interactome of M97 during infection. (a) Experimental setup. 
SILAC heavy and light labeled cells were infected with MCMV-WT virus or a MCMV strain that expresses 
HA-tagged M97. Samples were subjected to AP-MS. The experiment was designed in triplicates (n=3). (b, 
d) The SILAC ratio MCMV-HA-M97 / MCMV-WT served to discriminate interactors of M97 from background 
binders. The average (n=3 replicates) SILAC fold change and the p-value of a one sample two-sided t-test 
of the three biological replicates is depicted for the AP at 12 (b) and 36 (d) hours post infection. (c, e) iBAQ 
values were calculated in HA-M97 MS samples at 12 h (c) and 36 h (e) post infection. Specific interactors 
at 12 and 36 h post infection are highlighted in red. The sum of n=3 replicates is depicted. iBAQ values 
correlate with the molar amount of proteins in a sample and thus give  estimates on the stoichiometry 
between individual protein complex members.
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Supplementary Figure 7

Supplementary Fig. 7. Sanger Sequencing of mutated MCMV-strains. DNA-sequence chromatograms 
resulting from Sanger sequencing of the mutated M97 gene region from the indicated recombinant viruses.  The 
amino acids marked in orange highlight the introduced mutations.
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Supplementary Figure 8

Supplementary Fig. 8.  Differences in subcellular phosphoproteomic profiles upon infection with 
M97 mutant viruses. (a) Experimental setup. SILAC Heavy, Medium and Light labeled cells were infected 
with MCMV-WT, M97-R45A/L47A or M97-L47A/F49A viruses in label-swap duplicates (n=2). At 24 h post 
infection cells were either subjected to a phosphoproteomics workflow or whole proteome analysis. Note 
that only the direct SILAC ratio M97-R45A/L47A / M97-L47A/F49A was used for further analysis. (b) Quan-
tified phosphosites and proteins in both replicates in the SILAC comparison M97-R45A/L47A versus 
M97-L47A/F49A. (c) Quantified phosphosites were corrected by the SILAC fold-change of the respective 
source protein for both replicates. (d) Quantified proteins (left panel) and phosphosites (right panel) were 
classified as cytosolic, nuclear or “no category” (no clear nuclear or cytosolic GO annotation). The number 
of proteins or phosphosites that were classified in at least one of the replicates is given (single values). (e) 
Global comparison of phosphosites on nuclear proteins with phosphosites on cytosolic proteins by screen-
ing any possible amino acid flanking the phosphorylated residue. Upper left panel: Schematic depiction for 
the calculation of significance estimates (see also Figure 4c). A p-value was calculated to assess the 
statistical significance of nuclear to cytosolic sites (one-sided Wilcoxon rank sum test). Right panel: Log10 
p-values of each amino acid in the region -4 to +4 flanking a Serine or Threonine (position: 0) are depicted. 
Comparisons were not considered when there were below 19 phosphosites for nuclear and cytosolic 
proteins (highlighted in grey). We found significant differences for phosphorylated Serines, followed by 
Prolines at position +1, Lysines at positions +2 and +3 as well as hydrophobic residues at positions 
-2/-3/+3. (c-e) Data represent the averages of n=2 replicates.
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Supplementary Figure 9

Supplementary Fig. 9. Hierarchical gating strategy for cell cycle analysis of infected cells by flow 
cytometry. First, a contour plot was created displaying on a linear scale the forward light scatter (FSC) and 
sideward light scatter (SSC) of measured particles. A region R1 was set that excludes damaged cells and 
cell aggregates from further analysis. Based on the area (A) and width (W) of the propidium iodide (PI) 
fluorescence signal (PE channel), a R2 region was defined that excluded cell doublets from further analy-
sis (upper right contour plot). Based on the Alexa Fluor 647 fluorescence (APC channel) of IE1 or M57 
immunostaining, a region R3 was set that excludes non-infected and abortively infected cells (lower right 
contour plot). The P3 population was analyzed for PI fluorescence to create DNA histograms of infected 
cells. In the case of mock infected cells, DNA histograms include all R2 events. The described gating strat-
egy was used for all data presented in Fig. 5b-c and Supplementary Fig. 10c. Contour levels were set to 
15% probability. Outliers falling outside the lowest contour level are displayed as dots.
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Supplementary Fig. 10. Cyclin A is the key target of M97-RxL/Cy-dependent cell cycle control. (a) 
Experimental setup. (b) Stable lentiviral transduction of the Cyclin A-specific small hairpin RNA (shRNA) 
sh5 but not of scrambled shRNA (shScr) or the empty shRNA expression vector (pLKO.1) prevents the 
induction of Cyclin A protein expression by MCMV. (c) At 48 h post infection (hpi) with the indicated MCMV 
variants the DNA content of untreated (left panel) and ganciclovir (GCV) treated cells was analyzed by flow 
cytometry. Displayed are DNA histograms and the percentages of cells with a G2/M DNA content.



non-infected MCMV-WT MCMV-M97L47A/F49A

2n 4n2n 4n

MEF+GCVMEF

3T3+GCV3T3

DNADNA

ce
ll 

nu
m

be
r

ce
ll 

nu
m

be
r

Supplementary Figure 11

Supplementary Fig. 11. Loss of M97-Cyclin A interaction leads to unscheduled cellular DNA 
synthesis and over-replication in primary cells. Mouse embryonic fibroblasts (MEF) or NIH-3T3 
fibroblasts were synchronized in G0/G1 phase by growth factor deprivation (0.05% serum for 2 
days). Cells were infected with M97-RXL/Cy mutant MCMV or the parental WT virus (MOI=2). After 
removal of the virus inoculum, low serum conditions were maintained. Where indicated, 50 μM 
ganciclovir (GCV) was added to the culture medium. At 48 h post infection, cells were harvested and 
analyzed by flow cytometry for DNA content and viral infection markers (IE1 for GCV-treated cells, 
M57 for untreated cells). DNA histograms of infected and non-infected cell populations are shown.
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Supplementary Figure 12

Supplementary Fig. 12. Overlapping NLS-RxL/Cy sequence motifs are conserved features of 
some key cell cycle regulators. Multiple sequence alignments of NLS-RxL/Cy containing 
sequences from animal homologues of CDT1, RB1, P21 and E2F1 were generated using the 
web-based visualization tool ProViz.



SI Methods 

Plasmids. The CCAR2 expression plasmid pcDNA-Myc-DBC1 was a gift from Osamu 

Hiraike (Addgene plasmid #35096)1. pEGFPC1-SPOP was a gift from Aimin Liu 

(Addgene plasmid #128872). Flag-TRIM28 was a gift from Michelle Barton (Addgene 

plasmid #124960)2. pCIneoGFP-BMI1 was a gift from Yutaka Hata (Addgene plasmid 

#128328). The pLKO.1 - TRC cloning vector was a gift from David Root (Addgene 

plasmid #10878)3. To generate pLKO.1-sh54, the oligonucleotides CCNA2-sh5-fw (5’-

CCGGGCTTCGAAGTTTGAAGAAATACTCGAGTATTTCTTCAAACTTCGAAGCTTTTTG-3’) and CCNA2-

sh5-rv (5’-AATTCAAAAAGCTTCGAAGTTTGAAGAAATACTCGAGTATTTCTTCAAACTTCGAAGC-3’) were 

annealed and ligated into the AgeI/EcoRI-digested pLKO.1 backbone. The plasmids 

psPAX2 and pMDM2.G were gifts from Didier Trono (Addgene plasmids #12260 and 

#12259). 

Lentivirus transduction. For producing recombinant lentiviruses, the pLKO.1 

constructs were co-transfected with psPAX2 and pMD2.G into HEK-293T cells. At 2 

days post transfection, virus containing cell culture supernatants were harvested and 

clarified by ultrafiltration. Lentivirus infection of NIH-3T3 cells was performed overnight. 

The following day, cells were re-plated at lower density and subjected to puromycin (4 

μg/ml) selection. Stably transduced cell pools were used for experiments. 

Antibodies. For immunoblot analysis, the following antibodies were used: Anti-Myc 

(clone 4A6, Sigma Aldrich), anti-GFP (ab290, rabbit polyclonal, Abcam), anti-Flag 

(clone M2, Sigma Aldrich), anti-HA (clone 3F10, Sigma Aldrich). All antibodies were 

diluted to 1 µg per ml. 

Quantitative imaging. For quantitative imaging of immunoblots, a Fusion FX system 

from Vilber Lourmat was used according to the manufacturer’s instructions. 

https://paperpile.com/c/LdNaJ8/Oxbl
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https://paperpile.com/c/LdNaJ8/aAMJ
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