Sensitivity Analysis for Meta-Analyses

Web Appendix for:
“Sensitivity Analysis for Unmeasured Confounding in

Meta-Analyses”

November 14, 2018

CONTENTS

(1__Derivation of main results| 3
1.1 D)l - - o o 3
(LI.1  Causative casel. . . . . . . . . . . . e 3

(LL1.2 Preventive casel . . . . . . . . ... oo 3

(.2 Standard error for p(q)| . . . . . . ..o 3
[.2.1  Causative casel. . . . . . . . . . . . 5

1.2.2 Preventive casel . . . . . . . . . ... oL 7

1.3 T(r,q) - - o o o e e 8
[L3.1  Causative casel. . . . . . . . . . . . . 8

[L3.2 Preventive casel . . . . . . . . . . ... 8

[1.4 Standard error for T(r,q)|. . . . . . . . ... 9
(4.1  Causative casel. . . . . . . . . . . . e 9

(.4.2  Preventive casel . . . . . . . . . ... 9
....................................... 10
|1.6 Standard error for G(r, q)l ............................ 10
[.6.1  Causative casel. . . . . . . . . . . . 10

(.62 Preventive casel . . . . . . . . . . .. 11

2 Fidelity of homogeneous-bias approximation| 11




Sensitivity Analysis for Meta-Analyses

[3 Sufficient conditions for approximate normality of bias factor|

[4 Introduction to the package EValue|

[> Code to reproduce applied example|

13

14

15



Sensitivity Analysis for Meta-Analyses

1. DERIVATION OF MAIN RESULTS

L1 p(g)

1.1.1 Causative case
Under the model described in the main text, we have (Ding & VanderWeele, 2016):
M'+ B* = M°
p' = E[M®— B*] = u° — pp-
Var (M* + B*) = Var (M°)
Vit oh =V© (independence)
Vi=Ve— o

Then, M' = M¢ — B* is the difference of correlated normal random variables, so is itself

normal. By Slutsky’s Theorem, replace parameters with consistent estimators:

2 _ 42
Tc JB*

_~c
P(Mt>q)z1—®<w—%>,73>aé*

1.1.2 Preventive case

The apparently preventive case is nearly identical.

1.2. Standard error for p(q)

We first establish a general result (Lemma regarding conditions under which 7z and 72

are asymptotically independent.

Lemma 1.1. Let §r and 7% denote mazimum likelihood estimates under a normal specification.

Assume that Ely; | 0?] = Ely;]. Then yr and 7* are asymptotically independent.
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Proof. The joint log-likelihood and partial derivatives are:

1 b 5 I i —w)?
log £ (1, V) = 2Zlog(%(OﬁV)) QZ—

=1 0-12 + 4
Jdlog L 1<
o = 3 > (07 +V) T (=20 +2p)

=1

PlogL 1 Z ) 2
=5 (o7 +V) " (=2yi+2p)
oudV 2~
1< 2yi — 241

The off-diagonal element of the expected Fisher information matrix is therefore:

0?log L
T, =—-F
2 opdvV
1 2y; —2p
= ~kE
2 ol + 20V + V2

By a second-order Taylor series expansion, we have, for general random variables X and
Y:
E[X] Cov(X,Y) Var(Y)E[X]

EX/Y)~ pot =~y (1.1)

We have E[2y; — 2u| = 0, so applying Equation ([1.1)) with the first and third terms equal
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to 0 yields:

1 E[(Q,u —2y;) (o} + 202V + VQ)]

2
E [af + 202V + vﬂ

1 2uE[o}] + AuVE|[0?] +2uV? = 2V2E|y;] — AVE|[y;0}] — 2E[y;0}]

2
Elo}+ 203V + V7|

1 2uE[o}] + AuVE|[0?] +2uV? = 2V2u — AVAuE [0?] — 2uE[o}]

S 5
2 Elo!+202V + V7]
=0
The penultimate line follows from the assumption that E[y; | ¢?] = E[y;]. Since the

maximum likelihood estimates are asymptotically bivariate normal, asymptotic independence

is established. [l

1.2.1 Causative case

We now derive an asymptotic confidence interval for p(q) for an apparently causative relative
risk via the delta method. We assume use of the standard random-effects estimator, y%, and

an arbitrary estimator 72 such that, asymptotically:

us — M¢ 0 Var (7%)  Cov (7%, 72)
T2 Ve 0 7 Cov (y%, 72) Var (72)

-~

S/k
(Asymptotic normality is theoretically justified for the maximum likelihood and restricted

maximum likelihood estimators 72 and, in simulations, also appears to hold for those proposed

by DerSimonian & Laird| (1986), Paule & Mandel (1982), |Sidik & Jonkman (2005), and
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Hedges & Olkin| (1985).) Apply the delta method:

h(zy1,29) = D(q) = 1—<I><

oh

or1 | __

Oxo

Oh
BT 3 (22— 0%)

o

A /xg—a%*

qtpps—T1

X2

— O—%*

q+ 1B~ —I1>

qtpp*x—T1

)

1 .
e

—-3/2

"

_2(:172—

372
o2.)

VE [h(§5,7%) = h (M, V)] = N (0, V'EV|pev)
V’EV =V (V1211 + VQ221) + Vo (V1212 -+ v2222)

qtpps—T1

mg—a%* )
(‘H‘HB* —961)

2

T2—0 5

Oh

\/902*“23*

g+ pp—x1) - @

i) + oo Cov (7 ﬁ))

Uk, 72

)+

h
8_ Var

aIg

)

To—0

qt+ppx—T1

2
B*

)
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Denote consistent estimators with hats and apply Slutsky’s Theorem:

Var (p(q)) = V'SV pge.ve
2

O P Yl ) A N
T2 — 0%, T2 — 0%,
- 2
1 t g — P + e — 05
. qT HUB y?)% . Cov (37?{7 TCQ) ) ¢ qT UB 2yR +
T2 —0p. ) 2(12 —0%.) I T2 — 0%,

— 92
Var (12) (a + ps — T3)* [¢ (qwm —%)

(72— o.)’ .~ O

72 — 02, (12 — 02.)° 4(r2 — 02.)?

Var (35) | (a+ - — G) Cov (. 72) | Var (52) (4 + o —@af]

2

72 — 02, (72 — 02.)° 4(r2 — 02.)°

SE (Blg)) ~ \/Var (V%) " (¢ + ppe — yg) Cov (Yi, 72) N Var (72) (q + pp- — %)2

For choices of estimators 72 that are asymptotically independent of 7% (which holds for
the maximum likelihood estimates by Lemma [1.1| and also appears to hold for other common

choices in simulations), this reduces to:

@(ﬁ(q))%\/@<%) _i_@(TcQ)(q—'_:uB*_%)z '(b(q—i_:uB*_ly\lc%)

2 /2 2
TC_O-B*

72— 0%, 4(72 - 02.)°

1.2.2 Preventive case

For an apparently preventive relative risk, there is simply a sign change in the numerators:

S (510) ~ \/ ) | W ) (M )

2 _ 52 2 2 2 2
Te OB+ 4 (Tc — Opx Te — Opx
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A~

1.3. T(r,q)

1.3.1 Causative case

Simply solve p(q) for pp«, setting the latter equal to log T\(r, q) and setting 0%. = 0:

T =
el <q+logT(hQ) yR)

2
Te

log T(r, q) — T
®_1(1—r):q+0g (T7Q) Yr

~

1.3.2 Preventive case
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14. Standard error for T (r,q)

1.4.1 Causative case

Apply the delta method:

h(x1,22) = T(r,q) = exp {x%ﬂ (@' (1—=7r)) —g+a}

o o ]| _ exp {2,/ (@7 (1 =) — g+ a1}
ol exp (@) (B 1 =) — g4} @71 =) - Lay
Var (T\(r, q)) = V'3V |pe ve
~ (e (V@ (@10 =) ~a 4 7))
_ (ZCOV (¥%, 72) + Var (Tf)) (@11 — 7))

V. -~
ar (yR> + 47_02

SE( (r, Q)> p{\/73(¢_1(1—7“))—q+§%}

(2Cov (7, 72) + Var (72)) (B-1(1 = 1))?

2
473

Var (75) +

For estimators such that g% is asymptotically independent of 72:

2
477

(1.2)

1.4.2 Preventive case

For the apparently preventive case under asymptotic independence, there is a sign change,

and the cumulative distribution function is evaluated at r instead of 1 — r:

2
472

SE (T(r,0)) = exp {q = VA () } Var () + T TP (g 5)
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1.5. G(r,q)

Set B* = log B* and G(r,q) = RRxy = RRyy:

B = log G(r,q)*
2G(r,q) — 1

G(r,q)* — 2exp (B*) G(r, q) + exp (B*)

Apply the quadratic formula:

Glr.q) = exp (BY) + 1/ (exp (B*))? — exp (B*)

1.6. Standard error for @(r, q)

Apply the delta method to transform f(r, q) into @(T, q):

hz) =24+ Va?—x

dh 20 —1
-1+

dx 2vx? —x

— (A dh\*
Var (G(r,q) | = (—) Var(z)
( ) dx Fra)

2T(rq)—1 i o (T(r
( 2/ Tir.q)? - >) v (7te)

1.6.1 Causative case

Plug in variance estimator ([1.2)):

SAE(CA?(r,q)>< 2\/;7;(261) 1 )) cexp {72 (271 = 7)) — g + Tk}

_\/Var(yR)+Var( 2) (@1(1 = 1))

2
473

10
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1.6.2 Preventive case

Plug in variance estimator (|1.3)):
2T(r,q) — 1
1 (r.q) L
2/T(r,)? -~ T(r.q)

.%@@@+wmﬂ@ﬂm

2
477

- exp {\/7'_02 (q)’l(r)) —q— ?R}

SE <(A;(7’, q)) =

2. FIDELITY OF HOMOGENEOUS-BIAS APPROXIMATION

Table 1 in the main text provides upper or lower bounds on p(q) that arise from assuming
homogeneous bias (i.e., 04. = 0). Here, we consider how closely these bounds approximate
p(q). Define 6 = % for the apparently causative case and 6 = % for the
apparently preventive case. This quantity represents the difference between the threshold ¢
and the bias-corrected mean estimate 3%, (i.e., ¥% — up for the causative case and 45 + up-
for the preventive case), standardized by 7., the standard deviation of the confounded effect
distribution. Let w = 72/0%. > 1, so that 1/w represents the proportion of variance in the
confounded effects that is due to variability across studies in unmeasured confounding bias
rather than to genuine effect heterogeneity. Let p(q) be the estimator p(g) computed with
0%. = 0. Then, for the apparently causative case, the ratio relating the homogeneous-bias

approximation to the unbiased estimate is:

o) 1-2()
p(Q) 1—(1)((5 11_1>
®(=9)

11
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The absolute difference is:

Plg) =p(@)] = |(=0) =@ | —0——=—=

The apparently preventive case is symmetrical because, whereas ¢ > 0 for an upper bound
in the causative case, § < 0 for an upper bound in the preventive case (see Table 1 in the main
text), and in the above expression, —§ is also replaced with ¢ for the apparently preventive
case (see Section 4.1 in the main text). A comparable symmetry argument holds for lower
bounds. Table S1 displays i% as a function of || and w and illustrates that, on the ratio
scale, the homogeneous-bias approximation holds most closely for small |§| and large w; that
is, when ¢ is chosen to be relatively close to the bias-corrected mean estimate and when o%.
is small compared to 72. Table S2 displays |p(q) — p(q)| and illustrates that the large ratios
in the lower left of Table S1 correspond to cases in which p(q) and p(q) are both very small,

such that a large ratio corresponds to a small absolute difference.

Table S1: Ratio of homogeneous-bias approximation with 0%* = 0 to the unbiased estimate, p(q).

w=1.5 2 4 6 8 10

10| = 0.25 .21 1.11 1.04 1.02 1.02 1.01
0.5 1.60 1.29 1.09 1.06 1.04 1.03

1 3.81 202 128 1.16 1.11 1.09

1.5 1425 394 160 1.33 1.23 1.17

2 85.53 9.73 217 1.60 140 1.30

2,5 83338 3052 3.19 2.01 1.65 1.48

12
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Table S2: Absolute difference of homogeneous-bias approzimation with o%. = 0 and the unbiased

estimate, p(q).

w=1.5 2 4 6 8 10

0] = 0.25 0.07 0.04 0.01 0.01 0.01 0.01
0.5 0.12 0.07 0.03 0.02 0.01 0.01

1 0.12 0.08 0.03 0.02 0.02 0.01

1.5 0.06 0.05 0.03 0.02 0.01 0.01

2 0.02 0.02 0.01 0.01 0.01 0.01

2.5 0.01 0.01 0.00 0.00 0.00 0.00

3.  SUFFICIENT CONDITIONS FOR APPROXIMATE NORMALITY OF BIAS

FACTOR
Lemma 3.1. Let X and Y be iid N (p,02) with > 0 and 0* << u. Then:

2e2H
log (eX +¢e¥ —1 %N(lo 26“—1,—02>
g ( ) g( ) (26'”’ o 1)2

Proof. Let h(X,Y) = log (eX +e¥ — 1). Then, apply a first-order Taylor expansion around

i, dropping higher-order terms because 02 << pu:

o
0X  (eX+e¥—1)
n_ e
oY  (eX+e¥ —1)
h(X,Y) ~ log(2¢ — 1 “(x <y
( Y )Nog(e_ )+26“_1( _u)+2eﬂ—1( _lu>
2uet et et
= [ log(2e" — 1) — X Y
og(2e ) 2er — 1 +26“—1 +26“—1
[ 2ue“_ et et
~ B_ 1) —
E[h(X,Y)] log(2¢# — 1) = oo | + 5=——=B[X] + .- E[Y]
= log(2¢* — 1)
262
Var (h(X,Y)) = 6—2 o?
(2er — 1)

13
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The result then follows from the fact that A(X,Y’) is approximately a linear combination of

Normal random variables. O

Theorem 3.1. Suppose log RRxy and log RRyy are iid N (uy,0%). Then log B is approz-

imately normal.

Proof. We have log BT = log (RRxy) + log (RRyy) — log (RRxy + RRyy — 1); the result
follows immediately from invoking Lemma for the last term. O

4. INTRODUCTION TO THE PACKAGE EVALUE

Here we briefly summarize the functions contained in the package EValue; details and
examples are available in the standard R documentation.

The function confounded_meta computes point estimates, standard errors, and confidence
interval bounds for (1) the proportion of studies with true effect sizes above ¢ (or below ¢
for an apparently preventive %) as a function of the bias parameters; (2) the minimum bias
factor on the relative risk scale (f(r, q)) required to reduce to less than r the proportion of
studies with true effect sizes more extreme than ¢; and (3) the counterpart to (2) in which bias
is parameterized as the minimum relative risk for both confounding associations (@ (r,q)).

The function sens_table produces several types of tables (returned as dataframes) at the
user’s specification. The prop option yields a table showing the proportion of true effect sizes
more extreme than g across a grid of bias parameters g+ and opg«. Alternatively, the Tmin
and Gmin options yield tables showing the minimum bias factor (as in Table 2) or confounding
strength required to reduce to less than r the proportion of true effects more extreme than ¢
(across a grid of r and ¢).

The function sens_plot produces two types of plots. With the line option, the plot
shows the bias factor on the relative risk scale (with pointwise 95% confidence band) versus
the proportion of studies with true relative risks more extreme than ¢ (as in Figure 1). The
plot includes a secondary, rescaled X-axis showing the minimum strength of confounding to
produce the given bias factor. With the dist option, the plot overlays the estimated densities

of the confounded effects and of the true effects for a user-provided range of pp- and scalar

opx*.

14
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The function scrape_meta is designed to facilitate sensitivity analyses of existing meta-
analyses. Given relative risks and upper bounds of 95% confidence intervals from a forest
plot or summary table, the function returns a dataframe ready for meta-analysis (e.g., via the
metafor package) with the log-RRs and their variances. Optionally, the user may indicate
studies for which the point estimates represent odds ratios of a common outcome rather
than relative risks; for such studies, the function first applies a square-root transformation to

convert the odds ratio to an approximate risk ratio (VanderWeele, 2017)).

5. CODE TO REPRODUCE APPLIED EXAMPLE
The below code reproduces the applied example in Section 8. Extended code is also maintained
at https://osf.io/2r3gm/.

# was run on R 3.3.3

# get data from Trock et al.’s Table 1

RRs = c(0.4, 1.8, 0.78, 0.96, 0.9, 1.4, 0.66, 0.76, 0.47,
0.5, 2.0, 1.07, 0.66, 1.00, 0.83, 0.61, 1.0, 0.46,
0.47, 1.16 )

UBs = c(0.8, 3.6, 1.0, 1.31, 1.3, 3.0, 0.88, 1.18, 1.33,

1.1, 4.3, 1.47, 1.02, 1.30, 1.51, 0.97, 1.3, 0.84,
0.74, 1.39 )

# compute point estimates and within-study variances
library (EValue) # version 1.1.0

d = scrape_meta( type = "RR", est = RRs, hi = UBs )

# meta-analyze

library (metafor) # version 2.0-0

m = rma.uni(yi=d$yi, vi=d$vyi, method="PM", measure="RR", test="knha")
yr = as.numeric(m$b) # returned estimate is on log scale

vyr = as.numeric(m$vb) # this is the KNHA-adjusted SE~2

t2 = m$tau2

15
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vt2 = m$se.tau2"2

# reproduce Figure 1

library (ggplot2)

sens_plot( type="line",
q=1lo0g(0.9),
Bmin=1log (1),
Bmax=1log(2),
sigB=0.1,
yr=yr,
Vyr=vyr,
t2=t2,
vt2=vt2,

breaks.xl=seq(1l, 2, .25) )

# now for just one choice of sensitivity parameters

# represents a single cross-section of the plot (at muB =

confounded _meta( q = log(.90),
muB = log(1.25),
sigB = 0.10,

yr=yr,

vyr = vyr,
t2 = t2,
vt2 = vt2,

CI.level = 0.95)

# reproduce Tmin in Table 2
sens_table( meas="Tmin",
g=c( log(0.70), log(0.80),
r=seq(0.1, 0.5, 0.1),
yr=yr,
t2=t2 )

1log (0.90) ),

log(1.25))

16
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# reproduce Gmin in Table 2

sens_table( meas="Gmin",
g=c( log(0.70), log(0.80),
r=seq(0.1, 0.5, 0.1),
yr=yr,
t2=t2 )

log(0.90) ),

17
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