Supplementary Materials

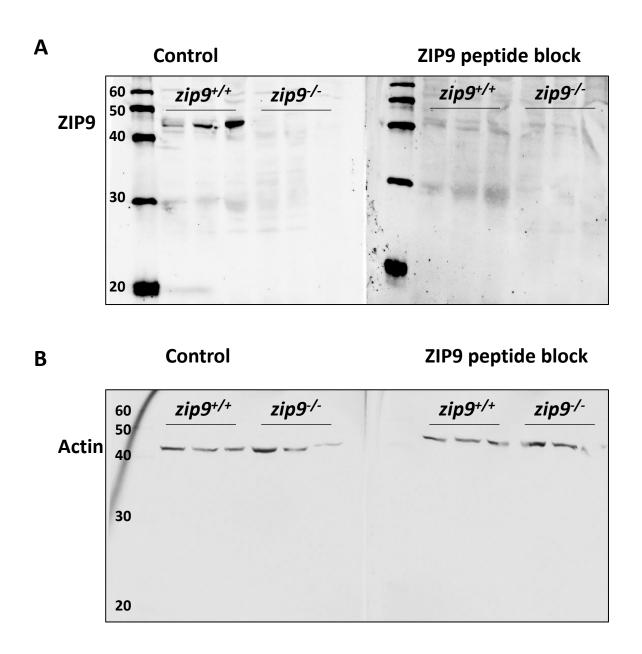
The zinc transporter ZIP9 (Slc39a9) regulates zinc dynamics essential to egg activation in zebrafish

Aubrey Converse¹, Peter Thomas¹

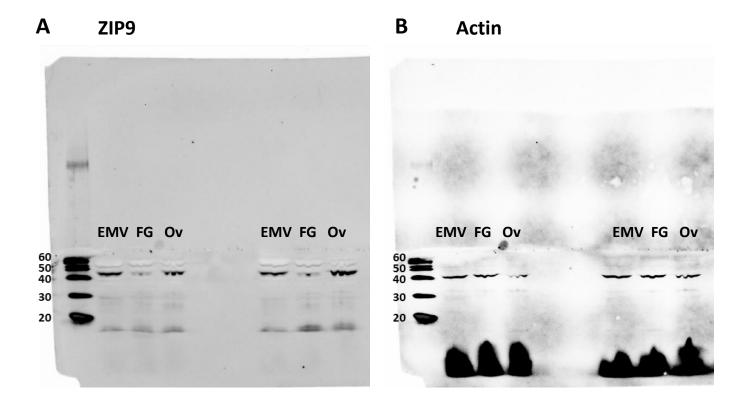
¹Marine Science Institute, The University of Texas at Austin, Port Aransas, Texas, U.S.A

Supplementary Table 1

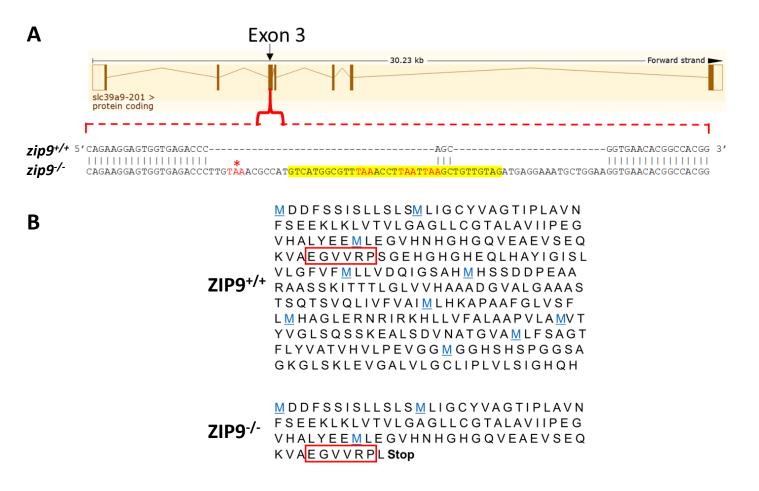
Primers used for qPCR.

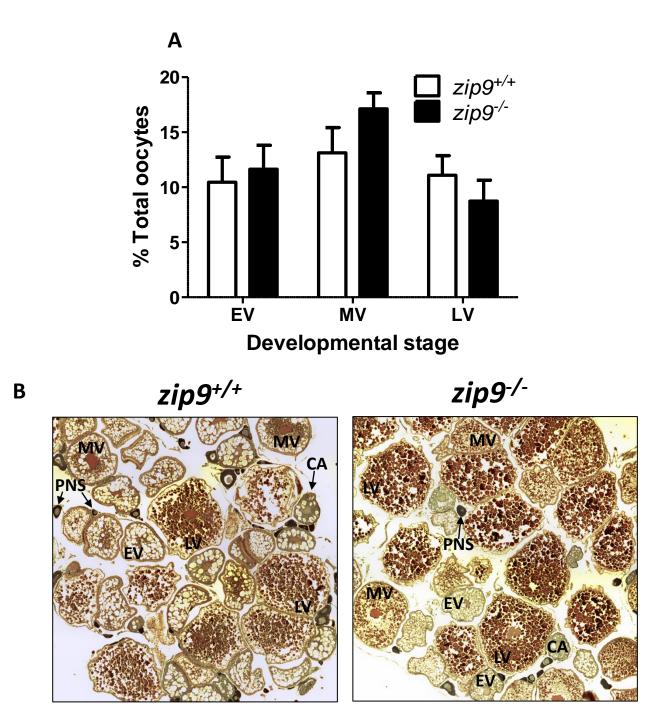

Primer	Forward	Reverse
zip9	AGCAGCTCCACGCTTACATT	CATGGACGACCAATCCGAGT
18s	AGAAACGGCTACCACATCCA	TCCCGAGATCCAACTACGAG

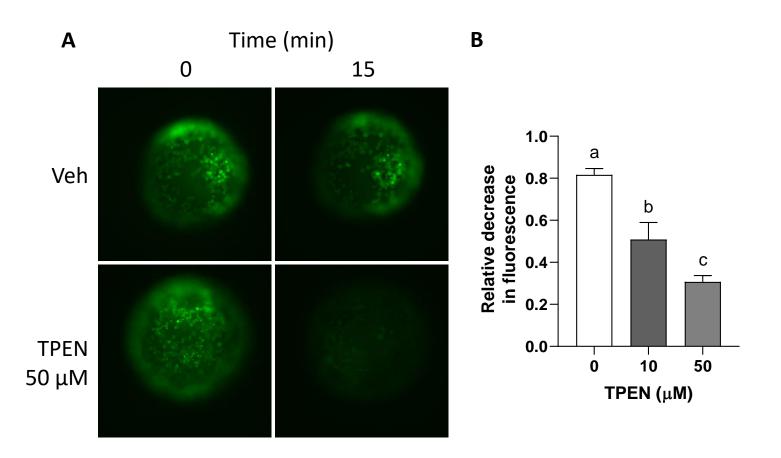
Primer	(5'-3')
Exon 3 specific	TAATACGACTCACTATAGAAGGAGTGGTGAGACCCAGGTTTTAGA GCTAGAAATAGCAAG
tracrRNA tail	AAAAGCACCGACTCGGTGCCACTTTTTCAAGTTGATAACGGACTA GCCTTATTTTAACTTGCTATTTCTAGCTCTAAAAC
Exon 3 specific stop codon cassette	GCAGAAGGAGTGGTGAGACCGTCATGGCGTTTAAACCTTAATTAA

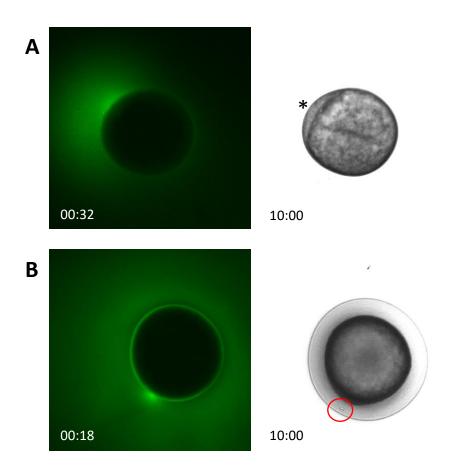

Oligonucleotide sequences used in gRNA generation and stop codon cassette.

Primers used in screening assays.


Primer	Forward	Reverse
Heteroduplex mobility assay	ATGCATTGTGCTGCTAGTTGTT	CCAGAGAAATCCCAATGTAAGC
Stop cassette specific	GGTGAGACCGTCATGGCGTTTA	CGCAGTGTGAGCCAATCCAAATA
Homo/heterozygous screening	ATGCATTGTGCTGCTAGTTGTT	CGCAGTGTGAGCCAATCCAAATA


Supplementary Figure 1. Zebrafish ZIP9 antibody validation. A-B, Western blots of plasma membrane fractions (5 μ g) from *zip9^{+/+}* and *zip9^{-/-}* ovaries incubated with control or peptide blocked ZIP9 antibody (A), or actin housekeeping control (B).


Supplementary Figure 2. Full blots of Figure 1B; ZIP9 protein expression on plasma membrane of different stage oocytes/eggs. A, Detection of ZIP9 antibody. B, Detection of Actin antibody. Two representative samples of each stage shown. EMV, early-mid vitellogenic oocytes; FG, full grown oocytes; Ov, ovulated eggs.


Supplementary Figure 3. *zip9* mutation generation. A, Schematic representation of *zip9*, and the comparison of mutant *zip9^{-/-}* and *zip9^{+/+}* exon 3 nucleotide sequence. B, Comparison of predicted ZIP9^{-/-} and ZIP9^{+/+} protein sequence. Highlighted nucleotide sequence designates the stop codon cassette, red-text nucleotides indicate stop codons, asterisk indicates stop codon resulting in truncation, red boxed-amino acids are adjacent to stop codon in ZIP9^{-/-}.

Supplementary Figure 4. Ovarian morphology of $zip9^{-/-}$ and $zip9^{+/+}$ fish. A, The relative proportion of ovarian follicles at different stages of development in $zip9^{-/-}$ and $zip9^{+/+}$ ovaries. B, Representative image of ovarian histology of $zip9^{-/-}$ and $zip9^{+/+}$ fish. All data represents means \pm SEM, n=5. PNS, perinuclear stage; CA, cortical alveoli stage; EV, early vitellogenic stage; MV, mid vitellogenic stage; LV, late vitellogenic stage.

Supplementary Figure 5. Specificity of FluoZin-3-AM. A, Representative images of pre-activated WT eggs loaded with FluoZin-3-AM and treated with vehicle or TPEN. B, Quantification of relative decrease of FluoZin-3-AM fluorescence in TPEN treated eggs. Data represents means \pm SEM, n=6 (2 replicate egg from 3 fish). Significance was determined by one-way ANOVA with Bonferroni multiple comparison post-test. Different letters indicate significant differences between treatment groups in the post hoc test (P < 0.05).

Supplementary Figure 6. Zinc exocytosis begins at the animal pole. A-B, FluoZin-3 fluorescence from WT eggs during zinc exocytosis (left) and brightfield images (right) 10 min post activation showing the blastodisc (*) and micropyle (red circle) respectively.

Supplemental Movie 1. Loss of zinc containing cortical vesicles upon activation of a representative wildtype egg. Scale bar: 100 μ m. Images taken every 20 s for a total of 10 min.

Supplemental Movie 2. Loss of zinc containing cortical vesicles upon activation of a representative $zip9^{-/-}$ egg. Scale bar: 100 µm. Images taken every 20 s for a total of 10 min.

Supplemental Movie 3. Increase in extracellular zinc upon activation of a representative wildtype egg. Scale bar: 200 μ m. Images taken every 2 s for a total of 10 min.

Supplemental Movie 4. Increase in extracellular zinc upon activation of a representative $zip9^{-/-}$ egg. Scale bar: 200 µm. Images taken every 2 s for a total of 10 min.

Supplemental Movie 5. A rise in intracellular calcium proceeds zinc exocytosis in a representative WT egg. Images taken every ~3.4 seconds for 5 min. green, extracellular zinc; purple, intracellular calcium.