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1 Details of MCMC algorithm

1.1 Likelihood
The likelihood can be expressed in the form:

L(α, β, κ, µE, σ
2
E, µI, σ

2
I |x) ∝

 ∏
i;t(i)E ≤T

exp

−∫ t(i)E

0
C(xi, t) dt

 · C(xi, t(i)E )

 ·

 ∏
i;t(i)E >T

exp
[
−

∫ T

0
C(xi, t) dt

] ·

 ∏
i;t(i)I ≤T

fE(t
(i)
I − t(i)E ;µE, σE)

 ·

 ∏
i;t(i)I >T>t(i)E

(
1− FE(T− t(i)E ;µE, σE)

) ·

 ∏
i;t(i)R ≤T

fI(t
(i)
R − t(i)I ;µI, σ

2
I )

 ·

 ∏
i;t(i)R >T>t(i)I

(
1− FI(T− t(i)I ;µI, σ

2
I )
) .

1.2 Calculation of the Posterior Expected Imputed P-Value
The process for the computation of the expected posterior imputed p-value is embed-
ded within the data augmented MCMC (a special case of RJMCMC, and is sometimes
referred to herein as RJMCMC).

1.2.1 Data Augmented MCMC

The algorithm used for data augmented MCMC (sometimes referred as RJMCMC
herein; DAMCMC is a special case of RJMCMC) is:

For each iteration, the following process is repeated:
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1. Let the current state of the algorithm at time k = 0, 1, 2, . . . be denoted by
(θ(k), z(k)) where θ(k) = (α(k), β(k), κ(k), µ

(k)
E , σ

2(k)
E , µ

(k)
I , σ

2(k)
I ) and the times

of transition into the exposed state be denoted by z(k) = z(k)1 , z(k)2 , . . . , z(k)N where
N is the number of hosts where N is fixed (and hence the length of z(k) is fixed).

2. Using the Metropolis-Hastings algorithm, update each of the parameters in the
parameter vector individually. That is, for each parameter ϕ(k) in θ(k):

(a) Draw a proposal value ϕ′ from the proposal distribution q(ϕ′|ϕ(k)).
(b) Calculate the probability of acceptance α. Let θ∗ be θt with ϕ(k) replaced

by ϕ′:

α = min

(
1,

π(θ∗|z(k), y) · q(ϕ′|ϕ(k))
π(θ(k)|z(k), y) · q(ϕ(k)|ϕ′)

)

(c) With probability α, set θ(k+1) = θ∗, otherwise set θ(k+1) = θ(k).

3. For each data item z(k)i in z(k):

(a) if t(i)I < T set move type to Standard.

(b) else:

i. if z(k)i does not fall within [0,T] set move type to Addition
ii. else set move type to Shift or Deletion with probability 1

2

(c) if move type is Standard, Addition or Shift: Generate proposal z(k)∗i ∼ Unif(0,T)

(d) else set proposed value of z(k)∗i to be outside [0,T]

(e) if move type is Standard or Shift set ν = 1

(f) else if move type is Addition ν = T
2

(g) else if move type is Deletion set ν = 2
T

(h) Set z∗ = z(k)1 , . . . , z(k)∗i , . . . , z(k)N . Then the acceptance probability α is
given by:

α = min

(
1,

π(θ(k)|z∗, y)
π(θ(k)|z(k), y)

· ν

)

(i) With probability α, set z(k+1) = z∗ otherwise z(k+1) = z(k)

The above algorithm is modified to make it more efficient, by using an independence
sampler for the proposal distributions for zi for the cases where Ii < T. Thus, in this case
the proposal distribution and acceptance ratio (for the Standard moves in Step 3 above)
is [7, 3]:

q(Ii − zi, Ii − z∗i ) ≡ Gamma(µI, σ
2
I )

α = min

(
1,

π(θ(k)|z∗, y)
π(θ(k)|z(k), y)

· q(z
∗|z(k))

q(z(k)|z∗)

)

for the cases where it is known that Ii < T.
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1.2.2 Embedding the Tests within DAMCMC

To embed the tests within the data augmentedMCMC, the following steps were added
to the algorithm above as an extra step:

4. If k mod K = 0 where K is a positive integral value chosen by the user, calculate
the test statistic(s).

5. From each test statistic, calculate its p-value and store the p-value obtained.

The following sections describe the calculation of the test statistics and their relevant p-
values based upon the full data x which includes both the observed data y and imputed
data z.

1.2.3 Infection Link Residuals (ILR) Test Statistic and Imputed P-Value Calculation

Calculation of Test Statistic The infection link residual test is embedded with the
RJMCMC and calculated by the following algorithm (from [4]):

1. The infection link for the kth exposure between individuals i and j is chosen with
probability pij from the possible links at time tk. Primary infection is treated as
being an infection caused by a notional infector with force of infection α.

2. The infection links are then ordered and the ranking s′ of pij is determined.

3. Generate a random deviate fromUnif(
∑s′−1

l=1 p(l),
∑s′

l=1 p(l)). This is the imputed
infection link residual for the kth exposure.

Calculation of Imputed P-Value The p-value is calculated using theAnderson-Darling
test [1]. This is a frequentist test of the hypotheses:

H0 :The data have cumulative distribution function F(x)

HA :The data does not have cumulative distribution function F(x)

The data for this test is a random sample denoted {X1,X2, . . . ,Xn}
Let the empirical distribution function be defined as:

Fn(x) =
number of X1,X2 . . . ,Xn that are ≤ x

n
The test statistic is defined as:

An = −n−
1
n

n∑
i=1

(2i− 1) [ln F(Xi) + ln(1− F(Xn+1−i))] (1)

The Anderson-Darling test statistic can be expressed in another form, which shows
that it is the integral of the weighted squared difference between the empirical distri-
bution function and the hypothesised distribution function, multiplied by a weighting
with weight concentrated towards the tails of the distribution.

An = n
∫ 1

0

[Fn(x)− F(x)]2

F(x)(1− F(x))
dF(x) (2)
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This makes the Anderson-Darling test more able to detect discrepancy between the hy-
pothesised distribution and the data and the tails of the distribution than theKolmogorov-
Smirnov test which is more commonly used.

In this case F(x) is a uniform CDF between 0 and 1, the test statistic simplifies to:

An = −n−
1
n

n∑
i=1

(2i− 1) [lnXi + ln(1− Xn+1−i)] (3)

1.2.4 Latent Likelihood Ratio Test (LLR) Test Statistic and Imputed P-Value Cal-
culation

Calculation of the Imputed P-Value Without loss of generality, suppose the test stat-
istic used is T(x, θ) (the same method is used for Tpartial(x, θ), except T(x, θ) is replaced
in the following steps with Tpartial(x, θ)).

1. Calculate T(x, θ)

2. For ntest times:

(a) Generate new data-set x∗ under the fitted model given θ(k)

(b) Evaluate T′(θ(k); x∗)

3. Store p̂ = Count(T′(θ(k);x∗)>T(θ(k);,x))
ntest

In practice, it is only practical to have ntest set to 1, as this process takes a large amount
of time (data-regeneration, and maximum-likelihood estimation takes a relatively large
amount of time). Under different values of ntest, many different distributions of p̂ will
be obtained, however, the average of overall MCMC samples of p̂ will converge to the
expectation of posterior latent p-value regardless of the value of ntest. In this paper, this
expected value is used to summarise the whole the distribution because of computing
power constraints.

2 Maximum Likelihood Estimation Methods
This paper is concerned with the case where the transitions of hosts from the S state to
the E state are unobserved, which is often the case in real world epidemics, for example,
where there is a latent period (for example, [6, 8]). However, if the transitions to the E
state are observed, then since the likelihood function would be tractable in this situation,
maximum-likelihood estimation can be used to obtain parameter estimates. In this pa-
per, maximum-likelihood estimationwill be embeddedwithin our framework of model
testing. This section details how maximum-likelihood estimation is performed within
this paper.

2.1 Maximum-LikelihoodEstimation of Parameters forCompleteData
In this paper we have used the Subplex algorithm for maximum likelihood estimation,
which is heavily based on the Nelder-Mead Algorithm [5]. As in the numerical lit-
erature, the optimisation algorithms presented here in this paper are in the form used
for function minimisation, but the same algorithm can be used for maximisation since
maximisation of a function is the minimisation of the negative of the function. The
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Nelder-Mead Simplex algorithm is a gradient-free optimisation algorithm for mul-
tivariate functions. The algorithm was chosen because of its flexibility, and inclusion
in many programming libraries (for example [2]).

Gradient-based optimisation algorithms can be used in place of the non-gradient
based methods used here, although there is a severe drawback in terms of maintaining
and debugging the code for separate gradient calculations. Note that the maximisation
of the likelihood is performed with bound constraints on the parameter values, which
limits the choice of algorithms to those which can handle bound constraints.

Algorithm 1 (Nelder-Mead Simplex Algorithm for function minimisation). For a real
valued function f(x) : x ∈ Rn, let ρ > 0, χ > ρ, 0 < γ < 1, 0 < σ < 1 (note that in almost
all implementations ρ = 1, χ = 2, γ = 1

2 , σ = 1
2 ). Then for each iteration k, perform the

following steps:
Sort For each vertex in simplex ∆k, order the vertices {x1, . . . , xn+1} such that

f(x1) ≤ f(x2) ≤ . . . ≤ f(xn+1)

Reflection Let:

x̄ =

∑n
i=1 xi
n

xr = x̄+ ρ(x̄− xn+1)

Then, if f(x1) ≤ f(xr) < f(xn), xn+1 = xr
Expansion If f(xr) < f(x1), let:

xe = x̄+ χ(xr − x̄) = x̄+ χρ(x̄− xn+1)

If f(xe) < f(xr) then xn+1 = xe else xn+1 = xr
Outside Contraction If f(xn) ≤ f(xr) < f(xn+1), let

xc = x̄+ γ(xr − x̄) = x̄+ γρ(x̄− xn+1)

If f(xc) < f(xr) then xn+1 = xc and go to next iteration k+ 1, else xn+1 = xr and go to
shrink step

Inside Contraction If f(xr) ≥ f(xn+1), let

xcc = x̄− γ(x̄− xn+1)

If f(xcc) < f(xr) then xn+1 = xcc and go to next iteration k+ 1, else xn+1 = xr and go to
shrink step

Shrink Let
xi = x1 + σ(xi − x1)

for all i > 1.

2.1.1 The Subplex Algorithm for Maximisation

The Subplex algorithm incorporates the Nelder-Mead algorithm within itself, and in-
tends to improve convergence to the actual maximum. A brief formal outline is as fol-
lows (as described in [9]):
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Algorithm 2 (Subplex). In addition to the Nelder-Mead coefficients defined above (the default
Nelder-Mead strategy used for Nelder-Mead algorithm embedded in the Subplex algorithm is
ρ = 1, χ = 2, γ = 1

2 , σ = 1
2 ), let “scale” be a vector of step sizes. Let ψ, ω be the

simplex reduction coefficients and step reduction coefficients respectively where 0 < ψ < 1
and 0 < ω < 1. Let nsmin and nsmax be the minimum and maximum subspace dimensions.
The default values of these settings (used in this paper) are ψ = 0.25, ω = 0.1, nsmin =
min(2, n), nsmax = min(5, n). Let x be the current approximation to the minimum.

1. Determine step size (see Algorithm 3).

2. Set subspaces (see Algorithm 4).

3. Perform the Nelder-Mead algorithm on each subspace.

4. If

max
(
∥∆x∥∞ , ∥step · ψ∥∞

)
max(∥x∥∞ , 1)

< tol

where ∆x is the difference between x and its value on the previous cycle of the
algorithm, and tol is the error tolerance required, then the algorithm ends. Oth-
erwise, go to step 1.

Algorithm 3 (Subplex (Setting the Step-size)).

1. If the algorithm has just been started, that is, this is the first time that the step-size
is being set, step = scale. Otherwise, perform the following steps:

(a) step←

{
step ·min

(
max

(
∥∆x∥1
∥step∥1

, ω
)
, 1
ω

)
nsubs > 1

step · ψ nsubs = 1

(b) for each component stepi of step:

stepi ←

{
sign(∆xi) · |stepi| ∆xi ̸= 0
−stepi ∆xi = 0

where ∥x∥1 =
∑

i |xi|.

Algorithm 4 (Subplex (Setting the subspaces)). Let∆x be the vector of progress. Let nsmin
and nsmax be the minimum and maximum subspace dimensions. Let there be subs subspaces of
ns1, ns2, . . . nssubs dimensions (which sum to n), where ∀i ∈ {1, 2, . . . , subs} : nsmin ≤ nsi ≤
nsmax.

1. Sort∆x = (∆x1,∆x2, . . . ,∆xn) such that the largest component is first. Let this
be denoted ∆̃x = (∆̃x1, ∆̃x2, . . . , ∆̃xn).

2. Set

ns1 = argmax
k∈K


∥(∆̃x1,...,∆̃xk)∥1

k − ∥
(∆̃xk+1,...,∆̃xn)∥1

n−k k ̸= n
∥(∆̃x1,...,∆̃xk)∥1

k k = n


where K = {k|nsmin ≤ k ≤ nsmax and nsmin ⌈(n− k)/nsmax⌉ ≤ n− k},∥x∥1 =∑

i |xi| . This step determines where the “gaps” are in ∆̃x.
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3. Repeat step 2 for ns2, ns3, . . . until
∑subs

i=1 = n.

An advantage of the simplex algorithm is that it allows bound constraints on values of x
(see [9], [2]). If any of the Nelder-Mead steps produces a simplex with a point outside of
these constraints, the point is moved (usually to the nearest point within the constraints)
such that the simplex lies within the constraints.

2.2 Maximum Likelihood Estimation and Model Comparison Meth-
ods

We use the following algorithm for each maximum likelihood estimation (performed
in bulk) within the algorithms (for model comparison) in this paper:

1. Utilise the optimisation algorithm (Subplex) to obtain an estimate of the MLE
(within given stopping criteria and tolerances)

2. Verify that this is the maximum likelihood estimate by restarting the optimiser at
a different starting point. If the optimiser produces a point with the same likeli-
hood value (subject to tolerances that have been pre-specified) accept the current
estimate as the maximum likelihood estimate. Otherwise, take the point which
produces the largest likelihood value and repeat this process again from the start.

3 Examples of Simulated Epidemics
Plots of the data-sets in the simulation study in Section 5 of the paper can be found in
Figures 1, 2, 3 and 4.

4 Initialisation Values for MCMC
The algorithm was initialised with z(0) equal to the true exposure times, and parameter
values θ(0) set to the MLEs of θ given z(0) and observed data y. Test runs show that
this gives fast convergence to the stationary distribution, whilst converging to the same
distribution obtained when setting the starting values of z(0) to uniformly distributed
values between 0 and entry time into the I state, and parameter values θ(0) set to the
MLEs of θ given z(0) and observed data y.

5 Examples of Posterior Densities
Examples of posterior densities are given in figures 5, 6, 7 and 8. Table 1 shows the
details of the MCMC runs plotted and which figures correspond to which computer
runs. The trace and density plots obtained for the other MCMC runs were similar to
those shown here.

6 Parameter Posterior Summary Statistics
Parameter posterior summary statistics for some of the posterior distributions obtained
in the simulation study in Section 5 of the paper can be found in Tables 2,3,4,5,6,7 and
8.

0
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Figure 1: Snapshots of the simulated epidemic dataset “Original”, which is generated
with an exponential kernel. Each point on the graph represents one host. Points are
colour-coded to represent the current state of the host. Susceptible points are not dis-
played to maintain clarity of the graph. The colour of the points on the graph indicate
the state of each host at the given time. Red indicates the host is exposed, green indicates
the host is infectious and blue indicates that the host is removed.

Data-set Kernel Fitted
Total %

Infections Observed
Figures

Original (1+ dκ)−1 70 Fig. 7, Fig. 8
Original exp

{
−κd2

}
70 Fig. 5, Fig. 6

Table 1: Table of runs and the figures displaying their trace and density plots
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Figure 2: Snapshots of the simulated epidemic dataset 2 × α, which is generated with
an exponential kernel. Each point on the graph represents one host. Points are colour-
coded to represent the current state of the host. Susceptible points are not displayed to
maintain clarity of the graph. The colour of the points on the graph indicate the state of
each host at the given time. Red indicates the host is exposed, green indicates the host
is infectious and blue indicates that the host is removed.
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Figure 3: Snapshots of the simulated epidemic dataset 2 × β, which is generated with
an exponential kernel. Each point on the graph represents one host. Points are colour-
coded to represent the current state of the host. Susceptible points are not displayed to
maintain clarity of the graph. The colour of the points on the graph indicate the state of
each host at the given time. Red indicates the host is exposed, green indicates the host
is infectious and blue indicates that the host is removed.
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Figure 4: Snapshots of the simulated epidemic dataset 2 × γ, which is generated with
an exponential kernel. Each point on the graph represents one host. Points are colour-
coded to represent the current state of the host. Susceptible points are not displayed to
maintain clarity of the graph. The colour of the points on the graph indicate the state of
each host at the given time. Red indicates the host is exposed, green indicates the host
is infectious and blue indicates that the host is removed.
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Figure 5: Trace and density plot of MCMC run (see Table 1 for more information)
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Figure 6: Trace and density plot of MCMC run (see Table 1 for more information)
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Figure 7: Trace and density plot of MCMC run (see Table 1 for more information)
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Figure 8: Trace and density plot of MCMC run (see Table 1 for more information)
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Data-set
Total %

Population Infectious
H0

α
Mean S.D

α× 2 100 (1+ dκ)−1 0.00133 0.0003334
α× 2 70 (1+ dκ)−1 0.0006492 0.0002724
α× 2 40 (1+ dκ)−1 0.0006613 0.0002828
α× 2 100 exp

{
−κd2

}
0.0029139 0.0004486

α× 2 70 exp
{
−κd2

}
0.002556 0.0004495

α× 2 40 exp
{
−κd2

}
0.0022339 0.0007029

β × 2 100 (1+ dκ)−1 0.0004442 0.0001923
β × 2 70 (1+ dκ)−1 0.0003817 0.0001863
β × 2 40 (1+ dκ)−1 0.0004015 0.0001984
β × 2 100 exp

{
−κd2

}
0.0012901 0.0003207

β × 2 70 exp
{
−κd2

}
0.0011284 0.0003027

β × 2 40 exp
{
−κd2

}
0.001087 0.0003053

κ× 2 100 (1+ dκ)−1 0.0008384 0.00004733
κ× 2 70 (1+ dκ)−1 0.0007108 0.00006799
κ× 2 40 (1+ dκ)−1 0.0005803 0.0001156
κ× 2 100 exp

{
−κd2

}
0.0010206 0.0000484

κ× 2 70 exp
{
−κd2

}
0.0010663 0.00007045

κ× 2 40 exp
{
−κd2

}
0.0012108 0.0001243

Original 100 (1+ dκ)−1 0.0003585 0.000178
Original 70 (1+ dκ)−1 0.0003146 0.0001575
Original 40 (1+ dκ)−1 0.000696 0.000193
Original 100 exp

{
−κd2

}
0.0013476 0.0002592

Original 70 exp
{
−κd2

}
0.0010269 0.0002521

Original 40 exp
{
−κd2

}
0.0009899 0.000265

Original (New Seed) 100 (1+ dκ)−1 0.001213 0.0002561
Original (New Seed) 70 (1+ dκ)−1 0.0009564 0.0003077
Original (New Seed) 40 (1+ dκ)−1 0.001012 0.0003282
Original (New Seed) 100 exp

{
−κd2

}
0.0016983 0.0002973

Original (New Seed) 70 exp
{
−κd2

}
0.0016752 0.0003794

Original (New Seed) 40 exp
{
−κd2

}
0.0018358 0.0004172

Table 2: Table of Posterior Means and Standard Deviation for the simulation study runs
for α
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Data-set
Total %

Population Infectious
H0

β
Mean S.D

α× 2 100 (1+ dκ)−1 3512 506.4
α× 2 70 (1+ dκ)−1 2776 443.8
α× 2 40 (1+ dκ)−1 1796 374.7
α× 2 100 exp

{
−κd2

}
0.9023087 0.09043

α× 2 70 exp
{
−κd2

}
0.9037788 0.109

α× 2 40 exp
{
−κd2

}
0.8149542 0.5498334

β × 2 100 (1+ dκ)−1 4794 635.7
β × 2 70 (1+ dκ)−1 3678 559.2
β × 2 40 (1+ dκ)−1 2540 457.7
β × 2 100 exp

{
−κd2

}
1.0636219 0.141

β × 2 70 exp
{
−κd2

}
0.9717919 0.149

β × 2 40 exp
{
−κd2

}
0.8408861 0.1646

κ× 2 100 (1+ dκ)−1 2894 426.3
κ× 2 70 (1+ dκ)−1 2538 401.9
κ× 2 40 (1+ dκ)−1 2149 384.4
κ× 2 100 exp

{
−κd2

}
0.9636156 0.07927

κ× 2 70 exp
{
−κd2

}
0.9170497 0.08298

κ× 2 40 exp
{
−κd2

}
0.9734283 0.1103

Original 100 (1+ dκ)−1 2558 476.7
Original 70 (1+ dκ)−1 3533 525.7
Original 40 (1+ dκ)−1 4313 561.4
Original 100 exp

{
−κd2

}
0.8482083 0.08723

Original 70 exp
{
−κd2

}
0.9342897 0.1178

Original 40 exp
{
−κd2

}
0.9450705 0.1553

Original (New Seed) 100 (1+ dκ)−1 3731 540.5
Original (New Seed) 70 (1+ dκ)−1 3114 523.6
Original (New Seed) 40 (1+ dκ)−1 2129 431.8
Original (New Seed) 100 exp

{
−κd2

}
0.6972467 0.06671

Original (New Seed) 70 exp
{
−κd2

}
0.7186071 0.08508

Original (New Seed) 40 exp
{
−κd2

}
0.8079134 0.122

Table 3: Table of Posterior Means and Standard Deviation for the simulation study runs
for β
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Data-set
Total %

Population Infectious
H0

κ
Mean S.D

α× 2 100 (1+ dκ)−1 2.392 0.02861
α× 2 70 (1+ dκ)−1 2.369 0.03153
α× 2 40 (1+ dκ)−1 2.284 0.04026
α× 2 100 exp

{
−κd2

}
0.0001535 0.00000898

α× 2 70 exp
{
−κd2

}
0.0001548 0.00001012

α× 2 40 exp
{
−κd2

}
0.0001448 0.0002132

β × 2 100 (1+ dκ)−1 2.414 0.02534
β × 2 70 (1+ dκ)−1 2.388 0.02941
β × 2 40 (1+ dκ)−1 2.312 0.03489
β × 2 100 exp

{
−κd2

}
0.0001178 0.000007319

β × 2 70 exp
{
−κd2

}
0.0001136 0.000007957

β × 2 40 exp
{
−κd2

}
0.0001008 0.000008752

κ× 2 100 (1+ dκ)−1 2.673 0.0357
κ× 2 70 (1+ dκ)−1 2.644 0.03832
κ× 2 40 (1+ dκ)−1 2.604 0.04290
κ× 2 100 exp

{
−κd2

}
0.0006301 0.00003171

κ× 2 70 exp
{
−κd2

}
0.0006164 0.00003415

κ× 2 40 exp
{
−κd2

}
0.0006277 0.00004283

Original 100 (1+ dκ)−1 2.378 0.03547
Original 70 (1+ dκ)−1 2.434 0.02942
Original 40 (1+ dκ)−1 2.455 0.02589
Original 100 exp

{
−κd2

}
0.0001498 0.000008934

Original 70 exp
{
−κd2

}
0.0001527 0.00001006

Original 40 exp
{
−κd2

}
0.0001521 0.00001294

Original (New Seed) 100 (1+ dκ)−1 2.41 0.02903
Original (New Seed) 70 (1+ dκ)−1 2.377 0.04164
Original (New Seed) 40 (1+ dκ)−1 2.296 0.04251
Original (New Seed) 100 exp

{
−κd2

}
0.0001295 0.00000753

Original (New Seed) 70 exp
{
−κd2

}
0.0001275 0.000008302

Original (New Seed) 40 exp
{
−κd2

}
0.0001332 0.00001107

Table 4: Table of Posterior Means and Standard Deviation for the simulation study runs
for κ
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Data-set
Total %

Population Infectious
H0

µE

Mean S.D
α× 2 100 (1+ dκ)−1 4.805 0.1031
α× 2 70 (1+ dκ)−1 4.523 0.1189
α× 2 40 (1+ dκ)−1 4.451 0.1521
α× 2 100 exp

{
−κd2

}
5.042126 0.1102

α× 2 70 exp
{
−κd2

}
4.9593773 0.1377

α× 2 40 exp
{
−κd2

}
4.843329 0.1968621

β × 2 100 (1+ dκ)−1 4.289 0.1153
β × 2 70 (1+ dκ)−1 4.041 0.1357
β × 2 40 (1+ dκ)−1 4.022 0.1633
β × 2 100 exp

{
−κd2

}
4.7652099 0.124

β × 2 70 exp
{
−κd2

}
4.6984782 0.1549

β × 2 40 exp
{
−κd2

}
4.6826162 0.2359

κ× 2 100 (1+ dκ)−1 4.945 0.1001
κ× 2 70 (1+ dκ)−1 4.929 0.1121
κ× 2 40 (1+ dκ)−1 4.969 0.1349
κ× 2 100 exp

{
−κd2

}
4.9826195 0.09697

κ× 2 70 exp
{
−κd2

}
4.979419 0.1082

κ× 2 40 exp
{
−κd2

}
5.0850028 0.1401

Original 100 (1+ dκ)−1 4.42 0.162
Original 70 (1+ dκ)−1 4.473 0.1243
Original 40 (1+ dκ)−1 4.579 0.1075
Original 100 exp

{
−κd2

}
4.793396 0.1173

Original 70 exp
{
−κd2

}
4.8615001 0.1504

Original 40 exp
{
−κd2

}
4.9118098 0.1972

Original (New Seed) 100 (1+ dκ)−1 4.862 0.1082
Original (New Seed) 70 (1+ dκ)−1 4.756 0.1305
Original (New Seed) 40 (1+ dκ)−1 4.66 0.1573
Original (New Seed) 100 exp

{
−κd2

}
4.9423912 0.1094

Original (New Seed) 70 exp
{
−κd2

}
4.9488673 0.1389

Original (New Seed) 40 exp
{
−κd2

}
4.9545913 0.1762

Table 5: Table of Posterior Means and Standard Deviation for the simulation study runs
for µE
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Data-set
Total %

Population Infectious
H0

σ2E
Mean S.D

α× 2 100 (1+ dκ)−1 1.956 0.2294
α× 2 70 (1+ dκ)−1 1.741 0.2386
α× 2 40 (1+ dκ)−1 1.805 0.344
α× 2 100 exp

{
−κd2

}
2.4812384 0.2898

α× 2 70 exp
{
−κd2

}
2.3839773 0.3476

α× 2 40 exp
{
−κd2

}
2.1531098 0.4522831

β × 2 100 (1+ dκ)−1 1.925 0.2174
β × 2 70 (1+ dκ)−1 1.819 0.2626
β × 2 40 (1+ dκ)−1 1.912 0.352
β × 2 100 exp

{
−κd2

}
2.5839779 0.2968

β × 2 70 exp
{
−κd2

}
2.4853798 0.3787

β × 2 40 exp
{
−κd2

}
2.6409302 0.6064

κ× 2 100 (1+ dκ)−1 2.816 0.2872
κ× 2 70 (1+ dκ)−1 2.872 0.339
κ× 2 40 (1+ dκ)−1 2.702 0.3944
κ× 2 100 exp

{
−κd2

}
2.64989 0.2738

κ× 2 70 exp
{
−κd2

}
2.6699676 0.3042

κ× 2 40 exp
{
−κd2

}
2.8226393 0.4221

Original 100 (1+ dκ)−1 2.057 0.3825
Original 70 (1+ dκ)−1 2.06 0.2758
Original 40 (1+ dκ)−1 2.236 0.2442
Original 100 exp

{
−κd2

}
2.7646615 0.3458

Original 70 exp
{
−κd2

}
2.9812697 0.4669

Original 40 exp
{
−κd2

}
2.8702635 0.5652

Original (New Seed) 100 (1+ dκ)−1 2.362 0.2636
Original (New Seed) 70 (1+ dκ)−1 2.26 0.2975
Original (New Seed) 40 (1+ dκ)−1 1.934 0.3628
Original (New Seed) 100 exp

{
−κd2

}
2.572538 0.3046

Original (New Seed) 70 exp
{
−κd2

}
2.4965248 0.3723

Original (New Seed) 40 exp
{
−κd2

}
2.5261648 0.4714

Table 6: Table of Posterior Means and Standard Deviation for the simulation study runs
for σ2E
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Data-set
Total %

Population Infectious
H0

µI

Mean S.D
α× 2 100 (1+ dκ)−1 1.801 0.03027
α× 2 70 (1+ dκ)−1 1.816 0.03786
α× 2 40 (1+ dκ)−1 1.825 0.05211
α× 2 100 exp

{
−κd2

}
1.8004701 0.03029

α× 2 70 exp
{
−κd2

}
1.8152959 0.03783

α× 2 40 exp
{
−κd2

}
1.8247609 0.0520868

β × 2 100 (1+ dκ)−1 1.8 0.03024
β × 2 70 (1+ dκ)−1 1.796 0.03717
β × 2 40 (1+ dκ)−1 1.825 0.05158
β × 2 100 exp

{
−κd2

}
1.8002562 0.03023

β × 2 70 exp
{
−κd2

}
1.7959016 0.03717

β × 2 40 exp
{
−κd2

}
1.8250691 0.05174

κ× 2 100 (1+ dκ)−1 1.801 0.0302
κ× 2 70 (1+ dκ)−1 1.835 0.03691
κ× 2 40 (1+ dκ)−1 1.851 0.04849
κ× 2 100 exp

{
−κd2

}
1.8003755 0.03025

κ× 2 70 exp
{
−κd2

}
1.8351697 0.03694

κ× 2 40 exp
{
−κd2

}
1.8512757 0.04859

Original 100 (1+ dκ)−1 1.798 0.05017
Original 70 (1+ dκ)−1 1.821 0.03738
Original 40 (1+ dκ)−1 1.8 0.0303
Original 100 exp

{
−κd2

}
1.8003004 0.03019

Original 70 exp
{
−κd2

}
1.8210957 0.03744

Original 40 exp
{
−κd2

}
1.797982 0.05013

Original (New Seed) 100 (1+ dκ)−1 1.752 0.02889
Original (New Seed) 70 (1+ dκ)−1 1.771 0.03564
Original (New Seed) 40 (1+ dκ)−1 1.793 0.04971
Original (New Seed) 100 exp

{
−κd2

}
1.7518828 0.0289

Original (New Seed) 70 exp
{
−κd2

}
1.7715113 0.03561

Original (New Seed) 40 exp
{
−κd2

}
1.7935544 0.04976

Table 7: Table of Posterior Means and Standard Deviation for the simulation study runs
for µI and σ2I
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Data-set
Total %

Population Infectious
H0

σ2I
Mean S.D

α× 2 100 (1+ dκ)−1 0.9134 0.04996
α× 2 70 (1+ dκ)−1 0.9332 0.06434
α× 2 40 (1+ dκ)−1 0.8917 0.08827
α× 2 100 exp

{
−κd2

}
0.9131307 0.05003

α× 2 70 exp
{
−κd2

}
0.9321667 0.06426

α× 2 40 exp
{
−κd2

}
0.8913357 0.0879867

β × 2 100 (1+ dκ)−1 0.9131 0.04983
β × 2 70 (1+ dκ)−1 0.883 0.06131
β × 2 40 (1+ dκ)−1 0.8927 0.0875
β × 2 100 exp

{
−κd2

}
0.9128844 0.04977

β × 2 70 exp
{
−κd2

}
0.8831906 0.06121

β × 2 40 exp
{
−κd2

}
0.8928353 0.0876

κ× 2 100 (1+ dκ)−1 0.9132 0.04992
κ× 2 70 (1+ dκ)−1 0.9523 0.06244
κ× 2 40 (1+ dκ)−1 0.9248 0.08094
κ× 2 100 exp

{
−κd2

}
0.9130562 0.04992

κ× 2 70 exp
{
−κd2

}
0.9522412 0.0625

κ× 2 40 exp
{
−κd2

}
0.9250943 0.08113

Original 100 (1+ dκ)−1 0.8894 0.08347
Original 70 (1+ dκ)−1 0.9156 0.06274
Original 40 (1+ dκ)−1 0.913 0.04998
Original 100 exp

{
−κd2

}
0.9129414 0.04981

Original 70 exp
{
−κd2

}
0.9158055 0.06292

Original 40 exp
{
−κd2

}
0.8895275 0.08353

Original (New Seed) 100 (1+ dκ)−1 0.8338 0.04531
Original (New Seed) 70 (1+ dκ)−1 0.8385 0.05709
Original (New Seed) 40 (1+ dκ)−1 0.7834 0.07785
Original (New Seed) 100 exp

{
−κd2

}
0.8337618 0.04526

Original (New Seed) 70 exp
{
−κd2

}
0.8385418 0.05685

Original (New Seed) 40 exp
{
−κd2

}
0.7836434 0.0782

Table 8: Table of Posterior Means and Standard Deviation for the simulation study runs
for µI and σ2I
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