Supplementary information

A trimeric CrRLK1L-LLG1 complex genetically modulates SUMM2-mediated autoimmunity

Yanyan Huang, Chuanchun Yin, Jun Liu, Baomin Feng, Dongdong Ge, Liang Kong, Fausto Andres Ortiz-Morea, Julia Richter, Marie-Theres Hauser, Wen-Ming Wang, Libo Shan, and Ping He

Contents

Supplementary Figure 1. Screen of CrRLK1L family members for mekk1 suppressors.

Supplementary Figure 2. LETs do not regulate MPK4-mediated root development.

Supplementary Figure 3. LET2/MDS1 specifically promotes LET1 phosphorylation.

Supplementary Figure 4. The *llg1*, but not *lre*, *llg2*, nor *llg3* mutants suppress autoimmunity by silencing *MEKK1*.

Supplementary Figure 5. The *llg1* mutants regulate *mekk1* and *mpk4* cell death. **Supplementary Figure 6.** Genotyping of *llg1-1mkk1/2* and *llg1-1mpk4* mutants.

Supplementary Figure 7. The *llg1-3* mutant suppresses the cell death triggered by MEKK2, not by SUMM2ac.

Supplementary Table 1. Primers used in this study.

2				Predicted		Cell death
a	NO.	T-DNA lines	AGI-Name	insertion site	Genotype	suppressor
	1	<i>let2-1</i> (SALK_139579)		exon	НОМО	Yes
	2	<i>let2-2</i> (SALK_066322)	A15G56990-INDS1	exon	HOMO	Yes
	3	mds3-1 (SALK_074670C)	AT5G39020-MDS3	exon	НОМО	No
	4	mds4-1 (SALK_007613C)	AT5G39030-MDS4	exon	НОМО	No
	5	fer-4 (CS69044)		exon	НОМО	No
	6	SALK_029056C	AISGS1550-FER	exon	НОМО	No
	7	anx2-2 (SALK_133057C)	AT5G28680-ANX2	exon	НОМО	No
	8	<i>anx1-1</i> (SALK_016179C)	AT3G04690-ANX1	exon	НОМО	No
	9	herk2 (SALK_105055C)	AT1G30570-HERK2	exon	НОМО	No
	10	<i>cap1-1</i> (SALK_083442C)	AT5G61350-ERULUS	exon	НОМО	No
	11	herk1-1(SALK008043C)	AT3G46290- <i>HERK1</i> AT5G54380- <i>THE1</i>	Double	НОМО	No
		the1-4(CS829966)		mutant		NO
	12	<i>curvy1</i> (SALK_018797C)	AT2G39360-CVY1	exon	HOMO	No
	13	<i>anj-1</i> (SALK_114667C)	AT5G59700-ANJEA	exon	НОМО	No
	14	herk1-1 (SALK_008043C)	AT3G46290-HERK1	exon	НОМО	No
	15	mds2-1 (SALK_007108)	AT5G39000-MDS2	exon	НОМО	No
	16	SAIL_907_G02	AT5G24010	exon	WT	No
	17	SAIL_809_D01		exon	WT	No
	18	bups1-T-1 (SALK_033062)	AT4G39110- <i>BUPS1</i>	exon	WT	No
	19	<i>bups1-T-3</i> (SAIL_33_C06)		exon	WT	No
	20	bups2 (SAIL_448_D02)	AT2G21480-BUPS2	exon	WT	No

RNAi-Ctrl

RNAi-*MEKK1*

Supplementary Figure 1. Screen of *Cr*RLK1L family members for *mekk1* suppressors.

a. The detailed information of T-DNA insertion lines of *Cr*RLK1L family members in RNAi-*MEKK1* assays. HOMO indicates that the mutant is homozygous.

b. The phenotype induced by RNAi-*MEKK1*. The plant images were taken at three weeks after inoculation with Agrobacterium carrying RNAi-*MEKK1* vector. The number corresponds to the mutant marked with the same number in **(a)**. Scale bar, 1cm. The above experiments were repeated twice with similar results.

Supplementary Figure 2. LETs do not regulate MPK4-mediated root development.

a. The *let* mutants do not affect the root width in the *mpk4* mutant. The root images were taken at six days after germination on a $\frac{1}{2}$ MS plate under a stereoscopy. Scale bar, 200 μ m.

b. Quantification of root width of plants in **(a)**. The root width of the indicated lines was measured by image J. The data are shown as the mean \pm SE (*n*=10). *P*=4.4 × 10⁻¹⁰ (column 1 and 5), *P*=4.42 × 10⁻¹⁰ (column 1 and 6), *P*=4.48 × 10⁻¹⁰ (column 1 and 7), *P*=4.50 × 10⁻¹⁰ (column 1 and 8), *P*=4.50 × 10⁻¹⁰ (column 1 and 9), *P*=4.67 × 10⁻¹⁰ (column 1 and 10). The different letters indicate the significant difference determined by one-way ANOVA followed by the Tukey test (P < 0.05).

The above experiments were repeated three times with similar results.

Supplementary Figure 3. LET2/MDS1 specifically promotes LET1 phosphorylation. a. LET2/MDS1 promotes LET1, not FER, phosphorylation. LET1-HA or FER-HA was coexpressed with Ctrl or LET2-FLAG in protoplasts for 12 hr. The proteins were separated by 10% SDS-PAGE and detected by an α -FLAG or α -HA antibody. CBB staining of RBC was used as a loading control.

b. LET2/MDS1, not FER, promotes LET1 phosphorylation. LET2-HA or FER-HA was coexpressed with LET1-FLAG in protoplasts for 12 hr. The mobility-shift of LET1-FLAG was detected with a 7.5% SDS-PAGE. CBB staining of RBC was used as a loading control.

c. LET1 does not promote LET2/MDS1 phosphorylation. LET2-FLAG was co-expressed with Ctrl or LET1-HA in protoplasts. LET2-FLAG proteins were immunoprecipitated with α -FLAG affinity beads, subsequently treated without or with 0.5 µL (200 U) of λ -phosphatase for 1 hr. The proteins were separated by either Phos-tag SDS-PAGE (top left) or regular SDS-PAGE (bottom left). The proteins before immunoprecipitation were immunoblotted by an α -HA or α -FLAG antibody as inputs (right). CBB staining of RBC was used as a loading control.

The above experiments were repeated three times with similar results.

Supplementary Figure 4. The *llg1*, but not *lre, llg2*, nor *llg3* mutants suppress autoimmunity by silencing *MEKK1*.

a. The *Ire, Ilg2, Ilg3* mutants do not suppress the cell death induced by silencing *MEKK1*. The images were taken at three weeks after inoculation of Agrobacterium carrying the indicate VIGS vector. Scale bar, 0.5 cm (top for *Ire* mutants), 1 cm (bottom for *Ilg2* and *Ilg3* mutants).

b. The *llg1* mutants suppress the expression of *PR* genes induced by silencing *MEKK1*. The expression of *PR1* (left) and *PR2* (right) was normalized to the expression of *UBQ10* and the data are shown as the means \pm SE of four biological repeats (*n*=4). *P*=1.20 × 10⁻² (*PR1*, column 2 and 4), *P*=0.99 × 10⁻² (*PR1*, column 2 and 6), *P*=2.83× 10⁻² (*PR2*, column 2 and 4), *P*=4.03 × 10⁻² (*PR2*, column 2 and 6). The different letters indicate the significant difference determined by one-way ANOVA followed by the Tukey test (*P* < 0.05).

c. The *llg1-3* mutant partially suppresses the cell death induced by silencing *MEKK1*. The assay was done as in **(a)**. Scale bar, 1 cm.

d. The expression of *PR1* induced by silencing *MEKK1* is suppressed in *llg1-3*. The expression of *PR1* was normalized to the expression of *UBQ10* and the data are shown

as the means \pm SE of three biological repeats (*n*=3). *P*=8.23×10⁻⁷ (column 2 and 4). The different letters indicate the significant difference determined by one-way ANOVA followed by the Tukey test (P < 0.05).

The above experiments were repeated three times with similar results.

Supplementary Figure 5. The *llg1* mutants regulate *mekk1* and *mpk4* cell death.

a. The *llg1-2* mutant enhances the growth defects of *mekk1*. The images were paragraphed at three weeks after germination with plants grown on soil. Scale bar, 1cm. **b**. The *llg1-3* mutant enhances *mekk1*, but suppresses *mpk4* growth defects. Plants grown on $\frac{1}{2}$ MS plates were photographed at two weeks after germination. Scale bar, 1cm.

c. The growth defects of *llg1-1mekk1* mutant do not recover at 28°C. The indicated plants were first grown in a growth room at 22°C for 3 days after germination and then moved to a 28°C growth room for three weeks (upper panel). Finally, the plants were moved back to a 22°C growth room for another three days (low panel). Scale bar, 1cm. The above experiments were repeated three times with similar results.

Supplementary Figure 6. Genotyping of *llg1-1mkk1/2* and *llg1-1mpk4* mutants.

WT, *llg1-1, mkk1/2* and *mpk4* were used for control for genotyping of *llg1-1mkk1/2* (**a**) and *llg1-1mpk4* (**b**) mutants. The primers used for genotyping are listed in Supplementary Table 1. The primer pair of LP and RP amplified genomic DNA, and the primer pair of LB and RP amplified T-DNA insertion.

The above experiments were repeated twice with similar results.

Supplementary Figure 7. The *llg1-3* mutant suppresses the cell death triggered by MEKK2, not by SUMM2^{ac}.

a. The *llg1-3* mutant largely suppresses the cell death triggered by overexpressing *MEKK2*. The images were photographed for T_1 generation of transgenic lines overexpressing *MEKK2-HA* in WT and *llg1-3* at four weeks after germination. Scale bar, 1cm.

b. The protein accumulation in transgenic lines overexpressing *MEKK2-HA*. Total proteins were isolated from plants in **(a)** and immunoblotted using an α -HA antibody (top panel). CBB staining of RBC is shown as the loading control (bottom panel).

c. The growth defects triggered by overexpressing *SUMM2^{ac}-HA* are similar in WT and *llg1-3*. Two representative plants in each background were photographed at four weeks after germination. Scale bar, 1 cm.

d. Protein expression of SUMM2^{ac}-HA in transgenic plants in (c). The assay was performed as in (b).

The above experiments were repeated twice with similar results.

Supplementary Table 1. Primers used in this study

Genotyping primers

Name	Sequence
SALK_127359 -LP	TGAGTCAAGGCTTGACATGTG
SALK_127359-RP	TTTAAGCAATGGATGGTCGAG
SALK_045687-LP	AAACGAATTAATCCCGGTTTG
SALK_045687-RP	CAAGGACTCAACGAATTCGAG
SALK_007613-LP	GACTTGCATCCTCTGGTGAAG
SALK_007613-RP	TCCTTCCATCATTTCAACGAC
SALK_029056-LP	TGGTAGGATTCCGTTAAAATGC
SALK_029056-RP	CAGAGTATTTCAGACGGCAGC
SALK_018797-LP	TTGGTGGTGCATTAGGAAAAG
SALK_018797-RP	ACAACAAATCTCCCATTGCTG
SALK_074670-LP	GCAACATCATAAAGAACAACCC
SALK_074670-RP	TAGCATACACATCATACGGCG
SALK_105055-LP	ACTGGTCACAATGCTACTGCC
SALK_105055-RP	CTTACCAAACCCTCCAACTCC
SALK_008043-LP	ATGTGACTTGGGAGTTCGATG
SALK_008043-RP	TGCAGATTTCACGTCTCTGTG
SALK_083442-LP	TTTATCAACGCCGTTGAAATC
SALK_083442-RP	ATTTTGTGTCGCGGTCTGTAG
SALK_114667-RP	GCACCACTCAAAGTGTTGGA
SALK_114667-LP	TGGATCATCAACCAACGTCA
SAIL_907_G02-LP	ACCTGGCTCGAGTTTTCTCTC
SAIL_907_G02-RP	AACACAAAACCTCCCAAAACC
SALK_033062-LP	CTGAGCTCCAAGTCCAGATTG
SALK_033062-RP	ACACTTCTCTGCAGCTTCAGC
SAIL_33-C06-LP	TTTCCATACAAGTGGTCCCTG
SAIL_33-C06-RP	GATCTCTGATTCTGGCACTGC
SAIL_448_D02-LP	TGCTTCATGCTCTCAAAGATC
SAIL_448_D02-RP	CTCTGCTCCTGTTGCGTAAAC
SALK_139579-LP	TCAATGGACGTAACTTTGAGG
SALK_139579-RP	AGTGAAACGGTTGACGTTGAC
SALK_206468-LP	AACGCCACTAAAAGGAAAAGG
SALK_206468-RP	TCACCACTTGGCATTAGATCC
SAIL_809_D01-LP	CGAGAGAGAGACCGACATTTG
SAIL_809_D01-RP	CAACAGCTCACGGATAAGTCC
SALK_007108_LP	GGCGAAAAATGTTAACACCAC
SALK_007108_RP	CTTTTCAGGAGGGACAAAACC
fer-4_LP	AGATCACAGAGGGACGATTC
fer-4_RP	GCACCAAACACACAAAACCC
GAB1(R)	GTGGATTGATGTGATATCTCC

SAIL_103_E02_LP	TTGTATGGGTTGCAGGAAAAG
SAIL_103_E02_RP	TTCCTCCTCTGGTTTCTCC
SAIL_1234_C03-LP	TTGATGATGCTATGGAGCTCC
SAIL_1234_C03-RP	CAAAATCTTCTTTGCAGGCTG
SALK_118763.3-LP	CAAGCAAAGTCCTTGAAGGC
SALK_118763.3-RP	ACGGTTCATGTCTCCGAATC
SAIL_47_G04-LP	TCCGAGTGAGGAACAAACATC
SAIL_47_G04-RP	TGCCAAGAACTCACATTTTCC
SALK_040289_LP	GTCATTGGCAGAAGAGCAAAC
SALK_040289_RP	TGACGTAACGTCGGAACTAGG
CS66103-LP	CGCACACATGCACCTAAGTAG
CS66103-RP	TCCGACGTTACGTCATAATCC
SALK_150039-LP	CGCCGGACTAGTCTTATCTCC
SALK_150039-RP	TACATTTTTGCAGCCACTTTG
AT2g23200-genotypingF	CTCTTTAGCTCTCATCAATGCCA
AT2g23200-genotypingR	TGTTCCTCGCTGAATCTTTTC
mpk4-LP	TTGCTCTGAATACACAGCAGC
mpk4-RP	GTCTTAGAGATCAGCGGGGAC
mkk1-LP	ACGACCATTTCGTCTTCGTC
mkk1-RP	GGACATTGCGAGCTCAAGTT
FISH1-LP	CTGGGAATGGCGAAATCAAGGCATC
SAIL_511_H01-LP	TTCTTTTCCCAAATGGATTCC
SAIL_511_H01-RP	GTTAAAGCCATCCCTGACTCC
LBb1.3	ATTTTGCCGATTTCGGAAC
LB1	GCCTTTTCAGAAATGGATAAATAGCCTTGCTTCC

Cloning primers

0			
Name	Sequence		
Ncol(ATG)-BgIII-	CATGCCATGGAGATCTATGATCTGTCACGTTTTAGTA		
(ATG)At5g38900-F	ATTT		
SnaBI-SmaI-At5g38900-R	CATTACGTACCCGGGCCGTGCTTTAGGTTCATTGA		
LET2-Km-F	CACTTGTTGCGGTTGAACGGCTGGAAATTA		
LET2-Km-R	TAATTTCCAGCCGTTCAACCGCAACAAGTG		
BamHI-At2g23200-F	CGGGATCCATGGAGAATTTCTGTTTTCAAGAC		
Stul-At2g23200-R	GAAGGCCTTCTTGCATCAGAGATCTTCAACT		
At2g23200-no BamHI-F	CGGTTACTTGGACCCAGAATATCTCC		
At2g23200-no BamHI-R	GGAGATATTCTGGGTCCAAGTAACCG		
LET1-K516E-F	ACCAAAGCCGCTATCGAACGAGGCAAAACC		
LET1-K516E-R	GGTTTTGCCTCGTTCGATAGCGGCTTTGGT		
BamHI-MPK4-F	GCCGGATCCATGTCGGCGGAGAGTTGTTT C		
Stul-MPK4-R	GAAGGCCTCACTGAGTCTTGAGGATTGAAC		
BamHI-MEKK2-F	CGGGATCCATGAAGAAGTCGTCGGATAA		
Stul-MEKK2-R	GAAGGCCTTCTACGGATTAGCGGAGATG		
BamHI-SUMM2-F	CGGGATCCATGGGAGCTTGTTTAACACTCTCG		
Stul-SUMM2-R	GAAGGCCTCCGCACATAACTAACTTGCCATTC		
SUMM2D478V-F	GTTAAAATGCATGTTGTGG TTCGG		

SUMM2D478V-R	CCGAACCACAACATGCATTTTAAC
BamHI-LET1-ECD-F	GGAGGATCCATGGAGAATTTCTGTTTTCAAG
BamHI-LET1-exJM-F	GGAGGATCCATGGAGCAGCCTAGGTTGGCG
Stul-LET1-ECD-R	GGCAGGCCTAACCCGGGAACTGCTTCTAT
BgIII-LLG1-F	TACAGATCTTTCATTTCAGATGGGGTCTTC
PstI-LLG1-R	CAGCTGCAGTCAGAACAACTTAACAAAAAC
	AGAGAACAGATTGGTGGATCCATGTCGTATGAGCCC
Bamm-LETZex-F	ACTGATGT
	CTCGAGTGCGGCCGCAAGCTTTCATCTTGCATCAGA
	GATCTTCAACTGC
	AGAGAACAGATTGGTGGATCCATGAAGAGAAAGAAG
Bailli II-EE 1200-1	AAGAGCAACG
	CTCGAGTGCGGCCGCAAGCTTTCACCGTGCTTTAGG
FIIIIUIII-LETZGD-R	TTCATTGATCT

qRT-PCR primers

Name	Sequence
UBQ10-qRT-F	AGATCCAGGACAAGGAAGGTATTC
UBQ10-qRT-R	CGCAGGACCAAGTGAAGAGTAG
PR1-F	GGTTAGCGAGAAGGCTAACTAC
PR1-R	CATCCGAGTCTCACTGACTTTC
PR2-F	GCATTCGCTGGATGTTTTG
PR2-R	CTTCAACCACCAGCTTGGAC