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SI-1: The potential origins of neural flexibility 
 

While we could speculate the potential origins of the MR measured neural flexibility, it is unlikely that we 

will be able to provide conclusive evidence demonstrating the origins of neural flexibility measured by 
resting fMRI.  Perhaps animal studies using multi-channel microelectrode array recordings could provide 

insights into the origins of MR-measured flexibility.  However, this is clearly beyond the scope of our 

manuscript.  Nevertheless, we will attempt to address this question from three different aspects: i) the 

potential origins of BOLD effects; ii) the ability to capture cognitive statuses using the sliding window 

approaches; and iii) recently published results on neural flexibility.  

 

i) The potential origins of BOLD: Functional MR has become the method of choice to reveal brain 

functional networks.  Numerous studies and evidence have largely supported that spontaneous 
fluctuations of BOLD signal reflect ongoing neuronal processes (1, 2).  A recent publication by Lu et al.  

(1), however, argued that the widely held “neurocentric” model may not account for all variances 

observed in BOLD signal fluctuations and concluded that BOLD signal fluctuations may have more 

complex cellular origins.  Nevertheless, their results remain to support that BOLD signal fluctuations 

reflect underlying neuronal activity.  Together, it is reasonable to conclude the purported neural origin of 

flexibility using resting functional MRI.   

 

ii) The ability to capture cognitive statuses using sliding window approaches: Using the sliding window 
approach as in our study, recent studies have demonstrated that the human brain is a dynamic system, 

with changing cognitive states and functional connectivity even during a short scan session (3-6).  These 

results suggested the presence of different types of mental activities during a resting period (4, 7), and 

the predominance of activity can affect the functional connectivity and modular organization (8). 

Conversely, recent studies have also argued that the sliding window approach could generate spurious 

findings that were largely attributed by a short window length and/or motion artifacts.  To this end, using 

simulation and human studies, it has been suggested that a window length of 40s-100s could minimize 
spurious dynamics (6, 9-13).  Therefore, our choice of a window length of 60s is highly consistent with the 

range of the suggested window lengths.  Furthermore, we demonstrated that the conclusions of our 

studies are not altered using two other window lengths (i.e. 40s, 80s) as shown in Fig. S10 and SI-10.   

 

Regarding motion artifacts, two main approaches were employed in our study to minimize effects of 

motion, including pre-processing steps and the use of wavelet-denoising pipeline (14, 15).  As a result, 

subjects with severe motion artifacts were excluded in our analysis (please see Methods).  Thus, though 

spurious effects might influence the results, our approaches have minimized these potential factors.     
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iii) Recently published results: Finally, the concept of brain flexibility has recently been proposed by 

Bassett et al. (16) utilizing a multilayer network in task-fMRI studies.  In their studies, brain flexibility is 

associated with learning new motor skills.  Specifically, brain flexibility increases and then decreases 

during learning a new motor skill.  More importantly, brain flexibility in one learning session predicts the 
amount of learning in a future session.  In a following study by the same group (17), they also provided 

evidences that the brain flexibility oscillated across task executions, and higher frontal flexibility is 

cognitively beneficial for working-memory performance.  Additionally, brain flexibility could also serve as a 

biomarker for identifying subjects with genetic risks of developing schizophrenia (18).  Finally, recent 

resting-state study with HCP data also indicated brain flexibility could predict task performance (19).  

These previous studies shed light on the importance of brain flexibility associating with learning and 

executive functions. 

 
In summary, although it is beyond the scope of our study to provide experimental evidence regarding the 

origins of neural flexibility, it is highly plausible that neural flexibility provides quantitative measures of 

temporal stability of a brain region in association with a specific functional module, which could offer 

biologically meaningful insights into how a brain regions may contribute to different cognition responding 

to different mental demands at a given time.  In the context of our study, brain flexibility may provide an 

invaluable tool to characterize brain functional development.  In particular, as implicated by Bassett et al, 

changes of flexibility are associated with learning a new motor skill.  Considering interaction/learning with 

external environmental stimuli plays a key role in the maturation and specialization of brain functions 
during early infancy, the assessments of neural flexibility may provide biologically meaningful 

neurodevelopmental characteristics during early infancy.   

 

 

SI-2: Across age group comparisons 
 
To evaluate brain regional developmental patterns, we compared regional neural flexibility between every 
pair of adjacent age groups using a two-sample t-test (Fig. S1), p<0.05, uncorrected.  The anatomical 

locations of these regions are summarized based on their lobar distribution (Fig. S1b), which reveals four 

different patterns at different ages.  A marked change of neural flexibility is observed during the first three 

months of life with the largest number of brain regions demonstrating significant changes in flexibility.  

Importantly, a larger number of regions show a reduction (19 vs. 13) in neural flexibility during this time 

period and many of them are in the parietal and occipital lobes.  Between months 3 – 12, a larger number 

of brain regions exhibit a significant increase than decrease in neural flexibility.  Conversely, most of the 

regions show a reduction in neural flexibility between 12 – 18 months, followed by an increased neural 
flexibility for all regions between 18 – 24 months.  Finally, the majority of brain regions in the frontal lobe 
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display an increase of neural flexibility during the first two years of life, which may reflect the effects of 

external stimuli shaping the continuing maturation processes in the frontal lobe. 

 

 
SI-3: Brain atlas and network selection 
 
While adult brain functional atlases are available (20-23), a widely accepted infant brain functional atlas is 

largely lacking.  Although there are a few published papers reporting infant atlas/networks (24-27), the 

validity and consistency of these results at different ages are yet to be determined.  To a large extent, this 

lack of a widely accepted infant brain functional atlas is not surprising since it is almost impossible to 

conduct task-based functional MRI in infants with the exception of basic brain functions (28-38).  Thus, 

adopting adult brain atlases and warping them to infant brains has been widely used in current pediatric 
studies (39-41).  In this study, we adopted this approach to provide insights into the developmental 

trajectories of neural flexibility in different brain functional networks during early infancy based on the 

Shen268 atlas (20).  

 

Since an atlas was warped to the infant brains, ROI parcel homogeneity may vary across subjects and 

ages.  To further determine if our results could be affected by ROI parcel homogeneity, we adopted the 

definition of parcel homogeneity proposed by Gordon et al. (42) and calculated the parcel homogeneity of 

each ROI for each subject at different ages.  For each ROI, we computed voxel-wise whole brain 
connectivity patterns for all voxels within a given ROI.  We then used principal component analysis to 

determine the percent of total variances of all connectivity patterns that can be explained by the largest 

principal component.  As discussed by Gordon et al. (42), smaller parcels would be intrinsically more 

homogeneous.  In our study, brain atlas was deformed back to the subject space, yielding different ROI 

sizes for the same ROI at different subjects/ages.  In order to minimize the effect of the ROI size, we 

regressed the effect of ROI size from raw homogeneity and used residuals to generate homogeneity 

trajectories for each ROI.  Fig. S2a shows the typical homogeneity trajectory for a given brain region, 
demonstrating no clear age effects during the first two years of life. The blue line is the best fit for the 

homogeneity trajectory from birth to 2 years of age. Besides, we found no age effects for the measured 

homogeneity across all the regions (Fig. S2b, LME model, F-test, 𝑝 > 0.05, FDR corrected), suggesting 

that regional homogeneity is consistent across all ages. 

 

Nine resting-state functional networks were included in this study, including the medial frontal network, 

frontoparietal network, default network, subcortical network, motor network, visual I network, visual II 

network, visual association network, and cerebellum network.  These networks were initially defined using 

the Shen268 atlas (20).  However, owing to the observed low flexibility pattern in the 

cerebellum/brainstem regions, as well as findings from the Smith networks (43), we excluded 
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cerebellum/brainstem regions from the predefined networks of the Shen268 atlas and created a 

cerebellum network.  Additional networks, including the salience network, dorsal attention network, 

ventral attention network, working memory network, and inhibition network were defined based on 

references (44-48).  The anatomical locations of each network are summarized in Fig. S3. 
 

While the definitions of these functional networks in our study may not be standard for infants, we believe 

that the brain regions comprising the basic functional networks should be appropriate.  In particular, a 

large body of evidence has consistently demonstrated that the topology and behaviors of basic brain 

functions mature rapidly during the first year of life (49-54).  In contrast, the definitions of higher-order 

functional networks may be questionable since integration of these higher order networks may not be 

completed during early infancy.  Nevertheless, some published reports have demonstrated the presence 

of higher order brain functional networks in infants.  Doria et al. (55) studied 70 preterm infants (born 
between 29 and 43 weeks of postmenstrual age) using resting functional MRI.  A wide array of brain 

functional networks using similar definitions as those in our manuscript was characterized using both ICA 

as well as seed-based approaches.  They reported that most of the brain functional networks reported in 

adults are also recognizable in preterm infants, although they are mostly fragmented at 30wks of 

postmenstrual age.  By term, most of the networks are integrated.  Gao et al. (56) focused on the 

development of the default mode network in typically developing children 0-2 years of age.  Similarly, they 

reported that a primitive and incomplete default mode network is presence at birth.  By 2 years old, an 

adult-like default mode network is present.  Since these results were obtained at a resting state, one 
could argue that the presence of adult-like resting functional networks during early infancy may not 

represent that the brain functions associated with these networks are already online during early infancy.  

Dehaene-Lambert et al. (57) used task based functional MR in awake infants to evaluate how infants (3 

months old) reacted to their native language.  Specifically, they reported that left lateralized frontal 

regions similar to adults exhibited activation to normal but not reversed speech.  Additional activation in 

the right prefrontal cortex was observed as well.  They thus concluded, “precursors of adult cortical 

language areas are already active in infants, well before the onset of speech production.”  Similarly, 
Grossmann et al. (58) used NIRS to study the development of voice processing in infants from birth to 1yr 

old.  They reported that a greater response was observed in bilateral superior temporal cortex with human 

voice than that of non-vocal sound, and voice sensitive brain functions emerged between 4 and 7 months 

of age.  Additional studies using NIRS suggest the presence of higher order brain functions including but 

not limited to recognizing mother’s faces in infants (59), auditory perception (60), motor and oculomotor 

planning (61), and processing social information (62).  In summary, while there is not a widely accepted 

infant brain functional atlas and the use of adult functional atlases for infant applications may not be 

optimal, numerous reported results appear to provide some evidence in support of the use of adult brain 
function network definitions in the absence of a better solution.    
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Finally, to further demonstrate the robustness of our results, AAL (63) and CC200 (21) atlases were 

further applied. The numbers of ROI are 90 and 200 for the AAL and CC200 atlases, respectively.  

Therefore, in addition to evaluate the robustness of our results regarding the choice of atlases, the use of 

three different atlases also enables us to evaluate effects of different ROI numbers - 90, 200, and 268.  
The spatiotemporal distribution of brain neural flexibility was shown in Fig. S4a-S4b. The overall patterns 

of neural flexibility remain consistent with those using the Shen268 atlas as reported in the main body of 

the paper. (Fig. S4c-S4d). In addition, we quantitatively compared the voxel-wise distributions of neural 

flexibility between Shen268 vs AAL as well as Shen268 vs CC200, respectively (Fig. S4e). Specifically, 

we labeled each voxel with the neural flexibility value of its ROI assignment, and then calculated the 

spatial similarity (i.e. Pearson’s correlation coefficient) of the overlapped voxels between atlases. Our 

results indicated the spatial distributions of neural flexibility using AAL and CC200 are significantly 

correlated with that using the Shen268 atlas (Pearson’s correlation t-test, 𝑝 < 10!"#, FDR corrected).  

 

 

SI-4: Definition of the flexible club 
 
In the main text, we defined brain flexible club as the regions with neural flexibility that are significantly 
higher than the whole brain averaged flexibility.  Specifically, we proposed a statistical method to evaluate 

whether brain regional flexibility is significantly different than that of the whole brain averaged flexibility.  

For each subject, we calculated the whole brain averaged flexibility.  For each region at a given age 

group, we performed group comparisons of regional flexibility and whole brain averaged flexibility using a 

paired t-test.  Brain regions were then separated into three groups based on the statistical results (𝑝 <

0.05, uncorrected) (Fig. S5a): (1) regions with significantly higher flexibility than that of the whole brain 

(red), (2) regions with similar flexibility to that of the whole brain (orange), (3) regions with significantly 

lower flexibility than that of the whole brain (blue).  The number of regions exhibit significantly 

higher/lower flexibility than that of the whole brain is summarized in the Table S1.  The brain regions with 

significantly higher/lower neural flexibility than that of the whole brain were shown in Fig. 4 and Fig. S5b, 

respectively.  

 

 
SI-5: Model selection for fitting longitudinal developmental trajectories  
 
To evaluate the developmental trajectories of neural flexibility, we compared the results using a linear 

mixed-effects model (LME) and a Generalized Addictive Mixed Model (GAMM), separately.  A Linear 

Mixed-Effects model was fit to the data with a random intercept for each subject.  A Generalized Addictive 

Mixed Model was also used to delineate the longitudinally developmental trajectory of brain dynamic 

features.  The model included age as a covariate and subject ID as the random intercept: 
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𝑌$(𝑡) = 𝑓(𝑡) + 𝛼$ + 𝑒$(𝑡) 

where 𝑌$(𝑡) is the brain feature for the 𝑖%& subject at time 𝑡,  𝛼$ is the 𝑖%& random intercept effect and 𝑒$(𝑡) 

is the random noise.  Specifically, 𝛼$ 	(𝑖 = 1,2, … , 𝑛) are independent and identically distributed (i.i.d), with 

a normal distribution 𝑁(0, 𝜎'(), and 𝑒$(𝑡)(𝑖 = 1,2, … , 𝑛, 𝑡 < 𝑇) are i.i.d. normally distributed with  𝑁(0, 𝜎)().  

Here, 𝑓(𝑡), 𝜎', 𝜎) are unknown parameters.  With the observations of brain features at different ages, we 

obtained an estimate 𝑓:(𝑡) of 𝑓(𝑡) by fitting the nonparametric parameters with cubic spline, where 

smoothing parameters were chosen to minimize the Generalized Cross Validation (GCV) errors (64).  

Standard deviation and 95% confidence intervals of the fixed effect were calculated through the Bayesian 

posterior covariance matrix (65).  The model curve fitting plots used the R package mgcv and itsadug 

(66).  

 
By comparing the trajectories and GCV errors between the GAMM and LME models in network fitting 

(Table S2), though the AIC value of GAMM was always lower than that of LME, the developmental neural 

flexibility trajectories of the whole brain, medial frontal network, default network, subcortical network, 

motor network, visual II network, visual association network, cerebellum network, ventral attention 

network, inhibition network are almost identical to the LME fitting (Fig. S6a).  The GCV difference is less 

than 2%, suggesting that the LME and GAMM models perform similarly for fitting these trajectories.  

However, the GCV differences are relatively larger in the frontoparietal network, visual I network, salience 
network, dorsal attention network, and working memory network.  Though the trajectories of GAMM 

model show slight differences when compared to that obtained using the LME model in these parameters, 

the GCV difference is still low (i.e. less than 5%) and the LME model could still represent the general 

developmental patterns.  Finally, since the LME model provides quantitative measure of the slopes to 

represent the developmental paces but not the GAMM model, we have chosen the LME model in our 

network-level analysis. 

 

Additionally, the GCV differences in ROI fitting models also exhibit similar pattern, with 256/268 regions 
showing GCV difference less than 5% (Fig. S6c), suggesting LME could represent the general 

developmental patterns for ROI-level analysis. 

 

 

SI-6: Quantifying brain functional maturation using rsfMRI: neural flexibility vs connectivity 
strength 
 
RsfMRI has been utilized to characterize early brain functional development (50, 67, 68).  Specifically, the 

mean connectivity strength within selected brain functional networks are commonly employed to quantify 

the maturation of these functional networks.  To compare the potential differences between neural 

flexibility and connectivity strengths for characterizing brain functional development during early infancy, 
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the connectivity strengths of nine commonly reported adult functional networks and five cognitive flexibility 

associated networks were calculated and the developmental trajectories are shown in Fig. S7 (red lines).   

Bassett et al. (16) observed that changes in neural flexibility were associated with learning a new motor 

skill.  For early brain development, learning via external environmental stimuli plays a vital role in brain 
functional maturation and specialization.  Therefore, we proposed that the measure of neural flexibility 

could provide a more direct assessment of brain functional maturation than that of connectivity strength.  

Indeed, infants’ gross and fine motor abilities develop gradually during the first two years of life, as babies 

start to roll over, sit, stand, crawl and walk gradually.  Our finding of increased neural flexibility in motor 

associated regions may more accurately reflect the maturation of motor skills when compared to that 

reported using functional connectivity strengths, which show an age related reduction (67).  Along the 

same vein, the neural flexibility trajectories of higher-order brain functional networks also show continuing 

increases over the first two years of life.  In contrast, the connectivity strengths of the higher-order 
functional networks are observed with a stable/decreased pattern during the first two years of life.  While 

it was previously suggested that higher-order brain functions do not emerge until school age or beyond, 

more recent evidence has suggested the presence of rudimentary higher-order brain functions, including 

processing linguistic information (57, 69), attention (70), memory processing (71, 72), processing social 

interaction (73) and executive functions (74).  Therefore, our results appear to be consistent with these 

recent findings, with a continuing increase of brain neural flexibility during the first two years of life. 

 

Finally, the primary visual network exhibits a temporally stable degree of neural flexibility, while visual II 
and visual association networks show a slow but increasing neural flexibility during the first two years of 

life.  In contrast, visual I, visual II and visual association networks all exhibit a rapid increase in 

connectivity strength, especially in the first 6 months of age.  One could argue that the increased 

connectivity strengths during the first 6 months of life represent active visual maturation.  While it has 

been well documented that visual function matures earlier than other brain functions during infancy with 

the primary visual function maturing first, followed by VII and visual association functions.  The measures 

of neural flexibility appear to be more consistent with these previously reported results with a stable 
trajectory for visual I while visual II and visual association exhibit slightly increased neural flexibility with 

age.  

 

In summary, our results demonstrate that the trajectories of brain neural flexibility at both the network and 

regional levels may be indicative of brain functional maturation during early brain development.  

Functional networks implicated to mature early show a relatively low change in flexibility over the first two 

years of life.  In contrast, less mature and/or emerging functional networks exhibit continuing increase in 

flexibility during this time period. 
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SI-7: The relations between brain neural flexibility and behavioral outcomes 
 
The correlation between neural flexibility and GCA scores was evaluated at brain regional and network 

level, respectively.  Brain networks and regions with a significant correlation (Pearson’s correlation T-test, 

𝑝 < 0.05, uncorrected) were shown in Fig. S8. Visual regions were found to be negatively correlated with 

GCA in most of the age groups.  In contrast, some regions associated with cognitive flexibility were 

positively associated with GCA scores, including the inferior temporal gyrus at month 12, part of superior 
temporal gyrus at month 18, and the temporoparietal junction at month 24.  However, due to the limited 

sample sizes, only one region in the calcarine at birth did pass the false discovery rate correction. 

 

 

SI-8: Adolescent and adult datasets 
 
Eight-seven and seventy-six subjects from the Adolescent Brain Cognitive Development Dataset (75) 

(ABCD) and the Human Connectome Project (76) (HCP), respectively, were included in this manuscript to 
compare results obtained from pediatric subjects.  

 

ABCD subjects were scanned using 3T MR scanners (Siemens Prisma).  T1/T2-weighted images, as well 

as resting-state fMRI images were acquired.  Resting-state fMRI images were acquired with eyes open 

and passive viewing of a cross hair.  T1-weighted images were acquired with a voxel size of 1 × 1 ×

1	𝑚𝑚* (Repetition time =2500 ms, echo time =2.88 ms).  T2-weighted images were acquired with a voxel 

size of 1 × 1 × 1	𝑚𝑚* (Repetition time =3200 ms, echo time =565 ms).  fMRI images were acquired with a 

voxel size of 2.4 × 2.4 × 2.4	𝑚𝑚* (repetition time=800 ms, echo time=30 ms, 383 volumes). 

 

HCP subjects were scanned using 3T MR scanners (Siemens Skyra).  T1/T2-weighted structural images 
and resting-state fMRI images (eyes open and fixation on a crosshair) were used to perform analysis.  T1-

weighted images were acquired with a voxel size of 0.7 × 0.7 × 0.7	𝑚𝑚* (Repetition time =2400 ms, echo 

time =2.14 ms).  T2-weighted images were acquired with a voxel size of 0.7 × 0.7 × 0.7	𝑚𝑚* (Repetition 

time =3200 ms, echo time =565 ms).  fMRI images were acquired with a voxel size of 2 × 2 × 2	𝑚𝑚* 

(repetition time=720 ms, echo time=33.1 ms, 1200 volumes). 

 
An identical preprocessing pipeline was applied to both ABCD and HCP datasets.  The sliding window 

widths were set as 75 volumes for ABCD and 83 volumes for HCP, to keep the window duration time 

close to 60 seconds, similar to our study.  The step size was set as 1 volume. 

 

 



 11 

SI-9: Effects of the resolution and interlayer coupling parameters 
 
The proper use of any community detection method necessarily encounters questions about the 

resolution scale at which communities are identified and whether meaningful communities at other scales 
are not detected (16, 77).  By considering multiple values of the resolution parameter, we may reveal 

different scales of community numbers (78, 79), i.e. smaller gamma typically results in larger modules 

whereas larger gamma yields smaller modules.  In the multilayer situation, different strengths of the inter-

layer coupling parameter also influences the detected dynamic structures (80).  In order to test the 

stability of neural flexibility patterns across different choices of resolution and interlayer coupling 

parameters, we considered resolution (gamma) parameters from 0.2 to 2 and coupling (omega) 

parameters from 0.2 to 2. 

 
The absolute values of neural flexibility depend on the choice of gamma and omega.  However, similar 

developmental patterns were obtained with a wide range of parameters (gamma from 0.6 to 2, omega 

from 0.2 to 2) (Fig. S9).  In addition, we compared the spatial similarity of the distribution of brain neural 

flexibility, by calculating the Pearson’s correlation of neural flexibility across ROIs as calculated with 

different gamma and omega pairs. A high spatial similarity (𝑟 > 0.9) of the distribution of neural flexibility 

within each age group was revealed, indicating a highly stable spatial distribution pattern of neural 

flexibility across different community detection parameters.  

 

 

SI-10: Effects of the window length 
 
To construct multilayer networks using a sliding window approach, it is necessary to choose a window 

length.  If the window length is too long, the ability to estimate neural flexibility will be compromised.  

Conversely, if the window length is too short, the statistical power for estimating functional connectivity 

will be reduced.  In the main text, we reported the results using a window length of 60 seconds, which is 

well within the range of window lengths (i.e. 40s – 100s) suggested in several previously published 

studies (9-13).  Nevertheless, it is essential to determine if our conclusions would be altered should a 

different window length is used.  To this end, we conducted additional data analyses using two different 
window lengths, 40s and 80s, respectively.  The new results are provided in the Fig. S10.  Even though 

the absolute values of neural flexibility are changed using different window lengths, the developmental 

patterns of neural flexibility remain similar to those using a window length of 60 seconds.  Furthermore, 

we compared the spatial similarity of the distribution of brain neural flexibility, by calculating the Pearson’s 

correlation of neural flexibility across ROIs as calculated with different window lengths.  A spatial similarity 

over 0.9 was obtained using these different window lengths, indicating that the spatial patterns of neural 

flexibility are highly similar. 
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SI-11: Multilayer network model: positive-only and signed models 
 
We adopted the quality function Q as proposed by Mucha et al. (80) in our study, which has been used in 

several neuroscience studies to evaluate multilayer networks (16-18, 81, 82).  The quality function is: 

𝑄 =
1
2𝜇CDE𝐴$+, − 𝛾,

𝑘$,𝑘+,
2𝑚,

J𝛿,- + 𝛿$+𝜔+,-M
$+,-

𝛿N𝑔$,, 𝑔+-P 

where the adjacency matrix of layer 𝑠 has components 𝐴$+,.  Note the layer here refers to an adjacency 

matrix of a given sliding window.  The resolution parameter of layer 𝑠 is 𝛾,; 𝑔$, and 𝑔+- are the community 

assignments of node 𝑖 in layer 𝑠 and node 𝑗 in layer 𝑟, respectively; 𝜔+,- is the inter-layer coupling 

strength parameter connecting node 𝑗 in layers 𝑟 and 𝑠; 𝜇 is the total edge weight in the network, 

calculated as 𝜇 = "
(
∑ 𝜅+-+- ; 𝑘+, = ∑ 𝐴$+,$  is the intra-layer strength of node 𝑗 in layer 𝑠; the inter-layer 

strength of node 𝑗 in layer 𝑠 is 𝑐+, = ∑ 𝜔+,-- ; the strength of node 𝑗 in layer 𝑠 is 𝜅+, = 𝑘+, + 𝑐+,; and 𝑚, is the 

total edge weight in layer 𝑠, defined as 𝑚, =
"
(
∑ 𝐴$+,$+ .  We kept resolution parameters constant across 

layers (𝛾 = 𝛾,) and the same weight 𝜔 for all inter-layer connections that were present. 

 

This model limits the components 𝐴$+, to be positive only.  Thus, in our study, we adopted a widely used 

approach by taking the absolute values of the connectivity strengths (83-88).  In so doing, our results 

consider all connections equally independent of the signs.  In order to remove weak and random 
connections, a p-value for each correlation coefficient was estimated using the MATLAB function corrcoef 

and only connections significantly different from zero were retained (Pearson’s correlation T-test, 𝑝 <

0.05, FDR corrected).  To further test the robustness of our results, we had re-evaluated brain neural 

flexibility by only using positive values, an approach that has also been employed in the several 

previously published studies (41, 77, 89).  The same resolution and coupling parameters as those using 

the absolute values of connectivity were used.  Although the values of the estimated neural flexibility were 
reduced when only positive connections were used when compared to the use of absolute connectivity 

(Fig. S11), the results showed consistent developmental trajectories as those reported in our manuscript.  

Furthermore, high spatial similarity was obtained (𝑟 > 0.77), suggesting a high spatial similarity of brain 

neural flexibility between using absolute and positive values. 

 

In contrast, the biological meanings of negative correlations remains elusive (90).  In particular, it has 

been argued that the required pre-processing steps of resting functional MR may have led to the 

presence of negative correlations.  Nevertheless, to the best of our knowledge, a consensus regarding 

the biological meaning of negative correlations remains lacking (91, 92).  Nevertheless, we have 

evaluated the potential impacts on the results if the signs of the connection are considered.  To further 

evaluate the effects of the negative correlations, we modified the quality function appropriately as: 
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𝑄± =
1

2𝜇/ + 2𝜇!CVW𝐴$+, − E𝛾,/
𝑘$,/𝑘+,/

2𝑚,
/ − 𝛾,!

𝑘$,!𝑘+,!

2𝑚,
! JX𝛿,- + 𝛿$+𝜔+,-Y 𝛿N𝑔$,, 𝑔+-P

$+,-

 

where the definitions of these parameters are the same as the above, with positive and negative signs to 

indicate the positive and negative elements of 𝐴$+,, respectively.  In contrast to the quality equation in 

which signs of connectivity are not considered, three parameters need to be determined: two resolution 

parameters and one coupling parameter.  For consistency, we set these parameters to unity. The 

resulting developmental trajectories when signs were considered are mostly consistent with the results 

using absolute values of connectivity (Fig. S11).  Nevertheless, the spatial similarity was reduced, 

suggesting some discrepancies in results with and without considering signs of the connectivity.  Although 
several factors may potentially contribute to these observed differences, the differences of the multilayer 

modularity model and the additional resolution parameter (𝛾,!) specifically for the negative values are 

highly plausibly contributing to the observed differences.  Specifically, 𝛾,! was set to be identical to 𝛾,/ 

which may not be necessarily valid (93).  More evaluation will be needed to determine the choices of 𝛾,! 

and 𝛾,/, which is beyond the scope of our study.   

 

 

SI-12: Limitations 
 
There are several limitations in our study.  First, changes of brain tissue properties during early infancy 

may lead to MR signal changes.  Specifically, the dehydration processes of the human brain tissue after 

birth leads to T1 and T2 changes (94), which in turn will affect tissue contrast in T1-weighted (T1w) and 
T2-weighted (T2w) images.  One of the most widely recognized examples is the contrast reversal 

between gray and white matter in T1w images during the first year of life; the white matter exhibits a lower 

signal up to 6-9 months old and the signal becomes higher after 9 months old than that of gray matter.  

This temporal reversal of gray/white contrast could affect our ability to accurately co-register resting 

functional MR images since T1w images were used for registration across subjects and ages.  Our team 

has developed novel image analysis approaches mitigating the effects of contrast reversal in T1w images 

during infancy, minimizing confounding factors resulting from inaccurate registration (95).  

 
In the context of fMRI, changes of T2* could potentially affect the sensitivity of BOLD contrast.  It has 

been reported that the infant brain has a longer T2* when compared to adults (96-98), suggesting that a 

longer TE can be used for the gradient echo EPI sequence.  However, the infant brain T2* continues to 

decrease with age and becomes similar to that of adult brains around 9 months of age (97).  Furthermore, 

reported increased T2* in the infant brain is not spatially homogeneous but rather anatomical location 

dependent.  Therefore, although it is possible to potentially adjust TE of the EPI sequence for infants 

younger than 9 months old, an optimal TE for the entire brain is unlikely. In addition, T2* also depends on 
the spatial resolution of images with a larger voxel leading to a shorter T2* when compared to measured 
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using a smaller voxel.  Finally, adjusting TE based on the age of the infants could lead to additional 

biases.  Therefore, we have used a fixed TE for our study.  It is possible that sensitivity of detecting BOLD 

signal may be lower for infants younger than 9 months of age.  However, it should not affect the overall 

conclusions of our results as evident from the trajectories of the measured neural flexibility.   
 

Second, the number of scanning volumes (i.e. 150 volumes, 5 minutes) is less than that proposed by the 

Human Connectome Protocol (76, 99).  While a longer acquisition time and a larger volume of rsfMRI are 

clearly desirable, since all of the subjects were imaged during natural sleep without sedation, the choice 

of imaging volumes (duration) reflected a compromise on the duration of resting functional MR in order to 

maximize the success rate of obtaining usable resting fMRI in imaging typically developing children 

without sedation. 

 
Finally, information on sleep stages during the acquisition of resting fMRI was not available.  This 

limitation is not unique to our study.  In fact, all of the functional MRI datasets focusing on early brain 

development do not have sleep information owing to several practical difficulties of imaging non-sedated 

typically developing children.  In particular, MR is highly sensitive to motion artifacts.  Fitting addition EEG 

caps on infants/toddlers could make it difficult for the participants to fall asleep and will be more likely to 

wake-up and move during MR imaging sessions, leading to decreased success rates of obtaining usable 

MR images.  In addition, although MR compatible EEG is available, it has not been widely used to 

technical difficulties.  Therefore, the approaches employed in our study although not optimal are the best 
that one could do without a high failure rate for acquiring usable images.   

 

Some results from adult studies, however, could provide some insights into how sleep could affect brain 

functional connectivity.  Although results differ among some reported results, including the extent of 

BOLD signal fluctuation, connection strengths, and spatial extent, between wakefulness and sleep, 

similar brain functional networks are consistently observed independent of consciousness status.  

Horovitz et al. (100) conducted a study aiming to determine how varying levels of consciousness, 
including resting wakefulness and light sleep, affect resting functional connectivity.  Concurrently acquired 

EEG was employed to determine the depth of sleep.  An increased BOLD fluctuation was observed in 

multiple brain regions, including the visual cortex and regions in default mode network during sleep when 

compared to wakefulness.  The increased fluctuation in the visual cortex correlates with the depth of 

sleep.  In contrast, spatial topologies of the visual cortex and DMN are comparable between wakefulness 

and sleep.  A different study by Horovitz et al. (101) further reported a reduced involvement of brain 

regions in the frontal lobe of the default mode network during natural sleep.  However, these results 

compared a wakefulness state and sleep.  Since all of our subjects were at sleep, the potential 
differences of functional connectivity arising from different stages of sleep need to be discussed.  It is 

reasonable to assume that different subjects were at different stages of sleep during the acquisition of 
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resting functional MR.  As a result, the effects of different sleep stages from subjects to subjects could be 

averaged out for group comparisons.  Furthermore, the sleep pattern of infants change around 3-4 

months of age, from two stages (i.e. quite stage, active stage) to adult-like (102).  In this case, if different 

stages of sleep during acquisition could impact on our results, we should expect to find some 
discontinuities around this age which is not observed; our reported developmental patterns are consistent 

during this age.  Finally, although a recent EEG study reported that functional connectivity differs between 

quiet sleep and active sleep among newborns (103), this study recorded EEG signals for a much longer 

duration (40-90 mins) than our rsfMRI scanning (5 mins) to cover active and quiet sleep.  In fact, for a 

typical 1-hour sleep cycle of a newborn, the sleeping duration for one state may last up to 30 minutes, 

which is much longer than our scanning time, suggesting that it is plausible that rsfMRI data may be 

within a single sleeping state. 
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Fig. S1. Neural flexibility changes between every two adjacent age groups (two sample T-test, 𝑝 < 0.05, 
uncorrected). (a)  Brain regions exhibit statistical changes of neural flexibility between two contiguous age 
groups (𝑝 < 0.05, uncorrected). (b) Number of brain regions changing neural flexibility between two 
adjacent age groups summarized by brain lobes. The developmental pattern separates into four age 
periods (month 00 to 03 (blue); month 03 to 12 (green); month 12 to 18 (gray); and month 18 to 24 
(brown)). 
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Fig. S2. (a) A representative example of homogeneity trajectory for a given brain region, demonstrating 
no clear age effects.  The blue line is the LME fitted trajectory. (b) The FDR corrected p-values (LME 
model, F-test) for all the ROIs. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) (b)
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Fig. S3. The anatomical regions of each brain network employed in our study. 

 
 
 
 
 

Medial Frontal Frontoparietal Default

Subcortical Motor Visual I

Visual II Visual association

Cerebellum

Salience Dorsal attention Ventral attention

Working Memory Inhibition
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Fig. S4. Spatiotemporal distributions of regional neural flexibility using the AAL atlas (a) and the CC200 
atlas (b), respectively. The developmental trajectories of the whole brain neural flexibility using the AAL 
atlas (c) (LME model, F-test, F(1,201)=11.2, 𝑝 = 0.0009) and the CC200 atlas (d) (LME model, F-test, 
F(1,201)=18.13, 𝑝 = 3.15 × 10!0), respectively.  (e) Voxel-wise spatial similarity between Shen268 and 
AAL atlases, as well as between Shen268 and CC200 atlases among different ages (significance level: ∗
𝑝 < 10!"#, FDR corrected). 
 

(a) Spatiotemporal distribution of brain neural flexibility (AAL)

Slope
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Fig. S5.  (a) Ranked regional flexibility, which separates into three groups: red/blue indicate significantly 
higher/lower neural flexibility when compared to the whole brain neural flexibility, respectively; and orange 
indicates regions that are not significantly different from that of the whole brain, 𝑝 < 0.05, uncorrected). 
(b) Spatial distribution of brain regions with significantly lower flexibility than that of the whole brain (𝑝 <
0.05, uncorrected).   
 
 
 
 
 
 

(a)

(b)
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Fig. S6. Developmental model selection between LME and GAMM. (a) Developmental trajectories of 
neural flexibility using both the LME and GAMM models for the whole brain, nine resting-state functional 
networks, and five cognitive flexibility related networks. (b) The developmental slopes of the neural 
flexibility of whole brain and different brain networks (LME model), sorted by the slopes. (C) The GCV 
error difference of LME and GAMM model across difference ROIs. 
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Fig. S7. The developmental trajectories of network flexibility and functional connectivity. Blue lines 
represent flexibility developmental trajectories (𝑝1$,2 = 1, 𝑝1$,22 = 0.48, 𝑝1$,3,,45. = 0.13, 𝑝74%4- = 0.003, 
𝑝5)-)8)99:7 = 0.015 , 𝑝;<= = 4.61 × 10!0, 𝑝<>= = 0.00015 , 𝑝?;= = 8.66 × 10!0,  𝑝@:854-%$5A9 = 3.44 × 10!#,  
𝑝@A9$)B5) = 8.24 × 10!C, 𝑝?4-,A93%%)B. = 0.0005, 𝑝1)B%-A93%%)B. = 0.013, 𝑝D4-E$BF;)74-G = 8.86 × 10!C, 
𝑝2B&$8$%$4B = 0.022, FDR corrected). Red lines represent connectivity developmental trajectories (𝑝1$,2 =
0.0013, 𝑝1$,22 = 3.2 × 10!"(, 𝑝1$,3,,45. = 8.4 × 10!0, 𝑝74%4- = 2.02 × 10!#, 𝑝5)-)8)99:7 = 1 , 𝑝;<= =
0.17, 𝑝<>= = 0.81 , 𝑝?;= = 2.41,  𝑝@:854-%$5A9 = 0.0002,  𝑝@A9$)B5) = 9.6 × 10!#, 𝑝?4-,A93%%)B. = 0.4, 
𝑝1)B%-A93%%)B. = 0.0012, 𝑝D4-E$BF;)74-G = 1.09 × 10!#, 𝑝2B&$8$%$4B = 2.78 × 10!#, FDR corrected). 
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Fig. S8. Prediction of later behavioral performance using neural flexibility. (a) Visual I network at month 
18 was correlated with the GCA scores (Pearson’s correlation T-test, t(20)=-2.08, 𝑝 = 0.019, uncorrected) 
at 5/6 years old. (b) Brain region correlate with the GCA scores at 5/6 years old (Pearson’s correlation T-
test, 𝑝 < 0.05, uncorrected). 
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Fig. S9. Effects of the resolution and coupling parameters. (a) Flexibility trajectory with Omega equals to 
1 while Gamma varies from 0.2 to 2. (b) Flexibility trajectories with Gamma equals to 1 while varying 
Omega from 0.2 to 2. (c) Spatial similarity of the regional distribution of brain neural flexibility at different 
Gammas, Omegas and age groups. 
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Fig. S10. (a) The effects of window length on neural flexibility. The developmental trajectories of a 
window length of 40s (LME model, F-test, F(1,201)=12.66, 𝑝 = 4.64 × 10!H), (c) 60s (LME model, F-test, 
F(1,201)=25.13, 𝑝 = 1.17 × 10!#) and (d) 80s (LME model, F-test, F(1,201)=18.71, 𝑝 = 2.39 × 10!0). (e) 
Spatial similarity of the distribution of brain neural flexibility (60s vs 40s, 60s vs 80s) among different age 
groups. 
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Fig. S11. Comparison of using absolute values, positive-only values and signed values of connectivity. 
(a) The estimated neural flexibility when absolute values, positive-only values, signed values of 
connectivity were employed, respectively. (b) The developmental trajectory of using absolute values of 
connectivity (LME model, F-test, F(1,201)=25.13, 𝑝 = 1.17 × 10!#). (c) The developmental trajectory of 
using positive-only connectivity (LME model, F-test, F(1,201)=17.25, 𝑝 = 4.83 × 10!0). (d) The 
developmental trajectory of using signed values of connectivity (LME model, F-test, F(1,201)=5.9, 𝑝 =
0.016). (e) Spatial similarity of the distribution of brain neural flexibility (absolute vs positive only, red and 
absolute vs signed, blue) among different age groups. 
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Fig. S12. Comparison of flexible club, functional hub and diverse club at different age group, as well as 
different sparsity choice: (a) 5%, (b) 10%, (c) 15% and (d) 20%. Comparison includes spatial overlapping 
ratios across brain flexible club, functional hub and diverse club, statistical comparisons of the mean 
dynamic connectivity strengths, standard deviations of dynamic connectivity, among the flexible club, 
functional hub and diverse club, as well as the impacts on global efficiency after removing flexible club, 
functional hub and diverse club. 
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Table S1. Summary of regions with significantly higher/lower neural flexibility than that of the whole brain 

 Month 00 Month 03 Month 06 Month 09 Month 12 Month 18 Month 24 
Higher than 
whole brain 57 55 54 54 66 43 59 

Lower than 
whole brain 44 45 50 47 46 45 48 

 

 

 
Table S2. Comparisons between GAMM and LME 

  GAMM  LME  Difference 

Parameter  AIC Rsquare GCV  AIC Rsquare GCV  GCV 

Whole Brain  -1422.3349 0.22456559 5.31E-05  -1412.958 0.23211518 5.37E-05  1.12% 
Medial Frontal 

Network 
 -1335.1269 0.18376478 8.13E-05  -1328.2243 0.19385009 8.24E-05  1.34% 

Frontoparietal 
Network 

 -1301.0789 0.21404696 9.67E-05  -1288.8818 0.18980874 9.97E-05  3.01% 

Default 
Network 

 -1301.0078 0.18762543 9.64E-05  -1293.7371 0.18919057 9.76E-05  1.23% 

Subcortical 
Network 

 -1347.453 0.2405714 7.69E-05  -1337.3176 0.24686581 7.79E-05  1.28% 

Motor Network  -1315.5924 0.11823484 8.93E-05  -1310.976 0.1231795 9.07E-05  1.54% 
Visual I 
network 

 -1225.1044 0.18739155 0.00014143  -1207.439 0.12679354 0.00014871  4.90% 

Visual II 
Network 

 -1109.3427 0.00633059 0.00024546  -1107.3349 0.01080285 0.00024547  0.00% 

Visual 
Association 

Network 
 -1258.1619 0.14138781 0.00011935  -1249.9411 0.13436138 0.00012119  1.52% 

Cerebellum 
Network 

 -1196.1418 0.11174869 0.00016081  -1191.2728 0.11445419 0.00016308  1.39% 

Salience 
Network 

 -1184.2196 0.16995432 0.00016997  -1179.9917 0.16454121 0.00017469  2.70% 

Dorsal 
Attention 
Network 

 -1181.36 0.22799297 0.00017503  -1167.3451 0.19381532 0.00018086  3.22% 

Ventral 
Attention 
Network 

 -1134.2109 0.20091478 0.0002203  -1122.45 0.20487582 0.00022281  1.13% 

Working 
Memory 
Network 

 -1267.7872 0.2921376 0.00011457  -1252.4132 0.27764675 0.00011734  2.37% 

Inhibition 
Network 

 -1145.4177 0.14636654 0.00020747  -1137.8915 0.14603929 0.00021031  1.35% 
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