Supplementary Information

MAC5, an RNA-binding protein, protects pri-miRNAs from SERRATE-dependent exoribonuclease activities

Shengjun Li15, Mu Li15, Kan Liu1, Huimin Zhang3, Shuxin Zhang4, Chi Zhang1, and Bin Yu1*

School of Biological Sciences & Center for Plant Science Innovation University of Nebraska-Lincoln, Lincoln, Nebraska 68588–0666, USA

² Current Address: Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Institute of Energy Technology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China

³Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Institute of Energy Technology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China

⁴State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China

⁵:Equal contribution

*: Corresponding author: Bin Yu Tel: 402-472-2125 Fax: 402-472-3139 Email: <u>byu3@unl.edu</u>

This PDF file contains

Figures S1-S10

Table S1

Figure S1. *MAC5A* and *MAC5B* act redundantly in miRNA accumulation. a and b, Phenotypes of 14d-old seedlings (a) and inflorescences (b). Bar = 1 cm. White arrow indicates the clustered inflorescence architecture. c, The abundance of miR167a and miR164a in the indicated plants detected by Quantitative RT-PCR (qRT-PCR). The values in Col-0 were set as 1. ** P<0.01 by student's *t* test compared with *mac5a-2* value. d, The abundance of miRNA targets in the Col-0 and *mac5a-2*. The values in Col-0 were set as 1. * P<0.05 and ** P<0.01 by student's *t* test compared with Col-0 value. e, The abundance of *ARF6* and *CUC2* in the indicated plants detected by qRT-PCR. The values in Col-0 were set as 1. ** P<0.01 by student's *t* test compared with *mac5a-2* value. f, The abundance of pri-miR167a and pri-miR164a in the indicated plants detected by qRT-PCR. The values in Col-0 were set as 1. ** P<0.01 by student's *t* test compared with *mac5a-2* value. f, The abundance of pri-miR167a and pri-miR164a in the indicated plants detected by qRT-PCR. The values in Col-0 were set as 1. ** P<0.01 by student's *t* test compared with *mac5a-2* value. The values in Col-0 were set as 1. ** P<0.01 by student's *t* test compared with *mac5a-2* value. The values in Col-0 were set as 1. ** P<0.01 by student's *t* test compared with *mac5a-2* value.

Figure S2. Complementation of *mac5a.* **a**, MAC5A-GFP protein expression in two transgenic lines in the *mac5a-2* background detected by western blot. HSC70 serves as the loading control. **b**, The MAC5-GFP protein in the transgenic plants harboring *gMAC5A-GFP* detected by confocal microscopy. **c**, Detection of pri-miRNA expression levels in the complementary lines by qRT-PCR. The values in Col-0 were set as 1. ** P<0.01 by student's *t* test compared with *mac5a-2* value.

Figure S3. MAC5A does not influence the expression of several genes required for miRNA biogenesis. a, The transcript levels of genes involved in miRNA biogenesis detected by qRT- PCR. **b**, The protein levels of SE, DCL1, and HYL1. HSC70 serves as the loading control.

Figure S4. The interaction between MAC5A and SE in Arabidopsis. Total proteins were extracted in transgenic plants harboring *gMAC5A-GFP*. IP was performed using anti-GFP antibodies. After IP, SE and MAC5A-GFP proteins were detected by immunoblot using anti-SE and anti-GFP antibodies, respectively. NoAb means no antibody negative control.

Figure S5. The interaction between MAC5A with *MIR172b.* **a**, Phenotype of 4-week old seedlings of transgenic plants harboring *p35S::MYC-MAC5A* in the *mac5a-2* background. Bar: 1 cm. **b**, MYC-MAC5A protein expression in the transgenic *mac5a-2* harboring *p35S::MYC-MAC5A*. HSC70 serves as the loading control. **c**, Diagrams of various *MIR172b* transcripts used for RNA-binding assay. Gray boxes indicate the sequence from vectors. miR172b is shown in red; miR172b* is shown in blue.

Figure S6. MAC5 protects pri-miRNAs from 5'-to-3' degradation of pri-miRNAs. a, qRT-PCR analysis of the mRNA level of *RRP44* and *pri-miR167b* in the three transgenic lines. **b-d**, Phenotypes of 14d-old seedlings (**b**), first-pair true leaves (c), and petals (d) in the indicated plants. *mac5a-2* displays the leaf tooth phenotype in the margin marked by black arrows that is suppressed in *mac5a-2 xrn2-1* double mutant. **e**, Statistic analysis of petal length (L), petal width (W), and petal area (A) in the indicated plants. The values of Col-0 were set as 100. **f** and **g**, Relative abundance levels of mature miR156a, miR159a and miR167a and their targets *SPL9*, *MYB33* and *ARF6* detected by qRT-PCR in the indicated plants. **h**, Phenotype of 3-week old plants. **i**, Relative abundance levels of pri-miRNA in the indicated plants. * P<0.05 and ** P<0.01 by student's *t* test compared with *mac5a-2* value. Bars: 2 mm in **b-d**, 1 cm in h.

Figure S7. RNA decay analyses to determine the RNA stability. a, pri-miRNA half-life analysis in Col-0, *mac5a-2*, *xrn2-1* and *mac5a-2 xrn2-1*. **b**, pri-miRNA half-life analysis in Col-0, *mac5a-2*, *se-1*, and *mac5a-2 se-1*. **c**. pri-miRNA half-life analysis in Col-0, *mac5a-2*, *hyl1-2* and *mac5a-2 hyl1-2*. 7-day old seedlings were treated with 0.6 mM 3'-deoxyadenosine (Cordycepin, Sigma) at various times (0, 15, 30, 60, 90 and 120 minutes). qRT-PCR was performed to examine RNA abundances in the indicated plants. The values were normalized to the internal control (EIF4a) that is not affected by Cordycepin reagent. Values of time 0 were set as 1. Error bars indicate standard deviation of three technical replications.

Figure S8. Genetic analysis of *mac5a-2*, *xrn2-1*, and *xrn3-3*. **a**, Phenotypes of 4-week old plants. Bar: 1 cm. **b**, qRT-PCR analysis of the abundance of pri-miRNAs. pri-miRNA levels were normalized to those of UBQ5 and the values in wild-type were set as 1. Error bars indicate SD of three replicates.

Figure S10. Co-IP shows the interactions between SE and XRN2. XRN2-GFP and GFP were co-expressed with MYC-SE in *N. Benthamiana*. IP was performed using anti-GFP antibodies. MYC-SE, XRN2-GFP, and GFP were detected by immunoblot.

Name	Sequence	Application		
Primers for genotyping				
salk 142085LP	ATGGACATTCAGCACCTCTTG	mac5a-2		
salk_142085RP	TCTAAGCTATTTGGTTCCCGC			
GK 419F11LP	CAGCTTCAACACTAAGAAAC	mac5b-1		
GK_419F11RP	TAGAGTGTGGATCGAAACGG			
se-1F	TGCCCCTTTTCTGTTGTCTC	se-1		
se-1R	GGGTAATGGACTCATAGCACAGA			
hyl1-2F	AGTTCTCCCAGCGCTAATCTC	hyl1-2		
hyl1-2R	TTCTTGGAAATTGGATTGCAG			
salk_041148 LP	CTTGAGATCTGATGCGAAAGG	xrn2-1		
salk_041148 RP	GTCATCTCGTATCCGAGGAGG			
xrn3-3 LP	GCCTTCGATTTCAACAGGC	xrn3-3		
xrn3-3 RP	GAAATCGAACACAAATCCG			
xrn4-5 LP	GTTTCTTGGTTGTTGCAGCTC	xrn4-5		
xrn4-5 RP	TCATGACGAATTCCTTTGAGG			
LBa1	TGGTTCACGTAGTGGGCCATCG	T-DNA		
LB1	GCCTTTTCAGAAATGGATAAATAGCCTTGCTTCC	T-DNA		
Primers for constructs				
proMAC5A-1F	CACCCGGTTCCAATGTCACCGGCAG	MAC5A genomic		
		DNA		
		MAC5A genomic or		
MAC5Acds-1R	CTGAGACGAACCAGTAGCTGTA	CDS sequence		
MACSA de 1E		MAC5A CDS		
MACSAcds-IF		sequence		
XRN2cds-IF		XRN2 CDS sequence		
MAC5A 2E(Sel1)		RINZ CDS sequence		
$\frac{MAC5A-2P(Sal1)}{MAC5A-2P(Det1)}$		BiFC		
MAC5A 2E(Nat1)		MRP MAC5A		
MAC5A-3P(Not1)				
VDN2ada 1E		VDN2 CED		
XDN2cds-1P		XDN2-UFF XDN2 GED		
Primers for stem-loop P(AKIV2-UIT		
miR159a stemloon RT		stem_loon PCR		
mitersya stemioop ter	CAACTAGAGC	stem loop I CK		
miR159a stemloop	CGGCGGTTTGGATTGAAGGGA	stem-loop PCR		
forward		1		
	GTTGGCTCTGGTGCAGGGTCCGAGGTATTCGCACCAGAGC	stem-loop PCR		
miR161 stemloop RT	CAACACCCCG			
miR161 Forward	CGGCGG TGAAAGTGACTACAT	stem-loop PCR		
	GTTGGCTCTGGTGCAGGGTCCGAGGTATTCGCACCAGAGC	stem-loop PCR		
miR167a stem-loop RT	CA ACTAGATC			
miR167a Forward	GGCGTC TGAAGCTGCCAGCAT	stem-loop PCR		
miR169i stem-loop RT	GTTGGCTCTGGTGCAGGGTCCGAGGTATTCGCAC	stem-loop PCR		
	CAGAGCCAACCAGGCA			
miR169i forward	GGCGTC TAGCCAAGGATGACT	stem-loop PCR		
miR173 stem-loop RT	GTTGGCTCTGGTGCAGGGTCCGAGGTATTCGCAC	stem-loop PCR		
:D172 f		stan las DOD		
IIIIK1/3 IOrWard		stem-toop PCK		
UU SIEIII-IOOP KI	UIUUAUUUIUUAUUIIIIUUAUUAIIIUUAUAI	stem-toop PCK		

Table S1: DNA oligos used in this study.

U6 forward	GGAACGATACAGAGAAGATTAGCA	stem-loop PCR		
Universal	GTGCAGGGTCCGAGGT	stem-loop PCR		
Probe sequence for Northern blot				
miR156	GTGCTCACTCTCTTCTGTCA	Northern blot		
miR319/159	GGG+AGC+TCC+CTT+CAG+TCC+AA	Northern blot		
miR164	TGCACGTGCCCTGCTTCTCCA	Northern blot		
miR166	GG+GGA+ATG+AAG+CCT+GGT+CCG+T	Northern blot		
miR171	G+ATA+TTG+GCG+CGG+CTC+AAT+CA	Northern blot		
miR390	G+GCG+CTA+TCC+CTC+CTG+AGC+TT	Northern blot		
miR169	T+CGG+CAA+GTC+ATC+CTT+GGC+TG	Northern blot		
miR167	T+AGA+TCA+TGT+TGG+CAG+TTT+CA	Northern blot		
miR173	G+TGA+TTT+CTC+TCT+CGA+AGC+GAA	Northern blot		
U6	TCATCCTTGCGCAGGGGCCA	Northern blot		
Primers for RT-PCR				
qAPS3-1F	GCGGCGGATTTGCCGAGAGT	RT-PCR		
qAPS3-1R	CCCACGAAGAGGACTAGCCCAAC	RT-PCR		
qARF6-1F	GGGGTCCTTTGGTAGGTCGC	RT-PCR		
qARF6-1R	CGGCCAGGGGTCATCACCAA	RT-PCR		
CUC1qF	CGCCTTGACGGCAAATTCTCTTAC	RT-PCR		
CUC1qR	GATGATCGGAGCAATTGCAGAACC	RT-PCR		
qCUC2-1F	GGAGGAGGAGGAGCAACTGTGAG	RT-PCR		
qCUC2-1R	GAGTGAGACGGAGGAAGGAGAGC	RT-PCR		
qSPL9-F	CAAGGTTCAGTTGGTGGAGGA	RT-PCR		
qSPL9-R	TGAAGAAGCTCGCCATGTATTG	RT-PCR		
DCL1 qF	CGTTGTTATGCGTTTCGACCTTGC	RT-PCR		
DCL1 qR	AACGCTGCGTGAGATACATTTCCTC	RT-PCR		
HYL1 qF	TTGCCTGGATTCTTCAATCGTAAGG	RT-PCR		
HYL1 qR	TAGGTTCTTGCATAATCCCGTTTCG	RT-PCR		
SE qF	CCACCGCCTCGTAGGGATTACA	RT-PCR		
SE qR	CCACCATGGTCATACCCAAATCTTC	RT-PCR		
DDLqF	ATGAGCCCCCAGAGGCTAGAAAAC	RT-PCR		
DDLqR	CTGCAAGATGGGTGATCCGTAGGAA	RT-PCR		
CBP20qF	ACCGGCCTATTCGTGTGGATTTTG	RT-PCR		
CBP20qR	TGCCTTTGTGCTTCGAGTTCCTTC	RT-PCR		
CBP80qF	TCTGGCAACTGCAACAGTATCCGTA	RT-PCR		
CBP80qR	GGCAGCAGATGATAGCAATGTTTCG	RT-PCR		
HEN1 qF	TTAGGATGACACCCCCTGATGCTG	RT-PCR		
HEN1 qR	AAAAGCCGCCTCCATTCGTTCTTC	RT-PCR		
MIR156a qF	AAGGGGGTCTTCTATCATCAGGA	RT-PCR		
MIR156a qR	TGATTGGAATATGCCCTAAAGAGTG	RT-PCR		
MIR156b qF	GAGAGATGGTGATTGAGGAATGC	RT-PCR		
MIR156b qR	CAGAGATAGGCAACTGACAGAAAGAG	RT-PCR		
MIR158a qF	GTGATGACGCCATTGCTCTTT	RT-PCR/RIP		
MIR158a qR	TGTGACTTTAGATGCCCTTGTTCA	RT-PCR/RIP		
MIR159a-F	TCAGGAGCTTTAACTTGCCCTTT	RT-PCR		
MIR159a-R	CACGCTAAACATTGCTTCGGAAT	RT-PCR		
MIR164a-F	CCCTCATGTGCTTGGAAATG	RT-PCR		
MIR164a-R	GCAAATGAGACGGATTTCGTG	RT-PCR		
pri-miR166a-F	GACTCTGGCTCGCTCTATTCA	RT-PCR		
pri-miR166a-R	TGGTCCGAAGACGCTAAAAC	RT-PCR		
MIR167a qF	TGTTGTGTTTCATGACGATGG	RT-PCR/RIP		
MIR167a qR	AGCTCACAAAATCAGACTGAAGA	RT-PCR/RIP		
MIR167b qF	TCCACAAGGGAACAAGTGAA	RT-PCR/RIP		

MIR167b qR	TTTCTTTCAATCGGCATGTG	RT-PCR/RIP		
MIR172b-qF	GTAGGCGCAGCACCATTAAG	RT-PCR/RIP		
MIR172b-qR	TTTGTAGCCGTCGATTGTTG	RT-PCR/RIP		
MIR319a-F				
MIR319a-R				
GUS-F	CGATGTCACTCCGTATGTTATTG	RT-PCR		
GUS-R	CAGTTCTTTCGGCTTGTTGC	RT-PCR		
UBQ5-N	GGTGCTAAGAAGAGGAAGAAT	RT-PCR		
UBQ5-C	CTCCTTCTTCTGGTAAACGT	RT-PCR		
Primers for <i>in vitro</i> RNA binding				
T7miR162b-p3	TAATACGACTCACTATAGGGAAAGAGTGAAGTCGCTGGAG	pri-miR162b Probe		
miR162b-p4	CATGAAGAGCAAGCAGCGCTGGATGC	pri-miR162b Probe		
T7-premiR162bF	TAATACGACTCACTATAGGAGGCAGCGGTTCATCGATC	pre-miR162b Probe		
premiR162bR	CTGGATGCAGAGGTTTATCGATC	pre-miR162b Probe		
T7-premiR172bF	TAATACGACTCACTATAGGG GTCGTTGTTTGTAGGCGCAG	pre-miR172b Probe		
premiR172bR	TTTGTAGCCGTCGATTGTTG	pre-miR172b Probe		
UBQ5T7F	TAATACGACTCACTATAGGGATGCAGATCTTCGTGAAAAC	ssRNA probe		
	С			
UBQ R2	GGATTCCTTCCTTGTCTTGGA	ssRNA probe		
	TAATACGACTCACTATAGGGCAACAACTGTCTCTTGGATCG	dsRNA probe		
RNA/RNA blunt 1	TATATTGCCATTTATGTGTTGAGCCC			
	TAATACGACTCACTATAGGGCTCAACACATAAATGGCAAT	dsRNA probe		
RNA/RNA blunt 2	ATACGATCCAAGAGACAGTTGTTGCCC			