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Supplementary Information Text 

 
Details of feature selection and predictor architecture 
 

Features were selected from a pool of 546 amino acid scales based on information 
content.  These scales were obtained from the AAindex database (1) with the addition of the 
DisProt (2) and experimental poly-Proline II (PII) (3) propensity scales.  To assess information 
content of a scale, analysis datasets were built with randomly selected 1000 true positives and 
1000 true negatives, both coming from the same phosphorylation subset of 29-residue fragments.  
For every fragment, a weighted average of values from the scale with window size nine was 
calculated for the region of 21 residues centered on the Ser/Thr/Tyr, and the information value of 
the scale was estimated using a naïve Bayes classifier (4) with ten-fold cross validation.  This 
procedure was iterated ten times with randomly selected analysis datasets and tested for each of 
the five phosphorylation subclasses individually.  For each subclass, an amino acid scale that 
exhibited greater than 0.6 prediction accuracy was retained, otherwise the scale was rejected.  In 
this way, 114 scales were retained from the original pool.  This number was further reduced to 35 
by only retaining one member of scale pairs exhibiting an absolute Pearson correlation coefficient 
greater than 0.8.  Finally, manual curation to remove redundant scales based on AAindex 
descriptors resulted in ten features used in the predictor (Supplementary Table S2). 

Additional features for the predictor were obtained from our unique sequence-based 
energy prediction tool, eScape (5, 6).  This tool, originally parameterized using tripeptide-based 
protein ensemble energetics (5), predicts stability, enthalpy, and entropy of both native and 
denatured states by using 28 feature indices.  From these 28 features, we empirically selected 
four native state features and four denatured state features whose values and differences 
seemed to be effective in phosphorylation site prediction.  The eight features and differences are 
listed in Supplementary Table 3.  Thus, a total of 18 features were used in the final predictor, and 
the whole list of features and parameters employed are shown in Supplementary Table 4. 

The architecture of the PHOSforUS predictor is shown in Figure 5A.  From an arbitrary 
input amino acid sequence, 18 biophysical features (Supplementary Tables 2 and 3) are 
calculated for each 21-residue fragment of the sequence centered on Ser, Thr, or Tyr residues.  
Thus, for each Ser/Thr/Tyr residue, one of subclasses (S-P, S-nP, T-P, T-nP, Tyr) is assigned 
and a total of 378 feature values are calculated (21 residue positions x 18 biophysical features). 

Information values for each potential phosphorylation site were calculated from sub-
predictors corresponding to each calculated feature value.  Sub-predictors are Pro-subclass 
specific and are based on Gaussian naïve Bayes classifier (4, 7) (Equation S1).  For each feature 
Fi = {fi1, …, fin}, a final sub-predictor score si is calculated as: 

 

 𝑠𝑖 = 𝑃(𝐶𝑝ℎ𝑜𝑠|{𝑓𝑖1, … , 𝑓𝑖𝑛}) = ∏
𝑃(𝑓𝑖𝑗|𝐶𝑝ℎ𝑜𝑠)𝑃(𝐶𝑝ℎ𝑜𝑠)

𝑃(𝑓𝑖𝑗)

𝑛
𝑗=1  .  (S1) 

 
This intermediate output of sub-scores is passed to a downstream meta-predictor based on 
gradient boosting classifier (7, 8), which utilized those values to compute a final prediction score 
for each potentially phosphorylatable residue (Equation 3).  For a set of sub-scores S = {s1,…,sn}, 
where n = 18 features, the score function f(S) is fit with:   
 

 𝑓(𝑆) = 𝑓0(𝑆) − ∑ 𝛾𝑗 ∑ ∇𝑓𝑗−1
𝐿 (𝑦𝑖, 𝑓𝑗−1(𝑆𝑖))

𝑛
𝑖=1

𝑚
𝑗=1   .  (S2) 

 
In Equation (S2), the γj term is equal to: 
 

 𝛾𝑗 = 𝑎𝑟𝑔min
𝛾

∑ 𝐿 (𝑦𝑖, 𝑓𝑗−1(𝑆𝑖) − 𝛾∇𝑓𝑗−1
𝐿 (𝑦𝑖, 𝑓𝑗−1(𝑆𝑖)))

𝑛
𝑖=1  .  (S3) 

 
Phosphorylation likelihood was converted from the final score (Equation S2) and re-formatted for 
machine-readable output, 
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𝑃(𝐶𝑝ℎ𝑜𝑠|𝑖𝑛𝑝𝑢𝑡 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒) =
𝑃(𝑓(𝑆)|𝐶𝑝ℎ𝑜𝑠)𝑃(𝐶𝑝ℎ𝑜𝑠)

𝑃(𝑓(𝑆))
   .  (S4) 

 
Subclass prediction model evaluation 
 
10-fold cross-validation was performed to evaluate the sensitivity, specificity, and accuracy of the 
prediction models.  As the true negative set is much larger than the true positive set, random 
sampling of the true negative set equalized the numbers of true and false positives during the 
evaluation.  Cross-validation was iterated ten times with different true negative sets to minimize 
sampling error. 
 
Comparative analysis  
 

NetPhos2.0 (9), Musite (10), DisPhos (11), PhosphoSVM (12), RF-Phos (13), and 
PhosPred-RF (14) were used to benchmark PHOSforUS. For the comparative analysis, we 
constructed another positive set which contains none of the sequences already contained in the 
training set, and presumably minimal number of sequences in the training sets of existing 
phosphorylation predictors.  Details of how we prepared testing set are elaborated in the Main 
Text, Methods. 

The following evaluation metrics were used: True Positive Rate (Equation S5), True 
Negative Rate (Equation S6), Positive Predictive Value (Equation S7), Accuracy (Equation S8), 
F1 Score (Equation S9), and Matthews Correlation Coefficient (Equation S10).  In Equations (S5) 
– (S10), TP stands for true positive, FN for false negative, FP for false positive, TN for true 
negative. 
 

 Sensitivity =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
        (S5) 

 

 Specificity =  
𝑇𝑁

𝑇𝑁+𝐹𝑃
        (S6) 

 

 Precision =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
        (S7) 

 

   Accuracy =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑁+𝐹𝑃+𝑇𝑁
       (S8) 

 

 F1 score =  
2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
       (S9) 

 

 MCC =
𝑇𝑃×𝑇𝑁−𝐹𝑃×𝐹𝑁

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
     (S10) 

 
Visualizing conservation of vertical and horizontal information 
 

Orthologs of human proteins with DNA-binding transcription factor activity (GO: 0003700) 
were obtained from OMA database (17). We selected ortholog groups with the number of 
members between 10 < n < 250, and downloaded multiple sequence alignments as archived in 
the database. A full list of the 835 ortholog groups we utilized is found in Supplementary Data File 
2. 

Sequence conservation scores were calculated by using BLOSUM62 matrix (18). Single 
sequence was taken from an ortholog group as a reference and divided into small windows 
(window size = 5). For each window, pairwise local alignment scores were calculated between 
the reference sequence and each of all other sequences within same ortholog group, then all 
scores were divided by the maximum possible score Sc (defined as the score calculated with 
identical sequence to the reference). This process was repeated for all other sequences within 
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the ortholog group and averages over each window were taken as sequence conservation 
scores. Native state free energy for each protein sequences was calculated using the eSCAPE 
algorithm (5, https://best.bio.jhu.edu/eScape). For the same window we used for calculation of 
sequence conservation score, we calculated local average and standard deviation of free energy 
values. Horizontal conservation score was computed using the following Equation S11: 
 

𝑆𝑐𝑜𝑟𝑒𝐻𝑜𝑟 = 1 −
𝑆𝐷𝑙𝑜𝑐𝑎𝑙

𝑆𝑐
        (S11) 

 
In this case, scaling coefficient (𝑆𝑐 = 3.3 (kcal/mol)) was calculated from 10 different ortholog 
groups exhibiting high sequence conservation and structural stability (for example, actin (ACTB) 
and rhodopsin (RHO) families). Resulting conservation scores are plotted in Supplementary 
Figure S10A (glucocorticoid receptor / GCR), Supplementary Figure S10B (actin) & S10C 
(rhodopsin), respectively. 

To observe its correlation with free energy, sequence conservation scores and horizontal 
conservation scores were first normalized again with μ = 0 and SD = 1 (i.e. a Z-score). Linear 
correlations between average free energy and both conservation scores were calculated 
subsequently: slope values and Pearson correlation coefficients were collected for further 
statistical analysis. Collected slopes for 835 correlations, one for each ortholog group, are 
displayed as binned distributions in Supplementary Figure 10E. 

 
Estimating end-to-end distance of phosphorylated and non-phosphorylated sequence fragments 

 

Hydrodynamic radius (𝑅ℎ) and end-to-end distance (�⃗� ) refer to an 'effective size' of a 

polymer in terms of fluid dynamics.  These quantities provides a rough idea about the 

compactness and the shape of a given molecule.   For example, even if the molecular weights 

are the same, the hydrodynamic radius of denatured protein is typically much larger than that of 

folded protein.  For short peptides, hydrodynamic radius can be approximated by the radius of 

gyration (𝑅𝑔 ) (19), and end-to-end distance could be calculated from 𝑅𝑔  for ideal chains as 

described in previous studies (20): 

  

�⃗� =  𝑅𝑔 ∙ √6  ≅  𝑅ℎ ∙ √6  .      (S12) 

 

While intrinsically denatured protein regions are often approximated with random coils, 

their actual behaviors are often significantly different than random coils largely due to two 

biophysical properties: charge and PII propensity.  Interaction between charged amino acids can 

be strong enough to invalidate the assumption that there is no significant interaction between 

distal side chains.  PII propensity, on the other hand, promotes formation of polyproline II 

conformation with an increased end-to-end distance, leading to longer hydrodynamic radius 

overall. 

By merging equations from previous studies, Whitten and colleagues were able to 

approximate hydrodynamic radius from charge and PII propensity (16).  Their power-law equation 

(Equation S13) could be used to calculate both global hydrodynamic radius of entire protein and 

local hydrodynamic radius which describes persistence length of short peptide regions, as 

follows: 

 

𝑅ℎ = 𝑅0 ∙ 𝑁𝜈 ,         (S13) 

where the exponent, v, is defined as (Equation S14): 

 

ν(𝑓𝑃𝐼𝐼 , |𝑄|) =  𝜈0 +  𝛼 ∙ 𝑠(|𝑄|) + β ∙ (1 − 𝑠(|𝑄|)) ∙ ln (1 − 𝑓𝑃𝐼𝐼)    (S14) 
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In Equations S13 and S14, Rh is hydrodynamic radius of peptide, R0 is hydrodynamic radius of 

single amino acid (which is 2.16 Å), N is length of peptide, fPII is PII propensity of peptide, s(|Q|) is 

a sigmoid function fitted with net charge and hydrodynamic radius (21), and α and β are scaling 

coefficients for the effects of net charge and PII propensity, respectively. Equation S13 states that 

an increase of both net charge and PII propensity increases the hydrodynamic radius, albeit with 

different degrees. 

Local hydrodynamic radius could be an important factor indicative of phosphorylation 

sites for two different reasons.  First, most of known structures of kinases have a groove-like 

active site which binds to extended substrates (22).  Potential substrates with other secondary 

structures, such as alpha helix, could not fit in this groove and consequently would be excluded 

from phosphorylation.  Second, while the specific three-dimensional arrangements of side chains 

within active sites, which largely determine the details of substrate preference, are different 

between individual kinases, the overall architecture of protein kinases is likely to have originated 

from a common ancestor.  Therefore, one could expect an extended substrate conformation to be 

a general requirement for kinase binding.  
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Fig. S1. Sequence logos of Threonine and Tyrosine phosphorylated or non-
phosphorylated amino acid sequence neighborhoods. A. Phosphorylated T-nP.  B. Non-
phosphorylated T-nP. C. Phosphorylated T-P.  D. Non-Phosphorylated T-P. E. Phosphorylated 
Tyrosine. F. Non-Phosphorylated Tyrosine.  In all figures, aliphatic/non-polar residues are colored 
black, prolines are lavender, polar residues are green, negatively charged side chains are red, 
positively charged side chains are blue.  
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Fig. S2. Dividing phosphorylation sites by presence or absence of +1 Proline reveals two 
distinct subclasses in Serine and Theronine phosphorylation sites. A. Frequencies of +1 
Proline phosphorylation sites make up one-third to one-half of the human phosphoproteome.  In 
contrast, Tyrosine phosphorylation sites have few +1 Proline positions. B. Dividing the full set of 
human Ser/Thr phosphorylation sites into two groups based on the presence or absence of 
position-specific amino acids reveals that, while many positions contain significant grouping 
information, the +1 Proline residue is the single most informative; i.e. this single (residue, 
position) pair results in the most statistically significant subsets.  Statistical differences were 
measured as an average of p-values calculated from t-test conducted for each possible amino 
acid occurrence at each possible type of site.  The four (residue, position) pairs - +1P, +3E, +1D, 
-3R – which showed the largest average of p-values were selected for each case.  Blue bars 
indicate sequences with known phosphorylation sites, orange bars indicate non-phosphorylated 
sequences. C. Position-specific weight matrices (PSWM) comparisons between different 
phosphorylation site subclasses.  Prediction of phosphorylation sites with other subclass 
parameter sets reveal that there is more similarity between classes with the same presence or 
absence of the +1 Pro residue than between classes with the same type of phosphorylated 
residue.  Scale indicates AUROC value for each prediction result. D. Two possible grouping 
schemes supported by these analyses are: five subclasses (circles), treating Serine and 
Threonine as separate subclasses, and three subclasses (rectangles), merging Serine and 
Threonine subclasses. 
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Fig. S3.  Changes in charge distributions before and after phosphorylation events.  A. S-P 
sites. B. S-nP sites. C. T-P sites. D. T-nP sites.  E. Tyr sites.  In each panel, individual points 
represent one 29-mer sequence, with average charge fractions plotted before (x-axis) or after (y-
axis) a single, double, triple, or quadruple phosphorylation events adding successive negative 
charges.  Dashed lines indicate boundary regions defined by Das & Pappu (15): B=boundary 
region 2, F=folded region 1, C=coil regions 3,4,5.  Red circles emphasize the differential shifts in 
the conformational manifold of each subclass upon a single phosphorylation event as described 
in detail in Main Text Figures 4C-D. 
  

 

 
E       
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Fig. S4.  Phosphorylation sites containing +1 Proline are energetically poised to respond 
to phosphorylation by extension, mediated by charge and polyproline II propensity.  Red, 
white, and blue contour regions indicate predicted end-to-end distances of intrinsically disordered 
proteins from a theoretical model (16) that takes polyproline II structural propensity (x-axis) and 
net charge (y-axis) into account.  Arrows on this contour plot indicate median predicted distances 
of distributions of known phosphorylation sites before (arrow tail) and after (arrow head) a single 
phosphorylation event.  Red arrow denotes S/T-nP sites, blue arrow denotes S/T-P sites, and 
Black arrow denotes Tyrosine sites.  Scale bar indicates end-to-end distance in Ångstroms. 
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Fig. S5. Phosphorylation site subclasses defined with +1 Proline show higher end-to-end 
distances than other subclasses.  In these distributions, red represents sequences before 
phosphorylation, blue represents sequences after phosphorylation, and purple represents areas 
of overlap between red and blue; a smaller area of overlap thus suggests a greater change of 
end-to-end distance after phosphorylation.  The column plot demonstrates the median distance 
increase for each case, with the +1 Proline sites exhibiting the largest increase. 
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Fig. S6. Threonine phosphorylation has a stronger effect on end-to-end distance increase 
than do Serine / Tyrosine phosphorylations.  In these distributions, red represents sequences 
before phosphorylation, blue represents sequences after phosphorylation, and purple represents 
areas of overlap between red and blue; a smaller area of overlap thus suggests a greater change 
of end-to-end distance after phosphorylation.  The column plot demonstrates the median distance 
increase for each case, with the Threonine sites exhibiting the largest increase, more than one Å 
after phosphorylation. 
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Fig. S7. Subclass-specific receiver–operating characteristics (ROC) of PHOSforUS 
constituent predictors.  AUROC stands for “Area Under the ROC curve”.  For all subclasses, 
predictors using horizontal information are equivalent to, or more effective than, predictors using 
vertical information.  A. S-nP sites. B. T-nP sites. C. Tyr sites. D. S–P sites. E. T-P sites. 
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Fig. S8. Receiver-operating characteristics (ROC) curve (upper panel) and precision-recall 
curve (lower panel) of PHOSforUS predictor & its subpredictors along with PSWM-based 
prediction results.  These results are based on the same data displayed in Figures 5B-D of the 
main text and Supplementary Figure S9A, below. 
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Fig. S9.  Comparative effectiveness of protein phosphorylation site prediction by 
PHOSforUS. A. Class-specific AUROC, displayed again in Figures 5B-D of the Main Text. B. 
Class-specific Matthews Correlation Coefficient (MCC). C. Weighted average of AUROC. D. 
Weighted average of MCC 
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Fig. S10. Horizontal information is better conserved than vertical information in 
intrinsically disordered region. In all panels, red indicates conservation of vertical information 
and blue indicates conservation of horizontal information.  A. Difference between degrees of 
conservation of sequence and free energy (ΔG, (5)) calculated for human glucocorticoid receptor 
(OMA database identifier GR) and its orthologs (17).  Free energy is used as an example of 
horizontal information, and amino acid sequence conservation is used as an example of vertical 
information. Conservation is computed as described above in Methods and is normalized using 
Equation S11, above. Blue denotes regions where free energy conservation is stronger than 
sequence conservation, and red denotes the opposite. In human GR, DNA binding region (DBD) 
and LBD region are structured, while N-terminal domain (NTD) and hinge region are intrinsically 
disordered. B. Same calculation for actin (OMA database identifier ACTB). C. Same calculation 

for rhodopsin (OMA database identifier RHO). D. Correlation between COREX/eSCAPE G and 
normalized conservation scores for individual residue positions in the GR family. Red: sequence 
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conservation score, Blue: G conservation score. The shallower slope of the blue line suggests 

that G conservation is stronger than amino acid sequence conservation for this family.  E. 
Distribution of linear regression slopes for 835 different transcription families.  The median slope 

of the blue distribution being closer to zero suggests that G conservation is stronger than amino 
acid conservation for this large collection of different protein families.  Thus, strong conservation 
of horizontal information seems to be a general property of protein evolution.  Red: sequence 

conservation, Blue: G conservation. F. Distribution of R-square values of linear regression.  

Lower median R2 values for G conservation also suggests that horizontal information is more 
strongly conserved than vertical information in this large collection of different protein families.   

  



 

 

17 

 

Table S1.  Statistics of utilized sequence & annotation datasets. 

 

 
Total P-sites Total N-sites 

Class Pre-screening 
After 

screening 
Comparative 

analysis 
Pre-screening 

After 
screening 

S-P 10348 3024 11842 30170 7373 

S-nP 21936 4426 55628 455303 88905 

T-P 2688 1176 5028 20943 1762 

T-nP 3045 1385 20299 288492 27627 

Y 2058 1145 14415 145170 24271 
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Table S2. List of biophysical indices incorporated in PHOSforUS predictor. 

 

Feature ID Description Feature type Reference 

GUYH850101† Partition energy 
Hydrophobicity / 
Horizontal 

Guy (1985) 

MIYS990104† 
Optimized relative partition energy - 
method C 

Hydrophobicity / 
Horizontal 

Miyazawa-Jernigan (1994) 

PRAM900102† Relative frequency in alpha-helix 
Conformation / 
Horizontal 

Prabhakaran (1990) 

PALJ810112† Normalized frequency of beta-sheet 
Conformation / 
Horizontal 

Palau et al. (1981) 

ROBB760105† Information measure for extended 
Conformation / 
Horizontal 

Robson-Suzuki (1976) 

PPIIPRO Polyproline II propensity 
Conformation / 
Horizontal 

Elam et al. (2013) (3) 

ZIMJ680104† Isoelectric points Vertical Zimmerman et al. (1968) 

FASG760101† Molecular weight Vertical Fasman (1976) 

GRAR740103† Residue volume Vertical Grantham (1974) 

RADA880106† Accessible surface area Vertical Radzicka-Wolfenden (1988) 

† Feature IDs correspond to the scales contained in AAindex (1) 

 
  



 

 

19 

 

Table S3.   List of eSCAPE thermodynamic parameters incorporated in PHOSforUS 
predictor. 
 

eSCAPE parameter Description 

ΔG,N Gibbs free energy of folded state 

ΔHap,N Apolar enthalpy of folded state 

ΔHpol,N Polar enthalpy of folded state 

TΔSconf,N Conformational entropy of folded state 

ΔΔG (ΔG,N – ΔG,D) G difference between folded & unfolded state 

ΔΔHap (ΔHap,N – ΔHap,D) Hap difference between folded & unfolded state 

ΔΔHpol (ΔHpol,N – ΔHpol,D) Hpol difference between folded & unfolded state 

ΔTΔSconf (TΔS,N – TΔS,D) TSconf difference between folded & unfolded state 
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Table S4.  Sub-predictor statistics for Serine with +1 Proline (S-P) subclass. Values in red 
font indicate the largest statistic value in each feature group. 
 

Class S-P Accuracy Sensitivity Specificity Precision F1 MCC AUROC 

ZIMJ680104 0.598934 0.549289 0.648578 0.609838 0.577963 0.198858 0.640449 

FASG760101 0.644826 0.646998 0.642654 0.644284 0.645597 0.289692 0.698131 

GRAR740103 0.680016 0.664929 0.695103 0.685712 0.675114 0.360244 0.743468 

RADA880106 0.673697 0.620458 0.726935 0.6945 0.655319 0.34945 0.740499 

Vertical 
features 

0.752725 0.738784 0.766667 0.760029 0.749216 0.505698 0.835519 

GUYH850101 0.752765 0.76722 0.73831 0.745754 0.756271 0.505829 0.834035 

MIYS990104 0.759874 0.779226 0.740521 0.750265 0.76444 0.52018 0.840712 

PRAM900102 0.619471 0.517615 0.721327 0.649957 0.576162 0.244081 0.663511 

PALJ810112 0.664218 0.704265 0.624171 0.652126 0.677157 0.329528 0.724739 

ROBB760105 0.702291 0.732148 0.672433 0.690894 0.710886 0.405357 0.774226 

PPIIPRO 0.662046 0.530174 0.793918 0.720275 0.610634 0.336092 0.724 

G,N 0.683965 0.709795 0.658136 0.674974 0.691914 0.368459 0.748253 

Hap,N 0.612243 0.539652 0.684834 0.631285 0.581816 0.226914 0.657694 

Hpol,N 0.622749 0.674724 0.570774 0.611197 0.641368 0.246861 0.667824 

TSconf,N 0.606635 0.671248 0.542022 0.594464 0.630492 0.215103 0.642729 

G,N-D 0.693009 0.65158 0.734439 0.710504 0.679719 0.387398 0.762268 

Hap,N-D 0.674171 0.71169 0.636651 0.662028 0.685947 0.349344 0.736206 

Hpol,N-D 0.635427 0.590758 0.680095 0.648688 0.618317 0.271969 0.687678 

TSconf,N-D 0.667457 0.627409 0.707504 0.682081 0.653554 0.336035 0.728165 

Horizontal 
features 

0.78207 0.792733 0.771406 0.77631 0.784389 0.564335 0.870907 

Total features 0.794589 0.800158 0.789021 0.791433 0.795736 0.589268 0.882882 
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Table S5. Sub-predictor statistics for Serine without +1 Proline (S-nP) subclass.  Values in 
red font indicate the largest statistic value in each feature group. 
 

Class S-nP Accuracy Sensitivity Specificity Precision F1 MCC AUROC 

ZIMJ680104 0.697775 0.67005 0.7255 0.709437 0.689139 0.396203 0.762915 

FASG760101 0.6173 0.63695 0.59765 0.612898 0.62467 0.234798 0.669534 

GRAR740103 0.678525 0.6728 0.68425 0.68063 0.676664 0.357103 0.744073 

RADA880106 0.6253 0.58055 0.67005 0.6376 0.607705 0.251627 0.672302 

Vertical 
features 

0.791125 0.7627 0.81955 0.808718 0.785009 0.583229 0.873915 

GUYH850101 0.78475 0.8062 0.7633 0.773094 0.789258 0.570093 0.867598 

MIYS990104 0.790275 0.8058 0.77475 0.781566 0.793458 0.580896 0.871936 

PRAM900102 0.58555 0.46655 0.70455 0.612254 0.529459 0.176183 0.618341 

PALJ810112 0.709825 0.72305 0.6966 0.704479 0.71362 0.419824 0.786046 

ROBB760105 0.7535 0.75005 0.75695 0.755266 0.752613 0.507059 0.838519 

PPIIPRO 0.597175 0.42545 0.7689 0.647984 0.513567 0.206941 0.632913 

G,N 0.695025 0.7278 0.66225 0.683054 0.70469 0.390927 0.769178 

Hap,N 0.546275 0.6325 0.46005 0.539487 0.582283 0.093961 0.57366 

Hpol,N 0.617125 0.69 0.54425 0.602246 0.643121 0.236801 0.661454 

TSconf,N 0.652675 0.6847 0.62065 0.643589 0.663469 0.306011 0.708972 

G,N-D 0.66655 0.67195 0.66115 0.664795 0.668329 0.333145 0.727326 

Hap,N-D 0.69165 0.73315 0.65015 0.677023 0.703932 0.384673 0.764952 

Hpol,N-D 0.600525 0.6195 0.58155 0.596944 0.607967 0.201224 0.638616 

TSconf,N-D 0.647875 0.6513 0.64445 0.646919 0.649078 0.295779 0.704685 

Horizontal 
features 

0.818325 0.82745 0.8092 0.81277 0.819977 0.636863 0.898609 

Total features 0.8376 0.8432 0.832 0.833922 0.838486 0.675324 0.918708 
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Table S6. Sub-predictor statistics for Threonine with +1 Proline (T-P) subclass.  Values in 
red font indicate the largest statistic value in each feature group. 
 

Class T-P Accuracy Sensitivity Specificity Precision F1 MCC AUROC 

ZIMJ680104 0.596562 0.551003 0.64212 0.60613 0.577107 0.193978 0.635436 

FASG760101 0.608596 0.624642 0.59255 0.605623 0.614697 0.2175 0.660287 

GRAR740103 0.634241 0.626074 0.642407 0.63686 0.63117 0.268733 0.682833 

RADA880106 0.641404 0.59341 0.689398 0.656395 0.62315 0.28421 0.687897 

Vertical 
features 

0.703295 0.709742 0.696848 0.700794 0.705197 0.406673 0.779973 

GUYH850101 0.691977 0.735817 0.648138 0.67625 0.704671 0.385647 0.766355 

MIYS990104 0.704155 0.743266 0.665043 0.689275 0.715105 0.409807 0.775734 

PRAM900102 0.600573 0.497708 0.703438 0.626777 0.554658 0.205645 0.631605 

PALJ810112 0.632378 0.689685 0.575072 0.619099 0.652177 0.266828 0.684848 

ROBB760105 0.659456 0.712034 0.606877 0.64435 0.676375 0.320855 0.711871 

PPIIPRO 0.640258 0.513467 0.767049 0.687936 0.587811 0.290073 0.702787 

G,N 0.637536 0.667622 0.60745 0.629882 0.647905 0.275879 0.695882 

Hap,N 0.582665 0.470774 0.694556 0.606579 0.529857 0.169718 0.613442 

Hpol,N 0.603295 0.658453 0.548138 0.593015 0.623854 0.208042 0.643289 

TSconf,N 0.574355 0.659026 0.489685 0.563547 0.607445 0.151014 0.60039 

G,N-D 0.64298 0.607163 0.678797 0.653712 0.629321 0.286842 0.701574 

Hap,N-D 0.620917 0.661032 0.580802 0.612181 0.635283 0.242993 0.67731 

Hpol,N-D 0.602579 0.537249 0.667908 0.61822 0.574768 0.207032 0.649613 

TSconf,N-D 0.633954 0.575358 0.69255 0.651677 0.610863 0.269926 0.684493 

Horizontal 
features 

0.723782 0.760172 0.687393 0.708504 0.733173 0.449166 0.80064 

Total features 0.741404 0.767908 0.7149 0.729282 0.747969 0.483678 0.8199 
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Table S7. Sub-predictor statistics for Threonine without +1 Proline (T-nP) subclass.  Values 
in red font indicate the largest statistic value in each feature group. 
 

Class T-nP Accuracy Sensitivity Specificity Precision F1 MCC AUROC 

ZIMJ680104 0.617098 0.583364 0.650832 0.625888 0.60373 0.234852 0.660006 

FASG760101 0.57403 0.609057 0.539002 0.569071 0.588254 0.148527 0.602642 

GRAR740103 0.619131 0.607763 0.630499 0.621895 0.61446 0.23854 0.663905 

RADA880106 0.586784 0.521442 0.652126 0.600085 0.557798 0.175196 0.618641 

Vertical 
features 

0.697782 0.686322 0.709242 0.702684 0.694134 0.39596 0.767477 

GUYH850101 0.699723 0.729575 0.669871 0.688637 0.708367 0.400345 0.770304 

MIYS990104 0.703974 0.721996 0.685952 0.69702 0.709065 0.408498 0.777033 

PRAM900102 0.563863 0.431608 0.696118 0.586981 0.497185 0.132533 0.58646 

PALJ810112 0.646026 0.655638 0.636414 0.643223 0.649048 0.292422 0.70165 

ROBB760105 0.67366 0.674492 0.672828 0.673373 0.673683 0.347582 0.737826 

PPIIPRO 0.584196 0.402403 0.765989 0.632722 0.491213 0.181002 0.622557 

G,N 0.62597 0.653974 0.597967 0.619301 0.635956 0.252567 0.673932 

Hap,N 0.522089 0.479667 0.56451 0.524836 0.500084 0.044667 0.536126 

Hpol,N 0.576617 0.61756 0.535675 0.570771 0.593159 0.15382 0.60663 

TSconf,N 0.597135 0.642514 0.551756 0.589062 0.614575 0.195121 0.642398 

G,N-D 0.6122 0.573937 0.650462 0.621622 0.596631 0.225185 0.651545 

Hap,N-D 0.619501 0.657671 0.581331 0.610992 0.633263 0.239947 0.675139 

Hpol,N-D 0.574861 0.553604 0.596118 0.578273 0.565429 0.149968 0.600651 

TSconf,N-D 0.599168 0.575231 0.623105 0.604164 0.589203 0.19864 0.632708 

Horizontal 
features 

0.716636 0.715896 0.717375 0.717161 0.716156 0.433723 0.792609 

Total features 0.729945 0.735305 0.724584 0.727746 0.731189 0.460337 0.81032 
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Table S8. Sub-predictor statistics for Tyrosine (Y) subclass.  Values in red font indicate the 
largest statistic value in each feature group. 
 

Class Tyr Accuracy Sensitivity Specificity Precision F1 MCC AUROC 

ZIMJ680104 0.619481 0.602857 0.636104 0.623745 0.612989 0.239191 0.665827 

FASG760101 0.577662 0.616104 0.539221 0.572463 0.593164 0.155954 0.609484 

GRAR740103 0.615325 0.604675 0.625974 0.618149 0.611077 0.230897 0.67007 

RADA880106 0.593636 0.549091 0.638182 0.60318 0.574597 0.188191 0.637699 

Vertical 
features 

0.678052 0.643377 0.712727 0.691855 0.666293 0.357387 0.741669 

GUYH850101 0.681429 0.746753 0.616104 0.660855 0.701002 0.366175 0.74083 

MIYS990104 0.692078 0.741299 0.642857 0.675707 0.706663 0.386327 0.756548 

PRAM900102 0.554545 0.439221 0.66987 0.571021 0.496193 0.1122 0.577257 

PALJ810112 0.628701 0.658961 0.598442 0.621619 0.639436 0.258134 0.678237 

ROBB760105 0.648442 0.681039 0.615844 0.640043 0.659655 0.297698 0.705415 

PPIIPRO 0.585065 0.414545 0.755584 0.629146 0.49953 0.181036 0.619905 

G,N 0.607143 0.661039 0.553247 0.596803 0.627118 0.21569 0.659779 

Hap,N 0.528701 0.406494 0.650909 0.538099 0.462391 0.059241 0.529689 

Hpol,N 0.574026 0.605195 0.542857 0.569747 0.586784 0.148431 0.600974 

TSconf,N 0.57 0.603377 0.536623 0.565604 0.583715 0.14041 0.595487 

G,N-D 0.581688 0.592208 0.571169 0.580186 0.585936 0.163518 0.622842 

Hap,N-D 0.613247 0.672208 0.554286 0.601535 0.634806 0.228138 0.657273 

Hpol,N-D 0.550649 0.560519 0.540779 0.549677 0.554867 0.101372 0.581004 

TSconf,N-D 0.591169 0.605714 0.576623 0.58918 0.597043 0.182583 0.630948 

Horizontal 
features 

0.694675 0.713247 0.676104 0.688193 0.700174 0.390005 0.76217 

Total features 0.718442 0.717143 0.71974 0.719261 0.717993 0.43715 0.791034 
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Table S9. Full PHOSforUS predictor performances calculated from X10 cross-validation. 

 

Class S-P Accuracy Sensitivity Specificity Precision F1 MCC AUROC 

Vertical 
features 

0.752725 0.738784 0.766667 0.760029 0.749216 0.505698 0.835519 

Horizontal 
features 

0.78207 0.792733 0.771406 0.77631 0.784389 0.564335 0.870907 

Total features 0.794589 0.800158 0.789021 0.791433 0.795736 0.589268 0.882882 

Class S-nP Accuracy Sensitivity Specificity Precision F1 MCC AUROC 

Vertical 
features 

0.791125 0.7627 0.81955 0.808718 0.785009 0.583229 0.873915 

Horizontal 
features 

0.818325 0.82745 0.8092 0.81277 0.819977 0.636863 0.898609 

Total features 0.8376 0.8432 0.832 0.833922 0.838486 0.675324 0.918708 

Class T-P Accuracy Sensitivity Specificity Precision F1 MCC AUROC 

Vertical 
features 

0.703295 0.709742 0.696848 0.700794 0.705197 0.406673 0.779973 

Horizontal 
features 

0.723782 0.760172 0.687393 0.708504 0.733173 0.449166 0.80064 

Total features 0.741404 0.767908 0.7149 0.729282 0.747969 0.483678 0.8199 

Class T-nP Accuracy Sensitivity Specificity Precision F1 MCC AUROC 

Vertical 
features 

0.697782 0.686322 0.709242 0.702684 0.694134 0.39596 0.767477 

Horizontal 
features 

0.716636 0.715896 0.717375 0.717161 0.716156 0.433723 0.792609 

Total features 0.729945 0.735305 0.724584 0.727746 0.731189 0.460337 0.81032 

Class Y Accuracy Sensitivity Specificity Precision F1 MCC AUROC 

Vertical 
features 

0.678052 0.643377 0.712727 0.691855 0.666293 0.357387 0.741669 

Horizontal 
features 

0.694675 0.713247 0.676104 0.688193 0.700174 0.390005 0.76217 

Total features 0.718442 0.717143 0.71974 0.719261 0.717993 0.43715 0.791034 
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Table S10. Full comparative analysis data of PHOSforUS with current phosphorylation site 
predictors. 
 

Class S-nP Accuracy Sensitivity Specificity Precision F1 score MCC AUROC 

PHOSforUS 0.795 0.74 0.85 0.834396 0.782946 0.595424 0.8707 

Disphos 0.717 0.544 0.89 0.833368 0.657429 0.463373 0.82301 

Musite 0.669 0.448 0.89 0.804146 0.574517 0.377379 0.78346 

Netphos3.1 0.616 0.862 0.37 0.57799 0.691847 0.266571 0.71711 

Rfphos 0.637 0.372 0.902 0.791095 0.504715 0.322944 0.74387 

PhosPred-RF 0.772 0.654 0.89 0.857754 0.740594 0.561035 0.81251 

PhosphoSVM 0.656 0.366 0.946 0.873751 0.515124 0.383791 0.81356 

Class T-nP Accuracy Sensitivity Specificity Precision F1 score MCC AUROC 

PHOSforUS 0.687 0.64 0.734 0.706602 0.671354 0.375909 0.74322 

Disphos 0.578 0.37 0.786 0.632685 0.466229 0.171279 0.62811 

Musite 0.599 0.366 0.832 0.684903 0.475075 0.223637 0.67413 

Netphos3.1 0.531 0.598 0.464 0.528168 0.560629 0.062365 0.53124 

Rfphos 0.61 0.372 0.848 0.711223 0.486631 0.25072 0.67351 

PhosPred-RF 0.666 0.578 0.754 0.701385 0.633465 0.337389 0.71469 

PhosphoSVM 0.603 0.288 0.918 0.779423 0.419856 0.265534 0.72002 

Class Y Accuracy Sensitivity Specificity Precision F1 score MCC AUROC 

PHOSforUS 0.663 0.588 0.738 0.693753 0.634787 0.331058 0.72352 

Disphos 0.595 0.412 0.778 0.653431 0.504334 0.2056 0.65703 

Musite 0.6 0.578 0.622 0.606359 0.590998 0.200748 0.65107 

Netphos3.1 0.603 0.55 0.656 0.616933 0.580175 0.208103 0.62247 

Rfphos 0.594 0.476 0.712 0.62333 0.539352 0.193675 0.63655 

PhosPred-RF 0.62 0.744 0.496 0.596424 0.662059 0.247556 0.68372 

PhosphoSVM 0.619 0.686 0.552 0.604983 0.642854 0.240269 0.67874 

Class S-P Accuracy Sensitivity Specificity Precision F1 score MCC AUROC 

PHOSforUS 0.763 0.72 0.806 0.787563 0.752005 0.528191 0.84546 

Disphos 0.69 0.692 0.688 0.691998 0.691489 0.380551 0.75849 

Musite 0.631 0.868 0.394 0.591041 0.702042 0.297662 0.71465 

Netphos3.1 0.532 0.972 0.092 0.517175 0.67509 0.130089 0.63346 

Rfphos 0.608 0.836 0.38 0.57441 0.680826 0.242584 0.67445 

PhosPred-RF 0.66 0.95 0.37 0.602202 0.73677 0.39284 0.73841 

PhosphoSVM 0.553 0.98 0.126 0.528897 0.686878 0.201449 0.70333 

Class T-P Accuracy Sensitivity Specificity Precision F1 score MCC AUROC 

PHOSforUS 0.69 0.666 0.714 0.700031 0.682284 0.380759 0.76799 

Disphos 0.592 0.762 0.422 0.568356 0.650632 0.197605 0.66303 

Musite 0.597 0.838 0.356 0.565398 0.675205 0.221692 0.6354 

Netphos3.1 0.52 0.95 0.09 0.510748 0.664287 0.079128 0.59619 

Rfphos 0.583 0.87 0.296 0.552847 0.675764 0.204821 0.6442 

PhosPred-RF 0.592 0.956 0.228 0.553552 0.700941 0.269366 0.68277 

PhosphoSVM 0.59 0.956 0.224 0.551987 0.699722 0.26752 0.69151 
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