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Supplementary Methods

Mathematical Methods

Markov Chain Monte Carlo sampling

The posterior distribution p(θ|D) (probability that the parameters θ fit the data D, used in

Eq. 3) is obtained by applying Bayes’ formula, i.e. it is defined through a prior p(θ) and a

likelihood function p(D|θ) as

p(θ|D) ∝ p(D|θ)p(θ).

We define the prior to be p(θ) = p(w)p(σ), where p(w) is a Dirichlet distribution with

uniform parameters, which ensures the constraint on weights (i.e. they all add to one) is

satisfied, and p(σ) is a half normal distribution with mean and standard deviation set to 0

and 10, respectively. The likelihood function follows directly from Eq. (2) as

p(D|θ) =
N∏

n=1

p(yn|xn,θ), p(yn|xn,θ) =
1

σ
√

2π
exp

{
−(yn −wT f(xn))2

2σ2

}
.

Expected value and variance for ensemble model

From Eq. (2), we can easily compute the expected value

E(y) = E(wT f + ε) = E(w)T f (1)

and variance

Var(y) = fTVar(w)f + Var(ε) (2)

of the response, which will be needed for are used in the optimization phase in order to

create the surrogate function G(x) (Eq. 5). The expected value and variance of w and ε are

estimated through sample mean and variance using samples from the posterior distribution
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p(θ|D).

Please note that although we have modeled p(y|x∗,θ) to be Gaussian (Eq. 2), the pre-

dictive posterior distribution p(y|x∗,D) (Eq. 3) is not Gaussian due to the complexity of

p(θ|D) arising from the data and other constraints.

It is important to note that our modeling approach provides quantification of both epis-

temic and aleatoric uncertainty, through the first and second terms in Suppl. Eq. (2), re-

spectively. Epistemic (systematic) uncertainty accounts for uncertainty in the model and

aleatoric (statistical) uncertainty describes the amount of noise inherent in the data.1 While

epistemic uncertainty can be eventually explained away given enough data, we need to model

it accurately in order to properly capture situations not encountered in the training set. Mod-

eling epistemic uncertainty is therefore important for small data problems, while aleatoric

uncertainty is more relevant for large data problems. In general, it is useful to characterize

the uncertainties within a model, as this enables understanding which uncertainties have the

potential of being reduced.2

Related work and novelty of our ensemble approach

Our ensemble approach is based on stacking3—a method where different ensemble members

are trained on the same training set and whose outputs are then combined, as opposed to

techniques that manipulate the training set (e.g. bagging4) or those that sequentially add

new models into the ensemble (e.g. boosting5). Different approaches for constructing en-

semble of models using the Bayesian framework have been already considered. For example,

Bayesian Model Averaging (BMA)6 builds an ensemble model as a linear combination of the

individual members in which the weights are given by the posterior probabilities of models.

The weights therefore crucially depend on marginal likelihood under each model, which is

challenging to compute. BMA accounts for uncertainty about which model is correct but

assumes that only one of them is, and as a consequence, it has the tendency of selecting the

one model that is the closest to the generating distribution. Agnostic Bayesian learning of
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ensembles7 differs from BMA in the way the weights are calculated. Instead of finding the

best predictor from the model class (assuming that the observed data is generated by one of

them), this method aims to find the best predictor in terms of the lowest expected loss. The

weights are calculated as posterior probability that each model is the one with the lowest

loss. Bayesian model combination (BMC)8 seeks the combination of models that is closest to

the generating distribution by heavily weighting the most probable combination of models,

instead of doing so for the most probable one. BMC samples from the space of possible

ensembles by randomly drawing weights from a Dirichlet distribution with uniform parame-

ters. The Bayesian Additive Regression Trees (BART)9 method is one of the homogeneous

ensemble approaches. It models the ensemble as a (nonweighted) sum of regression trees

whose parameters, and ensemble error standard deviation, are defined thought their poste-

rior distributions given data and sampled using MCMC. Yao et al. 10 suggest a predictive

model in terms of a weighted combination of predictive distributions for each probabilistic

model in the ensemble. This approach can be seen as a generalization of stacking for point

estimation to predictive distributions.

All of these models, except of BMC and our model, have weights being point estimates,

obtained usually by minimizing some error function. In contrast, we define them as random

variables, and in contrast to BMC, our weights are defined through full joint posterior distri-

bution given data. BMC is the closest in design to our approach, but it was formulated only

in the context of classifiers. Only BART does include a random error term in the ensemble,

apart from our model. Unlike BMA, BMC or models of Yao et al. 10 , Chipman et al. 9 , our

approach does not require that the predictors are themselves probabilistic, and therefore

can readily leverage various scikit-learn models. The main differences are summarized in

Supplementary Table 1.

Although our model has some features that have been previously considered in the liter-

ature, the approach presented here is, to the best of our knowledge, novel in the fact that

the metalearner is modeled as a Bayesian linear regression model, whose parameters are
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Supplementary Table 1: Feature differences between Bayesian based ensemble modeling
approaches.

Method Weighted Probabilistic Probabilistic Regression Classification Ensemble
average base models weights error term

BMA6 4 4 8 4 4 8

BMC8 4 4 48 8 4 8

BART9 8 4 8 4 8 4

Stacking predictive
4 4 8 4 4 8distributions10

Agnostic Bayes7 4 48 8 4 4 8

ART (this work) 4 8 4 4 8 4

inferred from data combined with a prior that satisfies the constraints on the ‘voting’ nature

of ensemble learners.

Input space set B

The bounds for the input space B for G(x) (Eq. 4) can be provided by the user (see details

in the “Implementation” section, Supplementary Table 3). Otherwise, default values are

computed from the input data defining the feasible space as:

B = {x̃ ∈ RD| Ld −∆d ≤ x̃d ≤ Ud + ∆d , d = 1, . . . , D}

∆d = (Ud − Ld)ε ; Ud = max
1≤n≤N

(xdn) ; Ld = min
1≤n≤N

(xdn)

(xn, yn) ∈ D, n = 1, . . . , N

(3)

This restriction of input variables to the set B reflects our assumption that the predictive

models performs accurately enough only on an interval that is enlarged by a factor ε around

the minimum and maximum values in the data set (ε = 0.05 in all calculations).

Success probability calculation

Our probabilistic model enables us to estimate the probability of success for the provided

recommendations. Of practical interest are the probability that a single recommendation

is successful and the probability that at least one recommendation of several provided is
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successful.

Success is defined differently for each of the three cases considered in Eq. (5): maxi-

mization, minimization and specification. For maximization, success involves obtaining a

response y higher than the success value y∗ defined by the user (e.g. the best production so

far improved by a factor of 20%). For minimization, success involves obtaining a response

lower than the success value y∗. For the specification case, it involves obtaining a response

that is as close as possible to the success value y∗.

Formally, we define success for response y through the set S = {y|y ∼ pS(y)}, where the

probability distribution for success is

pS(y) =


U(y∗, U) (maximization case)

U(L, y∗) (minimization case)

N (y∗, σ2
y∗) (specification case),

(4)

where U is the uniform distribution (U(a, b) = 1/(b − a) if a < y < b; 0 otherwise), L

and U are its corresponding lower and upper bounds, and σ2
y∗ is the variance of the normal

distribution N around the target value y∗ for the specification case.

The probability that a recommendation succeeds is given by integrating the probability

that input xr gives a response y (i.e. full predictive posterior distribution from Eq. 3), times

the probability that response y is a success

p(S|xr) =

∫
pS(y)p(y|xr,D)dy.

This success probability is approximated using draws from the posterior predictive distribu-

tion as

p(S|xr) ≈


1
Ns

∑Ns

i=1 IS(yi) (maximization/minimization case)

1
Ns

∑Ns

i=1N (yi; y
∗, σ2

y∗) (specification case)
(5)
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where yi ∼ p(y|xr,D), i = 1, . . . , Ns, and IA(y) = 1 if y ∈ A, 0 if y 6∈ A.

In case of multiple recommendations {xr} ≡ {xr}Nr
r=1, we provide the probability of

success for at least one of the recommendations only for maximization and minimization

types of objectives. This probability is calculated as one minus the probability p(F|{xr})

that all recommendations fail, where

p(F|{xr}) ≈ 1

Ns

Ns∑
i=1

IF({yri }), {yri } ∼ p(y|{xr},D), i = 1, . . . , Ns, r = 1, . . . , Nr,

and the failure set F = {{yr}|yr /∈ S,∀r = 1, . . . , Nr} consists of outcomes that are not

successes for all of the recommendations. Since the chosen recommendations are not neces-

sarily independent, we sample {yri } jointly for all {xr}, i.e. i-th sample has the same model

parameters (wi, σi, εij ∼ N (0, σ2
i ) from Eq. 2) for all recommendations.

Multiple response variables

For multiple response variable problems (e.g. trying to hit a predetermined value of metabo-

lite a and metabolite b simultaneously, as in the case of the hopless beer), we assume that the

response variables are conditionally independent given input vector x, and build a separate

predictive model pj(yj|x,D) for each variable yj, j = 1, . . . , J . We then define the objective

function for the optimization phase as

G(x) = (1− α)
J∑

j=1

E(yj) + α

J∑
j=1

Var(yj)
1/2

in case of maximization, and analogously adding the summation of expectation and variance

terms in the corresponding functions for minimization and specification objectives (Eq. 5).

The probability of success for multiple variables is then defined as

p(S1, . . . ,SJ |x) =
J∏

j=1

p(Sj|xr)
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Future work will address the limitation of the independence assumption and take into

account possible correlations among multiple response variables.

Implementation

Supplementary Figure 1: The main ART source code structure and dependencies.

Modules

core.py is the core module that defines the class RecommendationEngine with functions

for loading data (into the format required for machine learning models), building predictive

models and optimization (Supplementary Figure 1).

The module constants.py contains assignments to all constants appearing throughout

all other modules. Those include default values for some of the optional user input parameters

(Supplementary Table 3), hyperparameters for scikit-learn models and simulation setups

for PyMC3 and PTMCMCSampler functions.

Module utilities.py is a suite of functions that facilitate ART’s computations but
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can be used independently. It includes functions for loading studies (using EDD through

edd-utils or directly from files), metrics for evaluation of predictive models, identifying and

filtering noisy data, etc.

Module plot.py contains a set of functions for visualization of different quantities ob-

tained during an ART run, including functions of relevance to final users (e.g. true vs.

predicted values) as well as those providing insights into intermediate steps (e.g. predictive

models surfaces, space exploration from optimization, recommendations distributions).

All modules can be easily further extended by future contributors to ART.

Importing a study

Studies can be loaded directly from EDD by calling a function from the utility.py module

that relies on edd-utils package:

dataframe = load_study(edd_study_slug=edd_study_slug,edd_server=edd_server)

The user should provide the study slug (last part of the study web address) and the url

to the EDD server. Alternatively, a study can be loaded from an EDD-style .csv file, by

providing a path to the file and calling the same function:

dataframe = load_study(data_file=data_file)

The .csv file should have the same format as an export file from EDD, i.e. it should contain

at least Line Name column, Measurement Type column with names of input and response

variables, and Value column with numerical values for all variables (see example in Supple-

mentary Figure 2).

Either approach will return a pandas dataframe containing all information in the study,

which can be pre-processed before running ART, if needed.

Running ART

ART can be run by instantiating an object from the RecommendationEngine class by:

art = RecommendationEngine(dataframe, **art_params)
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Supplementary Figure 2: Example of an EDD-style file.

The first argument is the dataframe created in the previous step (from an EDD study

or data file import). If there is no data preprocessing, the dataframe is ready to be passed

as an argument. Otherwise, the user should make sure that the dataframe contains at least

the required columns: Line Name, Measurement Type and Value. Furthermore, line names

should always contain a hyphen (“-”) denoting replicates (see Supplementary Table 2), and

this character should be exclusively used for this purpose (this point is critical for creating

partitions for cross-validation).

Supplementary Table 2: Valid and non valid examples of entries of the Line Name column
in the dataframe passed to start an ART run.

4 Valid 8 Non valid
LineNameX-1 LineNameX1
LineNameX-2 LineNameX2
LineNameX-r1 Line-NameX1
LineNameX-r2 Line-NameX2
LineNameX-R1 Line-Name-X1
LineNameX-R2 Line-Name-X2
. . . . . .

The second argument is a dictionary of key-value pairs defining several required and

optional keyword arguments (summarized in Supplementary Table 3) for generation of an

art object.

Building the model

The level-0 models are first initialized and then fitted through the _initialize_models
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Supplementary Table 3: ART input parameters. Required parameters are marked with an
asterisk.

Name Meaning
input_var List of input variables*
bounds_file Path to the file with upper and lower bounds for each input variable

(default None)
response_var List of response variables*
build_model Flag for building a predictive model (default True)
cross_val Flag for performing cross-validation (default False)
ensemble_model Type of the ensemble model (default ‘BW’)
num_models Number of level-0 models (default 8)
recommend Flag for performing optimization and providing recommendations

(default True)
objective Type of the objective (default ‘maximize’)
threshold Relative threshold for defining success (default 0)
target_value Target value for the specification objective (default None)
num_recommendations Number of recommendations for the next cycle (default 16)
rel_eng_accuracy Relative engineering accuracy or required relative distance between

recommendations (default 0.2)
niter Number of iterations to use for T = 1 chain in parallel tempering

(default 100000)
alpha Parameter determining the level of exploration during the

optimization (value between 0 and 1, default None corresponding to 0)
output_directory Path of the output directory with results (default

../results/response_var_time_suffix)
verbose Amount of information displayed (default 0)
seed Random seed for reproducible runs (default None)

and _fit_models functions respectively, which rely on the scikit-learn and tpot packages.

To build the final predictive model, first the level-1 data is created by storing cross-validated

predictions of level-0 models into a theano variable that is shared across the functions from

the PyMC3 package. Finally, the parameters of the ensemble model are sampled within the

function _ensemble_model, which stores the inferred model and traces that are later used

for predictive posterior probability calculation, as well as first and second moments from the

traces, used for estimation of the first two moments of the predictive posterior distribution

using Suppl. Eq. (1)–(2).

By default, ART builds the models using all available data and evaluates the final, ensem-

ble model, as well as all level-0 models, on the same data. Optionally, if specified by the user
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through the input flag cross_val, ART will evaluate the models on 10-fold cross-validated

predictions, through the function _cross_val_models. This computation lasts roughly 10

times longer. Evaluating models on new data, unseen by the models, can also be done by

calling:

art.evaluate_models(X=X_new, y=y_new)

Optimization

ART performs optimization by first creating a set of draws from

draws = art.parallel_tempering_opt()

which relies on the PTMCMCSampler package. Here, an object from the class TargetModel is

created. This class provides a template for and can be replaced by other types of objective

functions (or target distributions) for parallel tempering type of optimization, as long as

it contains functions defining loglikelihood and logprior calculation (see Eq. 6). Also, the

whole optimization procedure may well be replaced by an alternative routine. For example,

if the dimension of the input space is relatively small, a grid search could be performed, or

even evaluation of the objective at each point for discrete variables. Lastly, out of all draws

collected by optimizing the specified objective, ART finds a set of recommendations by

art.recommend(draws)

which ensures that each recommendation is different from all others and all input data by a

factor of γ (rel_eng_accuracy) in at least one of the components (see Algorithm 1).

Documentation and testing

The ART source code thoroughly conforms to the syntactic and stylistic specifications out-

lined in the PEP 8 style guide.11 Documentation for class methods and utility functions

is embedded in docstrings. A brief synopsis of functionality, an optional deeper dive into

behavior and use cases, as well as a full description of parameter and return value typing is

included in the flexible reStructuredText markup syntax. The documented source code is

used in conjunction with the Sphinx package to dynamically generate an API reference.
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Algorithm 1 Choosing recommendations from a set of samples from the target distribution
π(x)

1: Input: Nr: number of recommendations
Input: {xn}Ns

n=1: samples from π(x) (Eq. 6)
Input: γ: required relative distance for recommendations (relative engineering accuracy)
Input: Dx: input variable experimental data

2: Output: rec = {xr}Nr
r=1: set of recommendations

3: draws← {xn}Ns
n=1 {remaining draws}

4: rec = ∅
5: while r = 1, . . . , Nr do
6: if draws = ∅ then
7: γ = 0.8γ and repeat the procedure
8: else
9: xr ← a sample from draws with maximal G(x) {G(x) is already calculated}

10: if there exists d ∈ {1, . . . , D} s.t. |xrd − xd| > γ for all x ∈ rec ∪ Dx then
11: rec = {rec,xr}
12: end if
13: end if
14: draws← draws \ {xn ∈ draws|G(xn) = G(xr)}
15: end while
16: return rec

The code can be built as a local package for testing and other utility, the dependencies

and procedure for which are handled by the setup.py file in accordance with the Setuptools

standard for module installation.

A suite of unit and integration tests were written using the pytest library, and are in-

cluded with the source code under the tests directory. The unit testing was designed to

target and rigorously validate individual functions in their handling and output of types.

Because of the expensive calls to libraries such as scikit-learn and tpot laden throughout

ART’s codebase for model training and validation, unit-tested functions were parameterized

with the Boolean flag testing to replace such calls with dummy data that mimic the re-

sponses from library code. The resulting suite of unit tests therefore runs rapidly, quickly

evaluating the integrity of type handling and output that ensure the smooth hand-off of

values between functions in ART.

Integration tests are likewise implemented with pytest, but rather test a more complete
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spectrum of expected behavior without silencing calls to library code. Full model training,

cross-validation, and evaluation is completed under this test suite, the output of which is

validated against known data sets within some reasonable margin to account for stochastic

processes.

The instructions to locally run the testing suite can be found in the documentation.

Supplementary Notes

Designing optimal experiments for machine learning

Machine learning is not a magical procedure that can just be sprinkled over any data set

to obtain good results: it requires careful experimental planning to meet the requirements

that will make it effective. A wrong choice for the initial training data set, for example, can

lengthen the learning process significantly (Supplementary Figure 3).

Here, we offer a succinct list of points to consider when planning to use ART (or ML in

general) to guide bioengineering:

• Choose actionable inputs. Choose as input features for ART (see Fig. 1) experi-

ment variables that can be easily manipulated, because the ML-guided bioengineering

procedure will require them to be changed in order to explore the full phase space

and “learn” the problem. For example, choose transcriptomics and proteomics over

metabolomics: most metabolic engineers know how to engineer their pathway to in-

crease or decrease the amount of a given transcript or protein, whereas deciding what

to change to increase e.g. acetyl-coA concentration two-fold is not trivial. However,

one cannot take reaching proteomics targets for granted, as shown in the “Improving

dodecanol production” section. An alternative is to use variables completely under

our control as input, such as the promoters for the five genes used in Zhang et al. 12 .

This approach has the advantage that it fully bridges the Learn and Design phases of
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the DBTL cycle, but it has the disadvantage that it may not fully explore the protein

phase space (e.g. in case all promoters available are weak for a given protein).

• Decide very carefully how many experiment variables (i.e. input features)

you would like to explore. Choose too many variables (e.g. proteins in the limonene

case in the “Improving the production of renewable biofuel” section, or promoters in

Zhang et al. 12) and the corresponding phase space is too large for machine learning

to explore in a reasonable amount of DBTL cycles. Choose too few variables and you

might miss important configurations for your system. As a very crude rule of thumb,

you should budget for around ∼100 instances per 5-10 variables.

• Make sure your experiment variables can be independently acted upon. If

recommendations require protein 1 concentration to be increased two-fold and protein

2 to be decreased by a factor of three to improve production, but a strong promoter for

protein 1 also produces an increase in protein 2, it will very complicated to reach the

target protein profile. This type of non-target effects were abundantly found in the do-

decanol case13 (“Improving dodecanol production” section). Modular pathway designs

that ensure that the full input phase space we can be fully explored are, therefore,

highly recommended. Systematic part characterization (e.g. large promoter libraries

with a variety of tested relative strengths) are equally important.

• Design your experiment to start with ∼100 instances for the initial DBTL

cycle. Although we have shown that ART can use less than a hundred instances

as starting point and still guide metabolic engineering effectively (e.g. limonene and

hoppy beer cases in the “Improving the production of renewable biofuel” and “Brewing

hoppy beer without hops by bioengineering yeast” sections), this is by no means a

guarantee, and actual successs depends on the complexity of the problem (see the

“Using simulated data to test ART” section). By starting with ∼100 instances, one can

alleviate the problem of lack of statistical convergence, if predictions are not accurate.
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The alternative is a non-predictive model and little understanding whether the problem

is lack of data (instances), or other design problems (see the “Improving dodecanol

production” section). Consider automating as much of your process as possible to

guarantee enough instances.

• Sample the initial phase space as widely as possible. Make sure you cover wide

ranges for both input and response variables. Include bad (e.g. low production) and

intermediate results as well as good ones (e.g. high production). This is the only way

that the algorithms can learn to distinguish the inputs needed to reach any of these

regimes. The Latin Hypercube14 that we used for the synthetic data case (“Using

simulated data to test ART” section) is a good choice, but by no means the only one.

• Plan for several DBTL cycles. ART, and machine learning methods in general,

shine when they can dynamically probe your system. While you can get results with

two DBTL cycles, they are not comparable to what you get using >5 cycles (Fig. 5 in

the main text). If you have a limited budget of, e.g. 100 instances, it is better to start

with a strong first cycle and several weaker ones (e.g. 40 instances for cycle 1, then six

10 instance cycles) than the customary two DBTL cycle study (e.g. 60 instances for

first cycle, 40 instances for the second one).

• Consider uncertainty, as well as predicted response, when choosing next

steps. Choose some recommendations with little uncertainty even if the predicted

outcome is not so desirable (e.g. low production) to establish trust in the approach.

Choose some recommendations with large uncertainty even if the predicted outcome

is not desirable so as not to miss unexpected opportunities. Use the α parameter (Eq.

5 in the main text) for this purpose.

Supplementary Figures and Tables
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Supplementary Figure 3: Choosing the initial training data set wisely can increase
ART’s performance significantly. The “systematic” approach involves using the Latin
Hypercube14 method to choose starting points in the phase space, whereas the “naive” ap-
proach concentrates all starting points in a portion of the whole phase space that spans only
1/10th of the width for each dimension. As in Fig. 5, plots present the results of the sim-
ulated metabolic engineering in terms of highest production achieved so far for each cycle,
here shown for D = 10. The systematic approach outperforms the naive one for the difficult
and medium type of functions, whereas both approaches perform similarly for the easy func-
tion from cycle 2 onwards (see Figure 5 in the main text). In each plot, lines and shaded
areas represent the estimated mean values and 95% confidence intervals, respectively, over
10 repeated runs. Source data are provided as a Source Data file.

Supplementary Table 4: Total number of strains (pathway designs) and training instances
available for the dodecanol production study13 (Fig. 9, Suppl. Figs. 8 and 9). Pathway 1,
2 and 3 refer to the top, medium and bottom pathways in Fig. 1B of Opgenorth et al. 13 .
Training instances are amplified by the use of fermentation replicates. Failed constructs (3
in each cycle, initial designs were for 36 and 24 strains in cycle 1 and 2) indicate nontarget,
possibly toxic, effects related to the chosen designs. Numbers in parentheses () indicate cases
for which no product (dodecanol) was detected.

Number of strains Number of instances
Cycle 1 Cycle 2 Cycle 1 Cycle 2

Pathway 1 12 11 (2) 50 39 (6)
Pathway 2 9 (4) 10 (5) 31 (10) 30 (14)
Pathway 3 12 - 35 -
Total 33 (4) 21 (7) 116 (10) 69 (20)
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Supplementary Figure 4: Mean Absolute Error (MAE) for the synthetic data set in
Fig. 5. Synthetic data is obtained from functions of different levels of complexity (see Figure
4 in the main text), different phase space dimensions (2, 10 and 50), and different amounts
of training data (DBTL cycles). The training set involves all the strains from previous
DBTL cycles. The test set involves the recommendations from the current cycle. MAE are
obtained by averaging the absolute difference between predicted and actual production levels
for these strains. MAE decreases significantly as more data (DBTL cycles) are added, with
the exception of the high dimension case. In each plot, lines and shaded areas represent
the estimated mean values and 95% confidence intervals, respectively, over 10 repeated runs.
Source data are provided as a Source Data file.
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Supplementary Figure 5: Example for ART’s output for the limonene case. The out-
put comes in the form of recommended inputs for the next cycle (left) and the corresponding
probability distribution for the associated response (right) (see the “Improving the produc-
tion of renewable biofuel” section for further details). Note that the recommendations come
in the same form as the input. The inputs in this case are the protein profiles for 9 proteins
and, hence, the recommendations come in terms of target protein profiles for the same 9
proteins. The response in this case is the production of limonene, and the second part of the
output represents the probability distribution for the limonene production (right). The way
to use these recommendations is to 1) find an existing strain, and 2) find the relative protein
expression changes from this strain to the recommendations: e.g. protein 1 needs to be 3×
more abundant, protein 2 needs to stay roughly the same, protein 3 concentration needs to
be zero, protein 4 needs to be halved, etc. Modifying the pathway to achieve these changes
is non trivial because tools to predict protein expression from DNA parts can be very in-
accurate (see the “Improving dodecanol production” section). An alternative approach that
bypasses this problem involves using, as input to ART, the pathway components: e.g. gene
promoters as we did in Zhang et al. 12 . Providing the recommendations in the form of DNA
parts (e.g. from the MoClo toolkit15) must be tailored to each project specifically.
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Supplementary Figure 6: Linalool and geraniol predictions for ART recommenda-
tions for each of the beers (Fig. 8), showing full probability distributions (not
just averages). These probability distributions (in different tones of green for each of the
three beers) show very broad spreads, belying the illusion of accurate predictions and rec-
ommendations. These broad spreads indicate that the model has not converged yet and that
many production levels are compatible with a given protein profile. Source data are provided
as a Source Data file.

22



Supplementary Figure 7: Principal Component Analysis (PCA) of proteomics data
for the hopless beer project (Fig. 8), showing experimental results for cycle 1 and 2,
as well as ART recommendations for both cycles. Cross size is inversely proportional to
proximity to L and G targets (larger crosses are closer to target). The broad probability
distributions spreads (Supplementary Figure 6) suggest that recommendations will change
significantly with new data. Indeed the protein profile recommendations for the Pale Ale
changed markedly from DBTL cycle 1 to 2, even though the average metabolite predictions
did not (Fig. 8, c) and g)). For the Torpedo case, the final protein profile recommendations
overlapped with the experimental protein profiles from cycle 2, although they did not cluster
around the closest profile (largest orange cross), concentrating on a better solution according
to the model. In any case, despite the limited predictive power afforded by the cycle 1 data,
ART produces recommendations that guide the metabolic engineering effectively. For both of
these cases, ART recommends exploring parts of the phase space such that the final protein
profiles that were deemed close enough to the targets (in orange, see also g) in Fig. 8) lie
between the first cycle data (red) and these recommendations (green). In this way, finding
the final target (expected around the orange cloud) becomes an interpolation problem, which
is easier to solve than an extrapolation one. Source data are provided as a Source Data file.
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Supplementary Figure 8: ART’s predictive power for the second pathway in the
dodecanol production example is very limited. Although cycle 1 data provide good
cross-validated predictions (in black), testing the model with 30 new instances from cycle
2 (in blue) shows limited predictive power and generalizability. As in the case of the first
pathway (Fig. 9), combining data from cycles 1 and 2 improves predictions significantly.
The points and the violins represent the mean values and the uncertainty in predictions,
respectively. R2 and Mean Absolute Error (MAE) values are only for cross-validated mean
predictions. Source data are provided as a Source Data file.
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Supplementary Figure 9: ART’s predictive power for the third pathway in the do-
decanol production example is poor. As in the case of the first pathway (Fig. 9), the
predictive power using 35 instances is minimal. The low production for this pathway (Fig. 2
in Opgenorth et al. 13) preempted a second cycle. R2 and Mean Absolute Error (MAE) values
are only for cross-validated mean predictions (black data points). Bars indicate 95% credible
interval of the predictive posterior distribution. Source data are provided as a Source Data
file.
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