## Supplementary information file

## Polyunsaturated fatty acids and p38-MAPK link metabolic reprogramming to cytoprotective gene expression during Dietary Restriction

Chamoli M., Goyala A., Tabrez SS. et al, 2020



**Supplementary Figure 1. (A)** The *nsy-1(ok593)*, *sek-1(km4)* and *pmk-1(km25)* mutants are not RNAi defective, similar to wild-type (WT). The worms were grown on *pos-1* RNAi and number of L1 or dead embryos counted. Percent dead embryos plotted on x-axis. n=3 independent experiments. Data presented as mean values  $\pm$  SEM. **(B)** WT and *sek-1(km4)* have similar pharyngeal pumping rates at L4 stage. The *eat-2(ad1116)* that has slow pumping rate was used as a control. n=28 examined in 2 independent experiments. Unpaired two-tailed *t*-test with Welch's correction, \*\*\*\**P*<0.0001. Data represented as mean values  $\pm$  SEM. **(C)** The knockdown of *drl-1* increases life span in both WT as well as *jnk-1(gk7)*. **(D)** Knocking down *daf-2* using RNAi results in life span extension in both WT as well as in *sek-1(km4)*. Life span and summary data is provided in Supplementary Table 1. Experiments performed at 20 °C. Source data are provided as a Source Data file.



**Supplementary Figure 2. (A)** Quantification of data shown in Figure 3A. n=19. One of three biologically independent experiments is shown. **(B)** Quantification of data shown in Figure 3B. n=20. One of three biologically independent experiments is shown. **(C)** Lower fat storage was observed in *eat-2(ad465)* and *eat-2(ad465);sek-1(km4)* as compared to WT and *sek-1(km4)*, respectively. Quantification of data is shown below. n=19. One of three biologically independent experiments is shown.

Unpaired two-tailed *t*-test with Welch correction used in all cases. Data are presented as mean values ± SEM. Experiments performed at 20 °C. Source data are provided as a Source Data file.



**Supplementary Figure 3. (A)** The oxygen consumption rate (OCR) is decreased in *eat-2(ad465)* as compared to WT. Similar decrease was observed on comparing *sek-1(km4)* and *eat-2(ad465);sek-1(km4)*. n=4 independent experiments. Data are presented as mean values  $\pm$  SEM. Unpaired two-tailed *t*-test with Welch's correction. **(B)** Autophagy, as determined by puncta formation in the seam cells of a LGG-1::GFP-expressing strain (upper panel), was increased in *eat-2(ad465)* as compared to WT. Knocking down *sek-1* by RNAi has no effect. Quantification of one of two biologically independent experiments shown (lower panel). n=20. Data are presented as mean values  $\pm$  SEM. Two-way Annova-Sidak's multiple comparisons test, \*\*\*\**P*<0.0001. Scale bar = 10 µm. Experiments performed at 20 °C. Source data are provided as a Source Data file.



**Supplementary Figure 4.** Western blot analysis of WT grown on control, *pmk-1* and *sek-1* RNAi. The levels of phospho-PMK-1 is dramatically reduced in all cases. The level of PMK-1 is lower only in case of *pmk-1* RNAi and not in case of *sek-1* RNAi. One of two biologically independent experiments is shown. Experiments were performed at 20 °C. Source data are provided as a Source Data file.



**Supplementary Figure 5.** (A) Western blot analysis of *Pcyp-35B1::gfp* grown on control or *sek-1* RNAi showing that OA, SA and PA supplementation upregulates phospho-PMK-1 levels, in a *sek-1*-dependent manner. Arsenite (As) treatment of worms was taken as a positive control. One of two biologically independent experiments is shown. (B) External supplementation of oleic acid (OA), stearic acid (SA) and palmitic acid (PA) induces expression of GFP (at 30-36 hours post YA) in the *Pcyp-35B1::gfp* worms that was suppressed when *sek-1* is knocked down using RNAi. Data from one of two biologically independent experiments at 100X magnification to cover the entire worm body and stitched together to generate a contiguous image. Experiments were performed at 20 °C. Source data are provided as a Source Data file.



**Supplementary Figure 6.** GC-MS analysis revealed that PUFAs are differentially regulated in *eat-2(ad465)* as compared to WT. n=5 biologically independent samples. Data are presented as mean values  $\pm$  Std. Dev. Unpaired two-tailed *t*-test. Experiments were performed at 20 °C. Source data are provided as a Source Data file.

| Genetic<br>Background             | RNAi<br>usedª | Mean<br>±<br>SEM<br>(Days) | n   | % change<br>with<br>respect to<br>Control | <i>P-</i> value | Genetic<br>Background | RNAi used <sup>a</sup> | Mean<br>±<br>SEM (Days) | n   | %<br>change with<br>respect to<br>Control | <i>P-</i> value |
|-----------------------------------|---------------|----------------------------|-----|-------------------------------------------|-----------------|-----------------------|------------------------|-------------------------|-----|-------------------------------------------|-----------------|
| Set1 (Figure 1A, B)               |               |                            |     |                                           |                 | Set2                  |                        |                         |     |                                           |                 |
| WT                                | Control       | 19.6 ± 0.42                | 68  |                                           |                 | WT                    | Control                | 18.21 ± 0.33            | 85  |                                           |                 |
| WT                                | drl-1         | 30.44 ± 0.33               | 104 | 55.31                                     | <0.0001         | WT                    | drl-1                  | 27.9 ± 0.64             | 50  | 53.21                                     | <0.0001         |
| pmk-1(km25)                       | Control       | 18.93 ± 0.63               | 42  |                                           |                 | pmk-1(km25)           | Control                | 15.61 ± 0.26            | 99  |                                           |                 |
| pmk-1(km25)                       | drl-1         | 17.76 ± 0.53               | 86  | -6.18                                     | 0.1793          | pmk-1(km25)           | drl-1                  | 18.65 ± 0.53            | 79  | 19.47                                     | <0.0001         |
|                                   |               |                            |     |                                           |                 |                       |                        |                         |     |                                           |                 |
| Set1 (Figure 1A, C)               |               |                            |     |                                           |                 | Set2                  |                        |                         |     |                                           |                 |
| WT                                | Control       | 19.6 ± 0.42                | 68  |                                           |                 | WT                    | Control                | 16.56 ± 0.29            | 97  |                                           |                 |
| WT                                | drl-1         | 30.44 ± 0.33               | 104 | 55.31                                     | <0.0001         | WT                    | drl-1                  | 30.38 ± 0.29            | 97  | 83.45                                     | <0.0001         |
| nsy-1(ok593)                      | Control       | 24.41 ± 0.36               | 128 |                                           |                 | nsy-1(ok593)          | Control                | 24.52 ± 0.57            | 86  |                                           |                 |
| nsy-1(ok593)                      | drl-1         | 26.27 ± 0.48               | 102 | 7.62                                      | 0.0003          | nsy-1(ok593)          | drl-1                  | 26.4 ± 0.81             | 75  | 7.67                                      | 0.0071          |
|                                   |               |                            |     |                                           |                 |                       |                        |                         |     |                                           |                 |
| Set1 (Figure 1D)                  |               |                            |     |                                           |                 | Set2                  |                        |                         |     |                                           |                 |
| WT                                | Control       | 17.49 ± 0.3                | 88  |                                           |                 | WT                    | Control                | 19.6 ± 0.42             | 68  |                                           |                 |
| WT                                | drl-1         | 30.29 ± 0.5                | 73  | 73.18                                     | <0.0001         | WT                    | drl-1                  | 30.44 ± 0.33            | 104 | 55.31                                     | <0.0001         |
| sek-1(km4)                        | Control       | 18.25 ± 0.35               | 81  |                                           |                 | sek-1(km4)            | Control                | 21.71 ± 0.47            | 63  |                                           |                 |
| sek-1(km4)                        | drl-1         | 18.81 ± 0.49               | 78  | 3.07                                      | 0.2051          | sek-1(km4)            | drl-1                  | 16.63 ± 0.51            | 81  | -23.40                                    | <0.0001         |
|                                   |               |                            |     |                                           |                 |                       |                        |                         |     |                                           |                 |
| Set1 (Supplementary<br>Figure 1C) |               |                            |     |                                           |                 |                       |                        |                         |     |                                           |                 |
| WT                                | Control       | 19.02± 0.27                | 93  |                                           |                 |                       |                        |                         |     |                                           |                 |
| WT                                | drl-1         | 27.48 ± 0.33               | 86  | 44.47                                     | <0.0001         |                       |                        |                         |     |                                           |                 |
| jnk-1(gk7)                        | Control       | 15.56 ± 0.32               | 93  |                                           |                 |                       |                        |                         |     |                                           |                 |
| jnk-1(gk7)                        | drl-1         | 27.79 ± 0.64               | 82  | 78.59                                     | <0.0001         |                       |                        |                         |     |                                           |                 |

**Supplementary Table 1:** Summary of life span analysis, related to Figures 1, 2, 5 and 7, Supplementary Figure 1.

| Set1 (Supplementary<br>Figure 1D)       |                 |                  |            |               |         | Set2                                                            |                 |              |     |        |         |
|-----------------------------------------|-----------------|------------------|------------|---------------|---------|-----------------------------------------------------------------|-----------------|--------------|-----|--------|---------|
| WT                                      | Control         | 19.84 ± 0.25     | 228        |               |         | WT                                                              | Control         | 18.88 ± 0.34 | 105 |        |         |
| WT                                      | daf-2           | 38.7 ± 0.49      | 166        | 95.06         | <0.0001 | WT                                                              | daf-2           | 36.71 ± 0.41 | 156 | 94.44  | <0.0001 |
| sek-1(km4)                              | Control         | 23.21 ± 0.31     | 115        |               |         | sek-1(km4)                                                      | Control         | 25.25 ± 0.41 | 122 |        |         |
| sek-1(km4)                              | daf-2           | 34.93 ± 0.86     | 109        | 50.50         | <0.0001 | sek-1(km4)                                                      | daf-2           | 34.02 ± 0.68 | 154 | 34.73  | <0.0001 |
|                                         |                 |                  |            |               |         |                                                                 |                 |              |     |        |         |
| Set1 (Figure 2A)**                      |                 |                  |            |               |         | Set2**                                                          |                 |              |     |        |         |
| WT                                      | Control         | 19.84 ± 0.25     | 228        |               |         | WT                                                              | Control         | 18.88 ± 0.34 | 105 |        |         |
| WT                                      | sek-1           | 22.13 ± 0.41     | 132        | 11.54         | <0.0001 | WT                                                              | sek-1           | 23.31 ± 0.33 | 153 | 23.46  | <0.0001 |
| eat-2(ad465)                            | Control         | 35.77 ± 0.39     | 181        | 80.29         | <0.0001 | eat-2(ad465)                                                    | Control         | 32.28 ± 0.43 | 160 | 70.97  | <0.0001 |
| eat-2(ad465)                            | sek-1           | 23.16 ± 0.36     | 204        | -35.25        | <0.0001 | eat-2(ad465)                                                    | sek-1           | 27.19 ± 0.48 | 154 | -15.77 | <0.0001 |
|                                         |                 |                  |            |               |         |                                                                 |                 |              |     |        |         |
| Set1 (Figure 2B)**                      |                 |                  |            |               |         | Set2**                                                          |                 |              |     |        |         |
| WT                                      | Control         | 19.84 ± 0.25     | 228        |               |         | WT                                                              | Control         | 18.88 ± 0.34 | 105 |        |         |
| sek-1(km4)                              | Control         | 22.44 ± 0.3      | 130        | 13.10         | <0.0001 | sek-1(km4)                                                      | Control         | 24.61 ± 0.37 | 122 | 30.35  | <0.0001 |
| eat-2(ad465)                            | Control         | 35.77 ± 0.39     | 181        | 80.29         | <0.0001 | eat-2(ad465)                                                    | Control         | 32.28 ± 0.43 | 160 | 70.97  | <0.0001 |
| eat-2(ad465);<br>sek-1(km4)             | Control         | 26.17 ± 0.52     | 115        | -26.84        | <0.0001 | eat-2(ad465);<br>sek-1(km4)                                     | Control         | 22.18 ± 0.52 | 121 | -31.29 | <0.0001 |
| **These exp                             | eriments wer    | e set up togethe | r and have | e same contro | ls      | **These experiments were set up together and have same controls |                 |              |     |        |         |
| Set1 (Figure 2C -<br>Mean of four sets) | OP50-<br>L44440 |                  |            |               |         | Set2                                                            | OP50-<br>L44440 |              |     |        |         |
| WT                                      | OD 3.0          | 31 ± 0.67        | 43         |               |         | WT                                                              | OD 3.0          | 30.11 ± 0.78 | 45  |        |         |
| WT                                      | OD 1.0          | 36.04 ± 0.9      | 46         | 16.26         | <0.0001 | WT                                                              | OD 1.0          | 34.27 ± 1.14 | 41  | 13.82  | 0.0003  |
| WT                                      | OD 0.5          | 40.95 ± 1.15     | 44         | 32.10         | <0.0001 | WT                                                              | OD 0.5          | 35.05 ± 0.93 | 43  | 16.41  | <0.0001 |
| WT                                      | OD 0.25         | 42.07 ± 1.35     | 44         | 35.71         | <0.0001 | WT                                                              | OD 0.25         | 36 ± 1.32    | 43  | 19.56  | <0.0001 |
| WT                                      | OD 0.125        | 40.36 ± 1.6      | 44         | 30.19         | <0.0001 | WT                                                              | OD 0.125        | 37.28 ± 1.2  | 46  | 23.81  | <0.0001 |
| WT                                      | OD<br>0.0156    | 35.43 ± 1.37     | 46         | 14.29         | 0.0001  | WT                                                              | OD 0.0156       | 31.55 ± 0.96 | 47  | 4.78   | 0.1039  |
|                                         |                 |                  |            |               |         |                                                                 |                 |              |     |        |         |

| sek-1(km4)       | OD 3.0           | 27.75 ± 1    | 48  |        |         | sek-1(km4) | OD 3.0           | 25.65 ± 0.64 | 40  |             |         |
|------------------|------------------|--------------|-----|--------|---------|------------|------------------|--------------|-----|-------------|---------|
| sek-1(km4)       | OD 1.0           | 27.02 ± 1.03 | 45  | -2.63  | 0.6280  | sek-1(km4) | OD 1.0           | 25.67 ± 0.83 | 48  | 0.08        | 0.4368  |
| sek-1(km4)       | OD 0.5           | 25.19 ± 1.05 | 47  | -9.23  | 0.1053  | sek-1(km4) | OD 0.5           | 25.25 ± 1.01 | 44  | -1.56       | 0.3645  |
| sek-1(km4)       | OD 0.25          | 24.72 ± 1.06 | 43  | -10.92 | 0.0463  | sek-1(km4) | OD 0.25          | 25.41 ± 1.06 | 46  | -0.94       | 0.2710  |
| sek-1(km4)       | OD 0.125         | 23.07 ± 0.95 | 41  | -16.86 | 0.0012  | sek-1(km4) | OD 0.125         | 24.09 ± 0.93 | 47  | -6.08       | 0.6502  |
| sek-1(km4)       | OD<br>0.0156     | 24.13 ± 0.98 | 45  | -13.05 | 0.0121  | sek-1(km4) | OD 0.0156        | 25.84 ± 0.76 | 49  | 0.74        | 0.4126  |
|                  |                  |              |     |        |         |            |                  |              |     |             |         |
| Set3             | OP50-<br>L44440  |              |     |        |         | Set4       | OP50-<br>L44440  |              |     |             |         |
| WT               | OD 3.0           | 21.69 ± 0.54 | 42  |        |         | WT         | OD 3.0           | 23.06 ± 0.72 | 47  |             |         |
| wт               | OD 1.0           | 28.79 ± 1.1  | 47  | 32.73  | <0.0001 | WT         | OD 1.0           | 30.64 ± 0.73 | 44  | 32.87       | <0.0001 |
| wт               | OD 0.5           | 34.77 ± 1.47 | 47  | 60.30  | <0.0001 | WT         | OD 0.5           | 34.13 ± 1.41 | 45  | 48.01       | <0.0001 |
| WT               | OD 0.25          | 33.89 ± 1.51 | 44  | 56.25  | <0.0001 | WT         | OD 0.25          | 27.36 ± 1.15 | 45  | 18.65       | 0.0002  |
| WT               | OD 0.125         | 30.25 ± 1.84 | 32  | 39.47  | <0.0001 | WT         | OD 0.125         | 27.17 ± 1.02 | 41  | 17.82       | 0.0007  |
| WT               | OD<br>0.0156     | 24.8 ± 1.18  | 45  | 14.34  | 0.0192  | wт         | OD 0.0156        | 22.19 ± 0.91 | 43  | -3.77       | 0.7390  |
|                  |                  |              |     |        |         |            |                  |              |     |             |         |
| sek-1(km4)       | OD 3.0           | 22.34 ± 0.85 | 35  |        |         | sek-1(km4) | OD 3.0           | 23.14 ± 1.22 | 37  |             |         |
| sek-1(km4)       | OD 1.0           | 24.95 ± 0.9  | 37  | 11.68  | 0.0170  | sek-1(km4) | OD 1.0           | 20.23 ± 1.11 | 39  | -12.58      | 0.0752  |
| sek-1(km4)       | OD 0.5           | 23.83 ± 1.09 | 47  | 6.67   | 0.0767  | sek-1(km4) | OD 0.5           | 20.1 ± 0.81  | 41  | -13.14      | 0.0098  |
| sek-1(km4)       | OD 0.25          | 22.61 ± 0.99 | 44  | 1.21   | 0.5775  | sek-1(km4) | OD 0.25          | 20.4 ± 1.13  | 30  | -11.84      | 0.0424  |
| sek-1(km4)       | OD 0.125         | 24.2 ± 0.9   | 46  | 8.33   | 0.0807  | sek-1(km4) | OD 0.125         | 18.78 ± 0.95 | 45  | -18.84      | 0.0046  |
| sek-1(km4)       | OD<br>0.0156     | 24.72 ± 1.03 | 43  | 10.65  | 0.0365  | sek-1(km4) | OD 0.0156        | 20.05 ± 1.19 | 38  | -13.35      | 0.0704  |
|                  |                  |              |     |        |         |            |                  |              |     |             |         |
|                  |                  |              |     |        |         |            |                  |              |     |             |         |
| Set1 (Figure 2D) | HT115-<br>L44440 |              |     |        |         | Set2       | HT115-<br>L44440 |              |     |             |         |
| WT               | control          | 18.99 ± 0.25 | 202 |        |         | WT         | control          | 18.01 ± 0.19 | 175 |             |         |
| WT               | 2-DOG            | 23.37 ± 0.44 | 79  | 23.06  | <0.0001 | WT         | 2-DOG            | 22.4 ± 0.38  | 151 | 24.37534703 | <0.0001 |
| sek-1(km4)       | control          | 22.36 ± 0.51 | 113 |        |         | sek-1(km4) | control          | 22.22 ± 0.5  | 113 |             |         |

| sek-1(km4)                            | 2-DOG            | 26.97 ± 0.43 | 116 | 20.62  | <0.0001 | sek-1(km4)                    | 2-DOG            | 25.9 ± 0.49  | 124 | 16.56165617 | <0.0001 |
|---------------------------------------|------------------|--------------|-----|--------|---------|-------------------------------|------------------|--------------|-----|-------------|---------|
|                                       |                  |              |     |        |         |                               |                  |              |     |             |         |
| Set1 (Figure 5B)                      | RNAi<br>usedª    |              |     |        |         | Set2                          | RNAi<br>usedª    |              |     |             |         |
| WT                                    | Control          | 12.92 ± 0.16 | 102 |        |         | WT                            | Control          | 15.65 ± 0.13 | 231 |             |         |
|                                       | drl-1            | 15.07 ± 0.17 | 213 | 16.64  | <0.0001 |                               | drl-1            | 18.11 ± 0.1  | 417 | 15.72       | <0.0001 |
| fat-6(tm331);<br>fat-7(wa36)          | Control          | 11.82 ± 0.15 | 130 |        |         | fat-6(tm331);<br>fat-7(wa36)  | Control          | 14.35 ± 0.09 | 244 |             |         |
|                                       | drl-1            | 11.67 ± 0.16 | 196 | -1.27  | 0.7346  |                               | drl-1            | 15.42 ± 0.14 | 237 | 7.46        | <0.0001 |
|                                       |                  |              |     |        |         |                               |                  |              |     |             |         |
| Set1 (Figure 5C)                      |                  |              |     |        |         | Set2                          |                  |              |     |             |         |
| WT                                    | Control          | 12.89 ± 0.07 | 428 |        |         | WT                            | Control          | 14.54 ± 0.15 | 242 |             |         |
|                                       | drl-1            | 14.99 ± 0.17 | 193 | 16.29  | <0.0001 |                               | drl-1            | 17.11 ± 0.18 | 292 | 17.67537827 | <0.0001 |
| fat-2(wa17)                           | Control          | 13.39 ± 0.27 | 51  |        |         | fat-2(wa17)                   | Control          | 15.49 ± 0.41 | 59  |             |         |
|                                       | drl-1            | 12.38 ± 0.24 | 63  | -7.54  | 0.0066  |                               | drl-1            | 15.5 ± 0.29  | 92  | 0.064557779 | 0.9096  |
|                                       |                  |              |     |        |         |                               |                  |              |     |             |         |
| Set1 (Figure 5D)                      |                  |              |     |        |         | Set2                          |                  |              |     |             |         |
| WT                                    | Control          | 13.70 ± 0.21 | 80  |        |         | WT                            | Control          | 14.40 ± 0.22 | 65  |             |         |
| fat-2(tm789)                          | Control          | 14.79 ± 0.14 | 190 | 7.96   | <0.0001 | fat-2(tm789)                  | Control          | 14.36 ± 0.21 | 125 | -0.28       | 0.6358  |
| eat-2(ad465)                          | Control          | 17.33 ± 0.12 | 201 | 26.50  | <0.0001 | eat-2(ad465)                  | Control          | 19.11 ± 0.16 | 74  | 32.71       | <0.0001 |
| eat-2(ad465);<br>fat-2(tm789)         | Control          | 15.48 ± 0.17 | 120 | -10.68 | <0.0001 | eat-2(ad465);<br>fat-2(tm789) | Control          | 15.34 ± 0.28 | 56  | -19.73      | <0.0001 |
|                                       |                  |              |     |        |         |                               |                  |              |     |             |         |
|                                       |                  |              |     |        |         |                               |                  |              |     |             |         |
| Set1 (Figure 5E -Mean<br>of two sets) | HT115-<br>L44440 |              |     |        |         | Set2                          | HT115-<br>L44440 |              |     |             |         |
| WT                                    | OD 3.0           | 14.14 ± 0.22 | 42  |        |         | WT                            | OD 3.0           | 14.11 ± 0.32 | 38  |             |         |
| WT                                    | OD 1.0           | 18.27 ± 0.29 | 41  | 29.21  | <0.0001 | WT                            | OD 1.0           | 16.21 ± 0.52 | 43  | 14.88       | 0.0005  |
| WT                                    | OD 0.5           | 18.56 ± 0.38 | 41  | 31.26  | <0.0001 | WT                            | OD 0.5           | 18.67 ± 0.48 | 45  | 32.32       | <0.0001 |
| WT                                    | OD 0.25          | 19.86 ± 0.37 | 42  | 40.45  | <0.0001 | WT                            | OD 0.25          | 18.80 ± 0.41 | 46  | 33.24       | <0.0001 |
| WT                                    | OD 0.125         | 18.45 ± 0.42 | 38  | 30.48  | <0.0001 | WT                            | OD 0.125         | 17.17 ± 0.47 | 42  | 21.69       | <0.0001 |

| wт                    | OD<br>0.0156              | 17.20 ± 0.42 | 40  | 21.64 | <0.0001 | WT                    | OD 0.0156                 | 13.57 ± 0.49 | 42  | -3.83  | 0.3848  |
|-----------------------|---------------------------|--------------|-----|-------|---------|-----------------------|---------------------------|--------------|-----|--------|---------|
|                       |                           |              |     |       |         |                       |                           |              |     |        |         |
| fat-2(wa17)           | OD 3.0                    | 14.67 ± 0.36 | 45  |       |         | fat-2(wa17)           | OD 3.0                    | 15.37 ± 0.44 | 46  |        |         |
| fat-2(wa17)           | OD 1.0                    | 16.87 ± 0.41 | 46  | 15.00 | 0.0001  | fat-2(wa17)           | OD 1.0                    | 15.98 ± 0.47 | 42  | 3.97   | 0.3056  |
| fat-2(wa17)           | OD 0.5                    | 15.86 ± 0.43 | 42  | 8.11  | 0.0335  | fat-2(wa17)           | OD 0.5                    | 16.23 ± 0.55 | 48  | 5.60   | 0.0731  |
| fat-2(wa17)           | OD 0.25                   | 17.21 ± 0.32 | 42  | 17.31 | <0.0001 | fat-2(wa17)           | OD 0.25                   | 15.17 ± 0.57 | 47  | -1.30  | 0.6709  |
| fat-2(wa17)           | OD 0.125                  | 16.15 ± 0.45 | 41  | 10.09 | 0.0061  | fat-2(wa17)           | OD 0.125                  | 15.71 ± 0.56 | 42  | 2.21   | 0.2922  |
| fat-2(wa17)           | OD<br>0.0156              | 15.32 ± 0.60 | 38  | 4.43  | 0.117   | fat-2(wa17)           | OD 0.0156                 | 14.98 ± 0.44 | 47  | -2.54  | 0.4834  |
|                       |                           |              |     |       |         |                       |                           |              |     |        |         |
| Set1 (Figure 7A, B)   | RNAi<br>used <sup>a</sup> |              |     |       |         | Set2                  | RNAi<br>used <sup>a</sup> |              |     |        |         |
| WT + Ethanol          | Control                   | 11.30 ± 0.07 | 270 |       |         | WT + Ethanol          | Control                   | 12.27 ± 0.09 | 212 |        |         |
|                       | drl-1                     | 15.14 ± 0.10 | 401 | 33.98 | <0.0001 |                       | drl-1                     | 13.81 ± 0.12 | 138 | 12.55  | <0.0001 |
| fat-2(wa17) + Ethanol | Control                   | 07.62 ± 0.17 | 126 |       |         | fat-2(wa17) + Ethanol | Control                   | 08.75 ± 0.25 | 59  |        |         |
|                       | drl-1                     | 08.01 ± 0.13 | 201 | 5.12  | 0.1184  |                       | drl-1                     | 07.29 ± 0.16 | 92  | -16.69 | <0.0001 |
| WT + EPA              | Control                   | 08.92 ± 0.13 | 128 |       |         | WT + EPA              | Control                   | 11.30 ± 0.09 | 257 |        |         |
|                       | drl-1                     | 12.74 ± 0.08 | 313 | 42.83 | <0.0001 |                       | drl-1                     | 14.14 ± 0.10 | 228 | 25.13  | <0.0001 |
| fat-2(wa17) + EPA     | Control                   | 09.22 ± 0.26 | 114 |       |         | fat-2(wa17) + EPA     | Control                   | 09.70 ± 0.27 | 46  |        |         |
|                       | drl-1                     | 12.81 ± 0.23 | 113 | 38.94 | <0.0001 |                       | drl-1                     | 13.36 ± 0.26 | 74  | 37.73  | <0.0001 |
| WT + LA               | Control                   | 11.93 ± 0.09 | 161 |       |         | WT + LA               | Control                   | 12.19 ± 0.11 | 178 |        |         |
|                       | drl-1                     | 13.61 ± 0.10 | 310 | 14.08 | <0.0001 |                       | drl-1                     | 14.16 ± 0.11 | 192 | 16.16  | <0.0001 |
| fat-2(wa17) + LA      | Control                   | 10.81 ± 0.19 | 145 |       |         | fat-2(wa17) + LA      | Control                   | 11.27 ± 0.20 | 71  |        |         |
|                       | drl-1                     | 14.92 ± 0.25 | 114 | 38.02 | <0.0001 |                       | drl-1                     | 14.33 ± 0.39 | 49  | 27.15  | <0.0001 |

<sup>a</sup> All RNAi were taken from the Ahringer RNAi library, unless otherwise mentioned

Survival graphs were plotted using GraphPad Prism 8 (GraphPad Software, Inc., La Jolla, CA). All the statistical analysis to measure *P*-values between survival curves was performed using Log-rank (Mantel-Cox) test through online software OASIS 1.0 (<u>http://sbi.postech.ac.kr/oasis</u>). Data is represented as mean lifespan ± SEM. number of animals = n. Conditions for all the lifespans experiments are provided in Figure Legends.

| Gene name (Target)   | Primer Name               | Sequence                      |
|----------------------|---------------------------|-------------------------------|
| qRT-Primers          |                           |                               |
| Cytoprotective (CyTF | ) xenobiotic detoxificati | ion genes                     |
| сур-33С8             | Forward Primer            | CGCTGGATGATGTGCTCAACTACTGG    |
|                      | Reverse Primer            | GCTTCTTCTGCTCTTTCAGGTAGG      |
| cyp-34A4             | Forward Primer            | GATTTGAACAGGGTGACCCAGAAT      |
|                      | Reverse Primer            | TCGATGACATGCTCACCACT          |
| сур-32В1             | Forward Primer            | GGTGTGTTGAAGTTATGGTTGGGACC    |
|                      | Reverse Primer            | TGTCGCCGGTGCTGATTAAAAGAC      |
| ugt-16               | Forward Primer            | CTTGCTGACGATCGACTAACC         |
|                      | Reverse Primer            | CGGTCTGTATGGCTTCTCTAAG        |
| nhr-31               | Forward Primer            | GAGTTGTGAAAGTTGAAAGAGTTCC     |
|                      | Reverse Primer            | CTCCATTCTGTGATCCACCACT        |
| nhr-57               | Forward Primer            | CCGGAAGTTGTTCAAGCAATCC        |
|                      | Reverse Primer            | GTCATAGTCACCGAGTTCCAGA        |
| nhr-206              | Forward Primer            | ATCCAGCTGTCTCCGATTTTCC        |
|                      | Reverse Primer            | GATCAGCACCGTGAATCTGT          |
| ftn-1                | Forward Primer            | GAGTGGGGAACTGTCCTTGA          |
|                      | Reverse Primer            | GATCGAATGTACCTGCTCTTCC        |
| pgp-9                | Forward Primer            | TACAGGCTTCATGCTTCATGG         |
|                      | Reverse Primer            | ACTGAGCCATCATCTGG             |
| <i>cyp-35B1</i>      | Forward Primer            | CTTCATGTCAGTAATAATCTTGG       |
|                      | Reverse Primer            | CAATTTCGGCACATCTCGTG          |
| ugt-50               | Forward Primer            | GATATGTGTGCAGATCTACTTGG       |
|                      | Reverse Primer            | GTTGAACAACCTCACTATAG          |
| gst-6                | Forward Primer            | CAAAAATAACACTCCATTC           |
|                      | Reverse Primer            | GCCGCCTCGGTGTCATTTTGTC        |
| gst-19               | Forward Primer            | GAAGTCAAAGTCCCCAATG           |
|                      | Reverse Primer            | CAGCAAATCCGAATTTCAGAG         |
| act-1                | Forward Primer            | CTCTTGCCCCATCAACCATG          |
|                      | Reverse Primer            | CTTGCTTGGAGATCCACATC          |
|                      |                           |                               |
| Primers used to conf | irm the p38-MAPK delet    | ion strains used in the study |
| sek-1(km4)           | WT Forward Primer         | GGATTTCAAACGCAGGTCACTCGT      |
|                      | WT Reverse Primer         | CCGCGTCACAGACTGTTCT           |
|                      | Mutant Reverse Primer     | CGGTTGACTCGGAAAGAAAC          |
| pmk-1(km25)          | WT Forward Primer         | CCATGACCTCAGAGCCTCTTT         |
|                      | WT Reverse Primer         | CTCGTGGAGTCGGATGAAGT          |
|                      | Mutant Reverse Primer     | TCAACAGTCTGCGTGTAATGC         |
| nsy-1(ok593)         | WT Forward Primer         | TCTGGAAAACAGCCAACA            |
|                      | WT Reverse Primer         | CTCGTGCAGCGTACACAGTT          |
|                      | Mutant Reverse Primer     | CAATCCACGTAGCCAACTGA          |

**Supplementary Table 2, related to Figure 4, 5:** List of primers used in the study.