Supplemental material Supplemental methods

MSC production process

The MSC production process was identical to the process conducted for the clinical trial by Le Blanc et al in 2008²: Bone-marrow mononuclear cells were separated by density gradient centrifugation as previously described^{3,4}. Washed cells were resuspended in Dulbecco's modified Eagle's medium-low glucose (Life Technologies, Gaithersburg, MD, USA, or Paisley, UK) supplemented with 10% fetal bovine serum (National Veterinary Institute, Uppsala, Sweden, or HyClone, Logan, UT, USA) and plated at a density of 160 000 cells per cm². Cultures were maintained at 37°C in a humidified atmosphere containing 5% CO2 in 175 cm² flasks (Falcon, Franklin Lakes, New Jersey, USA, or Greiner Bio-One, Frickenhausen, Germany). When the cultures were near confluence (>80%), the cells were detached by treatment with trypsin and EDTA (Invitrogen, Grand Island, NY, USA, or Lonza Verviers, Verviers, Belgium) and replated at a density of 4000 cells per cm². When 2×10^6 cells or more were obtained, they were harvested and either cryopreserved in 10% dimethyl sulphoxide (Research Industries, Salt Lake City, UT, USA, or Leiden University Medical Centre Pharmacy, Netherlands) or washed repeatedly and resuspended to a final concentration of 2×10^6 cells per mL in saline solution according to local guidelines.

Criteria for release of mesenchymal stem cells for clinical use included absence of visible clumps, spindle-shape morphology, absence of contamination by pathogens (as documented by aerobic and anaerobic cultures before release), viability greater than 95%, and immune phenotyping proving expression of CD73, CD90, and CD105 surface molecules (>90%) and absence of CD34, CD45, CD14, and CD3⁵.

Peripheral blood mononuclear cell and plasma separation

For plasma separation, the blood was collected in ethylene-diamine-tetraacetic acid (EDTA) tubes and kept on ice before centrifugation. The plasma was then frozen at - 80°C until analysis. Blood was collected in heparinized tubes for peripheral blood mononuclear cell (PBMC) separation. PBMCs were isolated by centrifugation using Ficoll-Paque PLUS (GE Healthcare Bio-Sciences AB, GE Healthcare, Uppsala, Sweden) and stored in 10% EDTA diluted in human ab plasma in aliquots in liquid nitrogen. Absolute lymphocyte counts were obtained from the Department of Clinical Chemistry, Karolinska University Hospital, Stockholm and absolute cell numbers calculated by multiplying absolute lymphocyte counts with the percentages obtained from flow cytometry analysis.

Supplemental table 1: Mesenchymal stromal cell donor and graft characteristics

Donor characterist	ics
Number of donors	18
Donor sex (male/female)	10/8
Donor age (median, range)	29.5 (3-44)#
Number of doses per donor (<i>median</i> , <i>range</i>)	2.5 (1-12)
Number of donors per patient (<i>median</i> , <i>range</i>)	3 (1-6)
Graft characterist	ics
Total number of grafts	71
MSC cell dose per graft (mean, range)	2.03 (1.3-3) x10 ⁶ /kg
Unrelated donor $(n, \%)^*$	58 (82)
First degree relative $(n, \%)^*$	10 (14)
Other relatives $(n, \%)^*$	3 (4)
Culture passage at MSC	harvest
Passage 2 (<i>n</i> , %)	8 (11)
Passage 3 (n, %)	63 (89)

* No HLA matching was performed.

[#] Three children were among the MSC donors. All of them donated bone marrow to an HLA-identical sibling undergoing allogeneic haematopoietic stem cell transplantation. With their parents' permission, a minor part of that donated bone marrow was used for MSC production for this clinical trial.

Flow Cytometry Analysis

PBMCs were gently thawed and washed twice with a complete media RPMI containing 10% FCS. Cells were stained for various surface markers for 20 minutes at 4° C with antibodies described in **Suppl. Table 2**. Aqua fluorescent reactive dye for viability analysis was purchased from Invitrogen (Carlsbad, CA, USA).

Soluble Biomarker Analysis

The following cytokines and chemokines were analysed using a custom Bio-Plex® x-PlexTM (Bio-Rad Laboratories AB, Solna, Sweden): Interleukin (IL)-1b, - 2, -6, -7, -8, -10, -17a, interferon (IFN)- γ , tumor necrosis factor (TNF)- α , C-X-C motif ligand (CXCL)-2, -9, -10, chemokine C-C motif ligand 2, basic fibroblast growth factor (b-FGF). B-cell activating factor (BAFF) was analysed using ELISA as per the manufacturer's instructions.

Micro RNA (miRNA) Analysis

Circulating plasma miRNA were analysed in seven patients (patients 1, 2, 5-9) before and at two time-points (1-3 hrs and 24 hrs) after the first MSC infusion. Total RNA isolation and analysis were conducted at Exiqon Services (Vedbaek, Denmark). Briefly, total RNA for miRNA analysis was extracted from 200µl plasma using the miRCURYTM RNA isolation kit (Exiqon). RNA spike-ins were added to the samples before isolation in order to monitor RNA extraction efficiency. RNA was reverse transcribed using the mercury LNATM Universal RT miRNA PCR, Polyadenylation and cDNA synthesis kit (Exiqon) and analyzed with in a LightCycler[®] 480 Real-Time PCR System (Roche Diagnostics Scandinavia AB, Bromma, Sweden) in 384 well plates using the protocol for mercury LNATM Universal RT miRNA PCR. All data were normalized to the average of assays detected in all samples (average assay Cq).

Linear mixed effects models

These models were applied for analysing absolute peripheral blood mononuclear cell subset counts. For analysing the differences between responders (R) and non-responders (NR), we used the following model: *Cell count* = A x Responder (0 or 1) + B x Number of previous infusions. Long and short term changes were evaluated for R and NR separately. For analysing long term changes, we used the model*Cell count*= <math>A x Days since last infusion + B x number of previous infusions. Subject was set as the random effect for all models. P-values were obtained by likelihood ratio tests of the full model with the effect in question against the model without the effect in question. Analysis was performed using R statistical software⁶, with the*lme4*package⁷.

			Antibody (concentration)												
Panel	Used for	PE	PE-Cy5	PE-Cy7	AF488	BV421	BV605	PerCP-	APC	APC-	AF700	AmCyan			
number	infusion(s)							Cy5.5		Cy7					
1	1, 3, 6, 9	CD14	CD3	CD21	IgD	CD5	CD27	CD19	CD38	BAFF-R		Aqua live dead			
		(1/400)	(1/100)	(1/100)	(1/100)	(1/100)	(1/100)	(1/100)	(1/100)	(1/100)		(1/1000)			
2	3	CD19	CD22	IgM	IgD	CD5	CD27	Ki67	CD38			Aqua live dead			
		(1/100)	(1/100)	(1/100)	(1/100)	(1/100)	(1/100)	(1/100)	(1/100)			(1/1000)			
3	3	CXCR3	CD4	CD127	CD8	CD3	CD56	CD19	CD27	CD45RA		Aqua live dead			
		(1/100)	(1/100)	(1/100)	(1/100)	(1/100)	(1/100)	(1/100)	(1/100)	(1/100)		(1/1000)			
4	6	CXCR3	CD4	CD127	CD8	CD3	CD56	PD1	CD27	CD45RA		Aqua live dead			
		(1/100)	(1/100)	(1/100)	(1/100)	(1/100)	(1/100)	(1/100)	(1/100)	(1/100)		(1/1000)			
5	1, 9	CXCR3	CD4	CD62L	CD8	CD3	CD56	PD1	CD27	CD45RA		Aqua live dead			
		(1/100)	(1/100)	(1/100)	(1/100)	(1/100)	(1/100)	(1/100)	(1/100)	(1/100)		(1/1000)			
6	6	FoxP3	CD4		CD8	CD3			IL17			Aqua live dead			
		(1/50)	(1/100)		(1/100)	(1/100)			(1/100)			(1/1000)			
7	1, 9	FoxP3	CD4	CD127		CD3			CCR7			Aqua live dead			
		(1/50)	(1/100)	(1/100)		(1/100)			(1/100)			(1/1000)			
8	3	FoxP3	CD4	CD62L	CD31	CD3	CD56	Ki67	CCR7	CD45RA	CD27	Aqua live dead			
		(1/50)	(1/100)	(1/100)	(1/100)	(1/100)	(1/100)	(1/100)	(1/100)	(1/100)	(1/100)	(1/1000)			

Supplemental	Table 2: Flow	cvtometry a	ntibody pan	els used in the study.
~~rr				

PB: Pacific Blue, PE: Phycoerythrin, Cy: Cyanine dye, FITC: Fluorescein Isothiocyanate, BV: Brilliant Violet, PerCP: Peridinin-chlorophyll-protein complex,

APC: Allophycocyanin, AF: Alexa Fluor, CD: Cluster of Differentiation, PD: programmed death, FoxP3: Forkhead Box P3, CCR: C-C chemokine Receptor, CXCR3: C-X-C motif chemokine Receptor 3

Adverse event*	Ν	Comments
Grade 3 infection	5	2 pneumonias (1 Metapneumovirus, 1 with unknown
		microbiology), 1 bacterial keratitis, 1 soft tissue
		infection, 1 adenovirus colitis.
Skin dysplasia	1	Melanocytic
Cervix dysplasia	1	
Recurrence of M-protein	1	After 7 infusions. The patient discontinued the study.
Increasing recipient	1	Patient with CLL. CD19 recipient chimerism increased
chimerism		after 3 infusions. The patient discontinued the study.
Death	1	Due to progressive cGvHD after 1 MSC infusion.

Supplementary Table 3: Adverse events recorded before final evaluation

*Adverse events recorded until final evaluation at 12 months after discontinuing MSC treatment. N: Number of events, CLL: Chronic Lymphocytic Leukaemia,

cGvHD: chronic Graft versus Host Disease, MSC: Mesenchymal Stromal Cell

von Bahr L & Boberg E et al

Supplemental table 4: Histopathological evaluations of skin biopsies

Histopathology before treatment

Histopathology after treatment

Respond	ers				<u>.</u>
Patient	Location	Reveiw	Location	Review	Change
5	Abdomen	Lamellar str. corneum, normal thickness, basal KC with vacuolization, basal membrane thickening, sparse dermal lymphocytic infiltrate, also at the dermal/subcutaneous border, sclerosis.	Abdomen	Epidermis normal, sparse dermal lymphocytic infiltrate, sclerosis unchanged.	Epidermal changes improved
		Diagnosis: Sclerotic GvHD with discrete acute changes		Diagnosic: Seleratic GyHD	
7	Left part of back	Epidermis 3-4 layers, vacuolated melanocytes, melanophages. Diagnosis: Acute changes in the epidermis grade 1-2	Right part of back	Epidermis 6 layers. Diagnosis: Normal skin	Epidermal changes completely regressed
8	Right groin	Lamellar str.corneum, acanthosis (10 layers), dilated vessels, sclerosis superficial and deep, sparse infiltrate. Diagnosis: Sclerotic GvHD with discrete lichenoid aspects within the epidermis	Location unknown	Normal epidermis, sclerosis only deep, less than in 1 (could be location dependent). Diagnosis: Sclerotic GvHD	Epidermal changes improved
9	Right groin	Epidermis normal, vessels number increased, sclerosis, no infiltrate. Diagnosis: Sclerotic GvHD	Right groin	Vacuolized melanocytes, sclerosis slightly increased. Diagnosis: Sclerotic GvHD with some acute changes in the epidermis	No improvement, now some acute changes in the epidermis
11	Dorsal side of right thigh	Slight edema in papillary dermis, otherwise normal. Diagnosis: Dermal edema	Back of right thigh	Slight edema in papillary dermis, otherwise normal. Diagnosis: Dermal edema	No diagnostic changes
Non-resp	ponders				
10	Right breast	Epidermis 7 layers, vacuolated KC within basal cell layer, single cell dyskeratosis basal and suprabasal, attached lymphocytes, dermal edema, sparse lymphocytes, sclerosis deep dermis (superficial changes could be drug-induced-multiforme-like pattern. Diagnosis: Sclerotic GvHD with multiforme –like changes in the epidermis, drug-induced or GvHD	Left side of back	Epidermis normal, sclerosis superficial and deep (progression), dilated vessels. Diagnosis: Progression of Sclerotic GyHD	Epidermal changes improved Sclerosis progressed

GvHD: Graft versus Host Disease, KC: Keratinocytes

Т

Supplemental table 5: Summary of immune phenotyping results.

		Long term val	ues	1 day aft	er infusion	7 days after infusion			
	R vs NR	N pre inf R	N pre inf NR	Days after inf R	Days after inf NR	Days after inf R	Days after inf NR		
Subset	(A)	(A)	(A)	(A)	(A)	(A)	(A)		
Lymphocytes	+ 0.37	- 0.75	- 0.29	+ 0.0014	+ 0.16	+ 0.0005	+ 0.53		
CD3+ CD56-	+ 0.13	+ 0.96	- 0.51	+ 0.013	+ 0.21	+ 0.0012	+ 0.54		
CD4+ CD8-	+ 0.26	- 0.63	- 0.25	+ 0.039	+ 0.28	+ 0.0025	+ 0.89		
CD4+ CD27+ CD45RA+	+ 0.0062	- 0.26	+ 0.75	+ 0.011	+ 0.53	+ 0.0021	- 0.26		
CD4+ CD27+ CD45RA-	+ 0.47	- 0.24	- 0.28	+ 0.041	+ 0.23	+ 0.0012	+ 0.82		
CD4+ CD27- CD45RA+	- 0.65	+ 0.36	- 0.13	+ 0.72	+ 0.66	- 0.93	+ 0.94		
CD4+ CD27- CD45RA-	+ 0.63	+ 0.51	- 0.26	+ 0.65	+ 0.43	+ 0.89	+ 0.63		
CD4+ FoxP3+	+ 0.29	- 0.46	+ 0.17	+ 0.0042	+ 0.19	+ 0.0057	- 0.83		
CD4- CD8 +	+ 0.13	+ 0.72	+ 0.28	+ 0.062	+ 0.43	+ 0.048	+ 0.22		
CD8+ CD27+ CD45RA+	+ 0.17	+ 0.92	+ 0.03	+ 0.1	+ 0.86	+ 0.0097	- 0.87		
CD8+ CD27+ CD45RA-	- 0.67	+ 0.29	+ 0.47	+ 0.13	+ 0.3	+ 0.052	+ 0.64		
CD8+ CD27- CD45RA+	+ 0.16	+ 0.82	+ 0.49	+ 0.14	+ 0.45	+ 0.26	+ 0.094		
CD8+ CD27- CD45RA-	+ 0.17	+ 0.44	+ 0.87	+ 0.044	+ 0.45	+ 0.26	+ 0.34		
CD3- CD56+	- 0.32	+ 0.43	- 0.037	+ 0.25	+ 0.93	+ 0.46	- 0.99		
CD56bright	- 0.27	+ 0.26	+ 0.19	+ 0.13	- 0.7	+ 0.092	- 0.45		
CD56dim	- 0.32	+ 0.45	- 0.033	+ 0.28	+ 0.9	+ 0.5	+ 0.95		
CD3+ CD56+	- 0.39	+ 0.84	- 0.22	+ 0.084	+ 0.6	+ 0.4	+ 0.46		
CD3+ CD56+ CD8+ CD4-	+ 0.37	+ 0.77	+ 0.56	+ 0.097	+ 0.62	+ 0.24	+ 0.13		
CD3+ CD56+ CD8- CD4+	- 0.26	- 0.38	- 0.13	+ 0.21	+ 0.84	+ 0.77	+ 0.9		
CD3- CD19+	+ 0.17	- 0.31	+ 0.1	+ 0.14	- 0.13	+ 0.012	- 0.34		
CD19+ CD27+ IgD-	+ 0.57	- 0.37	+ 0.096	+ 0.2	- 0.15	+ 0.064	- 0.37		
CD19+ CD21hi CD27- IgD+	+ 0.048	- 0.32	- 0.73	+ 0.17	+ 0.66	+ 0.011	+ 0.5		
CD19+ CD5+	- 0.72	+ 0.75	+ 0.13	+ 0.23	- 0.32	+ 0.066	- 0.37		
CD19+ IgD+ CD38low	+ 0.12	- 0.45	+ 0.098	+ 0.13	- 0.12	+ 0.0093	- 0.36		

i.

Values displayed are p-values for the coefficients in the linear mixed effects models: Cell count = $A \times Responder (0 \text{ or } 1) + B \times Number \text{ of previous infusions}$ for long term changes and differences between responders and non-responders. Cell count = $A \times Days$ since last infusion + $B \times number \text{ of previous infusions}}$ for evaluating short term changes. The random effect was set to patient identifier. Different shades of green correspond to different significance levels. +/- indicates a positive or negative coefficient. In R vs NR + indicates higher levels in responders. In Num pre inf + indicates a trend to increasing levels long term during the study. In Days after inf + indicates increasing levels short term since last infusion. R: Responder. NR: Non-responder. pre: previous. inf: infusion.

Treatment of Chronic GvHD with Mesenchymal Stromal Cells Induces Durable Responses; a Phase II Study

Responders

Patient	Time point	Skin	Oral	Eyes	GI	Liver	Lungs	J/M/F	% BSA sclerosis	OM Global score	Follow up time (months)	Current immuno- suppression
	Before MSC	3	1	1	0	0	0	1	10 2	23 7		
1	End of treatment	3	1	0	0	0	0	1	5 2	24 6	99	No immuno-
1												suppression
	1 year after	2	0	0	1	0	0	1	0	24 4		
	1											
	Before MSC	3	0	0	0	0	0	2	15 :	19 7		
5	End of treatment	3	1	1	1	0	0	1	5	22 6	87	No immuno-
	4											suppression
	1 year after	3	0	1	1	0	0	1	3	25 4		
	Defere MSC		1	1		1	2			25 0		
	End of treatment		2	1	0		2	0		25 6		Lung
7	Endortreatment	0	2	0		0	5			25	80	transplant
	1 year after	0	2	1	0	0	3	0	0	25 7		P+Tac+MMF
	r your unor		-	-								
	Before MSC	3	0	2	0	0	0	3	15 :	12 8		
0	End of treatment	3	1	2	0	0	0	2	10 :	13 8	24	No steroids,
8											54	tapering CNI
	1 year after	3	1	2	1	0	0	3	10 :	12 7		
	Before MSC	3	1	3	0	0	2	2	50 :	13 6		
9	End of treatment	3	1	1	1	0	2	2	45	17 6	72	No steroids,
						-						tapering CNI
	1 year after	3	1	2	1	0	2	2	40	17 6		
	D A MG											
	Before MSC	3	2	2	0	0	0	2	15	14 6 15 (Addition of
11	End of treatment	3	0	1	0	0	0	2	1	15 4	56	ECP &
	l vear after	3	0	3	0	1	0	2	25	13 6		Rituximab
	1 year anei	5	0	5	0	-	0	2	2,3			
	Non-responders											
	Before MSC	2	2	0	0	0	2	0	0	22 6		
•	End of treatment	2	3	0	0	0	2	0	0	25 8	0.0	Turana a 1
2											90	mereased
	1 year after	1	3	0	1	0	2	0	0	25 6		
					_							
	Before MSC	3	0	2	2	1	2	3	30	8 8		
6	End of treatment	3	2	2	1	2	2	3	30 1	11 8	82	Increased
		_						_				
	1 year after	3	2	1	2	1	2	3	35	9 9		
	Boforo MSC	-		2		-	-		20	14		
10	End of treatment	3	2	2	1	2	0	3	20	14 8	22	Died
	End of treatment	3	1	2	2	1	0	3	20	8		
	Organ seore				Г			Global	core			man aveta
0		3				0	2	4	6 8	10		gan system th response
v	1 2	3				U	2	-	0 0	10		ui response
	BSA % scl	erosis				Γ		Range of	motion (ROM)		0	gan system
0	10 20	30	40	50			25	20	15 10	5	with	progression

Supplemental figure 1: Response heatmap with final evaluation included. NIH organ score, NIH global score, range of motion (ROM) and body surface area (BSA) percentage involved with sclerosis. Time points are at study enrolment, end of MSC treatment and final evaluation, one year after end of treatment. Black boxes denote organs with response and red boxes denote organs with progression during MSC treatment. J: Joints, M: Muscles, F: Fascia, P: Prednisolone, Tac: Tacrolimus, MMF: Mycophenolate Mofetil, CNI: Calcineurin Inhibitors, ECP: Extracorporeal Photopheresis, MSC: Mesenchymal Stromal Cells

								Duration of study						Duration of			
								1 year			follow-up	Follow-up	Hematological relapse	Alive at last			
	Patient		Eve	ents before	study inclu	sion		MSC t	reatment	follow up	Events af	ter study completion		(months)	until	at last follow up	follow up
	1					CyA+P, MMF, E	CP, MTX	MSC x 6	MSC x 1		P and CyA tapered and withdraw	wn.	No cGvHD	99	2019 oct	No	Yes
	-				aHSCT	cGvHD	7		5 6	4			cGvHD inactive	55	2010 000	110	
-					CUALD M			MECHE	MECHO		P and CyA tapered and	▼ Ruxo for 3	No current				
	5				CyA+P, IVI			IVISC X 6	INISC X Z		withdrawn.	months	treatment	87	2019 oct	No	Yes
_				aHSCT	cGvHD		7	(6 6	4		▼ cGvHD brief recurr	ence				
-	_						CyA+P, Infl	MSC x 6	MSC x 1		Several therapies. Finally lung	P + Tac +				Yes (#M-protein↑	
Resp	/									-	transplantation.	MMF	MMF		2019 oct	during study, MSC	Yes
ong —							ansci+covhD		6 ♥ #	/	 Progression of pulmonary CGVHI Taparing Lost to 	D				stopped)	
lers	8		CyA+P, Sir, MN	1F, infl, R, Ta	R, Tac, ECP, ima, chk, FMC			MSC x 6	MSC x 3		CvA follow up			34	2016 feb	No	Yes
		aHSCT+cGvHD					3		7 8	7							
_			Tac+P. Thal. Im	atinib. ECP				MSC x 6	MSC x 3	Entocort	▼ Ruxo 1 year. Made	Tapering					
	9								inibe x b	briefly	cGvHD worse.	CyA		72	2019 nov	No	Yes
-		aHSCI	cGvHD*						<mark>р Б</mark>	6	50	me remaining cGvHD					
	11						Tac+P, Imatinib	MSC x 6	MSC x 3		▼ Ruxo, ECP Ruxo + ECP			56	2019 oct	No	Yes
						aHSCT+cGVHD	e		5 4	6	▼ Progression of cGvHD						
							CyA+P, Tac+Sir,	MSC x 6			▼ CvA. Eve. Thal. Ruxo (still treater	d)	Ruxo				
7	2						Ima, ECP	MOC X O					nuxo	98	2019 oct	No	Yes
lon -						aHSCT	CGVHD		3	6		D. C.A.	Responding to Ruxo				
resp	6				CyA+P, M	ITX, R, ECP, MMF		MSC x 6			 Many therapies attempted 	P+CyA+ C		82	2019 oct	No	Yes
bonc	_			aHSCT	cGvHD		8		3	9		Still severe cGvHD					
lers						MSC x 6	Ruxolitinih	volitinih									
	10		.,.,.,.					MOC X O	· Ruxontinio					22	2016 sep	No	No**
		ansct cgvhd							5	▼ Died							
No	з					Tac+P, R		MSC x 3						3	2012 july	Yes (CLL relapse during	Ves
it ev	Ĵ				aHSC	T cGvHD	3	relapse						5	LOIL July	study, MSC stopped)	105
alua –							CUALD	MCC 1									
ited	4						СуА+Р	IVISC X I						2	2013 mar	No	No***
Veget	to the objective					aHS	CT CGvHD	▼ Died									
rears fr	rom study	7 6	-5	4	2	2	-1	0	1/2	1	2 2 /	5 6	7 0				

Supplemental figure 2: Timeline of clinical events during and after the study. The top row of each patient lists cGvHD treatments before and after the study. At the end of each timeline, current immunosuppressive therapy is listed in italic letters. The bottom row of each patient lists cGvHD status and clinical events. The heatmap coloured cells shows the global cGvHD grade at each study evaluation. Downwards pointing arrows depict cGvHD progression, new cGvHD treatments or death or relapse after inclusion.

* Exact date of cGvHD onset unknown – patient is from another part of Sweden. ** Likely cause of death was sudden cardiac event. *** Cause of death was progressive cGvHD. cGvHD: chronic Graft versus Host Disease, CyA: Cyclosporine A, P: Prednisolone, FMC: Fetal Membrane Cells, Tac: Tacrolimus, Sir: Sirolimus, Eve: Everolimus, Thal: Thalidomide, Ruxo: Ruxolitinib, Infl: Infliximab, MMF: Mycophenolate Mofetil, MTX: Methotrexate, Ima: Imatinib, ChK: Chlorokine, R: Rituximab, C: Cyclophosphamide.

Treatment of Chronic GvHD with Mesenchymal Stromal Cells Induces Durable Responses; a Phase II Study

von Bahr L & Boberg E et al

Supplemental figure 3: Basic B- and Tcell subsets. A and B: Representative plots of the flow cytometry analysis. C and D: Relative and absolute numbers of T-cells and B-cells were comparable between R and NR throughout the study. Error bars show mean +/- SEM.

Supplemental figure 4: Responders had higher proportion of CD4+ CCR7+ T-cells compared to non-responders. The absolute numbers of CD4+ CCR7+ T-cells were higher in R compared to NR. P-value for absolute numbers with t-test and for relative numbers with Wilcoxon's rank sum test. * = p < 0.05, ** = p < 0.005

Treatment of Chronic GvHD with Mesenchymal Stromal Cells Induces Durable Responses; a Phase II Study

von Bahr L & Boberg E et al

Supplemental figure 5: Activated naïve B-cells. A: Analysis was performed using IgD and CD38 to differentiate B-cells at different stages of development according to¹. CH) Representative plots and legend is \bigcirc shown. B: Relative numbers of Bcells at different development stages before first infusion. C: Relative and absolute numbers of activated naïve 8 🔒 B-cells (B2) are higher in responders 36 early late throughout the study. **D:** Absolute B3+4 B5 B5 numbers of activated naïve B-cells increase 7 days after each MSC infusion. P-values for relative numbers are calculated using Wilcoxon's rank sum test. P-values in Non-responder D are derived from the mixed effects model and represent the significance x10e9/L of the factor Days since last infusion. The P-values displayed are the Pvalues for coefficient A. * = p < 0.05, **9** 6 9 ** = p < 0.005. Error bars show mean +/- SEM. MSC: Mesenchymal Stromal Cell, CG: Germinal Center

Supplemental figure 6: Proposed biomarkers of response to MSC therapy in cGvHD: Relative changes of CXCL9 and CXCL10 concentrations from before the first infusion to before the 6:th infusion (5 months after treatment start) are shown. The relative change in CXCL10 was completely differential between responders and non-responders, increasing in non-responders and decreasing in responders. MSC: Mesenchymal Stromal Cell, cGvHD: chronic Graft-versus-Host Disease, CXCL: Chemokine (C-X-C motif) ligand

Supplemental figure 7: Treg subpopulation analysis revealed functional differences in Tregs between R and NR: A: representative plots of the flow cytometry analysis. Tregs were subdivided according to Sakaguchi et al⁸ using CD45RA and FoxP3. B: R had a higher proportion of naïve Tregs (CD45RA+ FoxP3lo) while NR had a higher proportion of non-Tregs (CD45RA- FoxP3lo) among total Tregs. Data from infusion 3. P-values obtained by Wilcoxon rank-sum test. * = p < 0.05. Error bars show mean +/- SEM. MSC: Mesenchymal Stromal Cell, Treg: regulatory T-cell, Breg: regulatory B-cell

References

1. Peng Y, Chen X, Liu Q, et al. Alteration of naive and memory B-cell subset in chronic graft-versus-host disease patients after treatment with mesenchymal stromal cells. *Stem Cells Transl Med*. 2014;3(9):1023-1031.

2. Le Blanc K, Frassoni F, Ball L, et al. Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. *Lancet*. 2008;371(9624):1579-1586.

3. Haynesworth SE, Goshima J, Goldberg VM, Caplan AI. Characterization of cells with osteogenic potential from human marrow. *Bone*. 1992;13(1):81-88.

4. Le Blanc K, Tammik L, Sundberg B, Haynesworth SE, Ringden O. Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. *Scand J Immunol*. 2003;57(1):11-20.

5. Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. *Cytotherapy*. 2006;8(4):315-317.

6. R Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2016.

7. Bates D, Maechler M, Bolker B, Walker S. Fitting Linear Mixed-Effects Models Using Ime4. *Journal of Statistical Software*. 2015;67(1):1-48.

8. Miyara M, Yoshioka Y, Kitoh A, et al. Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor. *Immunity*. 2009;30(6):899-911.