Supporting Information

Centrifugation-assisted Immiscible Fluid Filtration (CIFF) for dual-bioanalyte extraction

Duane S. Juang,[†] Scott M. Berry,[†] Chao Li,[†] Joshua M. Lang,^{*,‡} & David J. Beebe^{*,†}

[†] Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA [‡] Department of Medicine, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, Madison, WI, USA

*Corresponding authors: djbeebe@wisc.edu, jmlang@medicine.wisc.edu

Table of contents:

Derivation of physics governing the conditions of bead jump in CIFF	S-2
Figure S1. Physical variables governing bead jump in CIFF	S-2
Figure S2. DNA extraction efficiency of CIFF compared to a traditional column-based technique	for
low input samples	S-4
Figure S3. Inhibition of reverse transcription and quantitative PCR reactions by mRNA	
Lysis/Binding buffer	S-4
Figure S4. Comparison of operation workflow of CIFF, column-based extraction, and magnetic	
bead-based extraction	S-5
References	S-5

Figure S1. physical variables governing bead jump in CIFF.

The physics governing the conditions of bead jump in CIFF can be written as:

$$n \cdot m_{bead} \cdot RCF \cdot g = P_c \cdot s \tag{equation 1}$$

where *n* is the stacking coefficient estimated as $N_{total}/N_{per \, layer}$ on average, N_{total} is the total number of beads in the tube, $N_{per \, layer}$ is the number of beads in the largest circle in the bead pellet, which is $N_{per \, layer} = (r_{tube}/r_{bead})^2$, where r_{tube} is the radius of the centrifugal tube, and r_{bead} is the radius of a bead. m_{bead} is the mass of a single bead, RCF is the relative centrifugal force (a dimensionless unit defined as the ratio of centrifugal acceleration over gravitational acceleration (*g*) at the Earth's surface), *s* is the projected area of a single bead at the oil/aqueous interface equal to πr_{bead}^2 , P_c is the capillary pressure (lipophobic resistance) applied on a single bead from the oil phase which is equal to $2\gamma_{oil/bead} \cdot cos\theta/r_{bead}$. $\theta = \pi - \theta^*$ and θ^* is Young's contact angle of the fluorinated oil (FC-3283) on the bead (*i.e.*, glass) surface under water estimated from our previous work,¹ and $\gamma_{oil/bead}$ is the oil-bead interfacial tension.

$$\frac{N_{total}}{N_{per \, layer}} \cdot m_{bead} \cdot RCF \cdot g = 2 \frac{Y_{oil/bead} \cdot \cos\theta}{r_{bead}} \cdot \pi r_{bead}^2 \qquad (equation 2)$$

$$\left(\frac{N_{total}}{(r_{tube}/r_{bead})^2}\right) \cdot m_{bead} \cdot RCF \cdot g = 2 \frac{\gamma_{oil/bead} \cdot \cos\theta}{r_{bead}} \cdot \pi r_{bead}^2 \qquad (equation 3)$$

Here we define $M_{beads} = N_{total} \cdot m_{bead}$

$$M_{beads} \cdot RCF = 2 \frac{\frac{\gamma_{oil/bead} \cdot \cos\theta}{r_{bead}}}{r_{bead}} \cdot \pi r_{bead}^2 \cdot (r_{tube} / r_{bead})^2 / g \approx 12000 \cdot \text{mg}$$
(equation 4)

Solving for *equation 4* using constants that represent the actual values or measured values from a previous work,¹ including r_{tube} = 2500 µm, r_{bead} = 20 µm, $\gamma_{oil/bead}$ = 59.0 mN/m,¹ θ^* = 180°, and g = 9.807 m/s², gives

RCF ≈ 12000/M_{beads}

(equation 5)

By plotting *equation* 5 with M_{beads} as the *x* axis and *RCF* as the *y* axis yields the predicted curve shown in Figure 2 of the main text.

Thus, for a given oil/aqueous pair, physical characteristics of bead and centrifugal tube, more beads are added to the tube would result in a larger M_{beads} , and hence a smaller centrifugal force (or *RCF*) would be needed to cause the jumping of beads. It is worth noting that a variance of *n* (the stacking coefficient) across the oil/aqueous meniscus (*i.e.*, larger towards the center and smaller towards the edge) will be seen, especially in cases of smaller M_{beads} . The smaller the *n*, the higher the required *RCF*. In our prediction (*equation 1*), *n* is estimated as an average across the bead pellet, so the predicted RCF is actually smaller than the measured value and the discrepancy between prediction and experiment becomes more noticeable when M_{beads} becomes smaller (Figure 2B). This also explains the trend seen in Figure 2C where smaller M_{beads} values are associated with a higher percentage of residual beads.

As can be seen in *equation 4*, a more hydrophilic (or lipophobic) surface of beads would result in a larger $\gamma_{oil/bead}$ and thus an increased resistance retaining the beads in the aqueous phase. On the other hand, a smaller $\gamma_{oil/bead}$ which can be achieved for example by adding surfactant to the aqueous phase will allow the jumping of beads to occur much more easily. Similarly, if a tube with a smaller r_{tube} is used, for a given M_{beads} , a smaller centrifugal force (or *RCF*) for bead jump can be expected.

Figure S2. DNA extraction efficiency of CIFF compared to a traditional column-based technique for low input samples. qPCR performance of LINE1 DNA extracted from 10 to 10,000 LNCaP cells using CIFF compared to a traditional column-based technique (Qiagen QIAamp DNA Mini Kit).

Figure S3. Inhibition of reverse transcription (A) and quantitative PCR (B) reactions at various concentrations of mRNA Lysis/Binding buffer (100 mM Tris-HCI (pH 7.5), 500 mM LiCI, 10 mM EDTA, 1% LiDS, 5 mM dithiothreitol (DTT)) contamination in the reaction.

Figure S4. Comparison of operation workflow of CIFF extraction, column-based extraction, and magnetic bead-based extraction.

References:

(1) Li, C.; Yu, J.; Schehr, J.; Berry, S. M.; Leal, T. A.; Lang, J. M.; Beebe, D. J. Exclusive Liquid Repellency: An Open Multi-Liquid-Phase Technology for Rare Cell Culture and Single-Cell Processing. ACS Appl. Mater. Interfaces **2018**, *10* (20), 17065–17070.