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Figure S1. Related to Figure 1. (A-B) Changes in body weight and food intake of leptin-deficient Lepob
mice before and after treatment with saline or leptin. Mice with clear vaginal opening were euthanized. (C)
Differentially expressed genes (DEGs) in the posterior mediobasal hypothalamus (MBHp) between LepoP
and WT female mice. GO (example of cellular compartment) and KEGG pathways of DEGs (D-E) and
rDEGs (F-G) in the MBHp comparing Lep©P vs WT (D-E) and Lep©P vs Lepob + leptin (F-G). Purple, upregula-
ted; Green, downregulated; NS, non significant.*p<0.05 by Student f test. Data presented as mean +/- SEM.
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Figure S2. Related to Figure 2. Differentially expressed genes (TRAP_DEGSs) in LepRb PMv neurons
comparing Lep®P and WT mice. (A) Most of the DEGs were downregulated in Lep°P females. (B) recovered
DEGs (rDEGs) enriched in PMv LepRb neurons. (C-E) GO and KEGG pathways associated with rDEGs.
Purple, upregulated; Green, downregulated; NS, non-significant.
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Figure S3. Related to Figure 2. Differentially expressed TRAP genes (TRAP_DEGSs) in LepRb Arc neu-
rons comparing LepoP and WT. (A) Most of these TRAP DEGs were downregulated in Lep°b females. (B)
recovered DEGs (rDEGs) after short-term leptin treatment. (C-E) GO and KEGG pathways associated
with rDEGs. Purple, upregulated; Green, downregulated; NS, non significant.
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Figure S4. Related to Figure 2. Overlapping analysis using published database for further validation.
A, B, comparative analysis of MBHp, PMv LepRb TRAP-seq, Arc LepRb TRAP-seq and TRAP DEGs
obtained from hypothalamic blocks (Allison et al., 2015 and 2018). Only LepRb enriched and leptin
regulated DEGs were used. C, Comparative analysis between Arc LepRb TRAP-seq and DEGs in
AgRP neurons following nutritional challenges (Henry et al., 2015).
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Figure S5. Related to Figure 3. Categorization of differentially expressed genes (DEGSs) in the ventral
premammillary nucleus (PMv, A-C) and arcuate nucleus (Arc, D-F) of prepubertal vs diestrous females.



Table S5: Primers used in qPCR.

Genes Primer sequence (5'-3') Product length (bp)
18s F: TGACTCAACACGGGAAACC 125
R: AACCAGACAAATCGCTCCAC
coty F: GCTGGTATAAGACCTCAGTGGAGTGT 116
R: CAATCTGATGGCCTTCTTCACA
cass F: ATGCCTGTGAACTACCACGGCCATTTGAAG 230
R: TTTGCCAAATGAAGGGTCTTG
o F: TCTGCAGAGGCAGCAGTGCGGG 150
R: CGGATCCCCTGCTGAGCAGGGC
oy CTGCCTGCCGCACGGCCCAGAT 383
P’ R: GCGAGCCAGCCTCAGCCGGTAA
Lhyg F: CGTCTCTACGCTTCTGCATC 135
R: GGCGGAAAGGACACGAAT
VMeoxz : TGGCAGCAAAAGGAAAAGCG 218
R: GGAACCACACTTTCACCTGTCT
Nanos2 - ATTCAGAGCCGGAAGCAAAG 285
R: GACTGCTGTTGAGTGGACAA
Nraaz F: TTCCACCAGAACTACGTGGC 116
R: CAGCTAGACACAGGAGTGCC
bdima F: TTGACAGGGCAGAAACTCGC 187
R: GAAGCGCTCACTACCTGTCT
blasqs F: GGGAACTCTGCTGAAAATGC %
9°  R: AATGGTTTGTGGGCACTGAT
abps F: GACAAGGCTCGTTTCTCTGG 043
P R: AAAGGAGGCTACACCCCAGT
s AGCAGACCGGCTGATGACTC 83
R: TCACTCCAGGCCACTGGTTC
choxz F: TGGAACAACTCAACGAGCTGGAGA 200
R: TTCAAACTGGCTAGCGGCTCCTAT
Wnt7a F: GBCTACAACACACACCAGTAT 137
R: GATCTGACCTGTGACCTCATTC
F: CCTGGACAGTTTGCGACTGA
Zbtbl6 . T CCGTGCCAGTATGGGTCT 138
gy F: CGTTCAAGGGGGTAACTCTGG ogo
9P R: AGCAACTGGAACAACGGGTG

Note: F, Forward primer; R, Reverse primer



Transparent Methods

Key Resources Table

REAGENT or RESOURCE

SOURCE

IDENTIFIER

Antibodies

Sheep anti-VWF antibody

Abcam Cat#ab11713

RRID:AB_298501

Rabbit anti-Laminin antibody

Novus Cat#NB300-144

RRID:AB_10001146

Rabbit anti-CART antibody

Phoenix Cat#H-003-62

RRID:AB_2313614

Goat anti-Rabbit 1IgG (H+L) Highly
Cross-Adsorbed Secondary Antibody,
Alexa Fluor Plus 488

Invitrogen Cat#A32731

RRID:AB_2633280

Donkey anti-Rabbit IgG (H+L) Highly
Cross-Adsorbed Secondary Antibody,
Alexa Fluor Plus 488

Invitrogen Cat#A32790

RRID:AB_2762833

Donkey anti-Sheep IgG (H+L) Cross-
Adsorbed Secondary Antibody, Alexa
Fluor 594

Invitrogen Cat#A-11016

RRID:AB_2534083

Chemicals, Peptides, and Recombinant Proteins

Biotin-Protein L GeneScript Cat#M00097

BSA Jackson Immuno Research Cat#0001-000-162
Cycloheximide (CHX) Sigma Cat#C7698
Dithiothreitol Molecular Biology Sigma Cat#D9779
Reagent

D-(+)-Glucose Bioxtra Sigma Cat#G7528
DHPC Avanti Polar Lipids/VWR Cat#100122-252
EDTA Free, Protease Cocktail Tablets | Roche Cat#11836170001

GFP Ab, C8

Memorial-Sloan Kettering
Monoclonal Antibody Facility

Cat#HTZ-GFP-
19C8

GFP Ab, F7

Memorial-Sloan Kettering
Monoclonal Antibody Facility

Cat#HTZ-GFP-
19F7

HBSS, Hank’S balanced salt solution, 10X

Invitrogen/Life Technologies

Cat#14065-056

HEPES,1M Affymetrix/Fisher Cat#16924
iTag™ Universal SYBR® Green BIO-RAD Cat#1725120
Supermix
KCI, 2M Applied Biosystems/Life Cat#AM9640G
Technologies
Leptin A.F. Parlow, NHPP, Harbor- N/A
UCLA Medical Center,
Torrance, California, USA
Methanol, Anhydrous, 99.8% Sigma Cat#322415
MgCI2, 1M Applied Biosystems/Life Tech | Cat#AM9530G




NP-40, 10% Sterile, Rnase Free Vials | AG Scientific Cat#P1505
PBS, 10X Applied Biosystems/Life Tech | Cat#AM9625
QIAzol Lysis Reagent Qiagen Cat#79306
RNAsiIn Promega/Fisher Cat#N2515
RNAse Free Water Applied Biosystems/Life Tech | Cat#AM9937
Roche Protector Rnase Inhibitor Roche/Sigma Cat#3335402001
Sodium Azide, 99.5% Sigma Cat#S2002
Sodium Bicarbonate Bioxtra Sigma Cat#S6297
Steptavidin T1 Dynabeads Invitrogen/Life Technologies Cat#65601
Superasin Applied Biosystems/Life Tech | Cat#AM2694
Critical Commercial Assays
DNAse | Sigma-Aldrich Cat#*AMPD1
miRNeasy®mini Kit Qiagen Cat# 217004
lllumina TruSeq mRNA Sample lllumina Catalog #s
Preparation v2 kit RS-122-2001,
RS-122-2002
KAPA Library Quantification Kits Kapa Biosystems Cat# KK4835
RNeasy Micro Kit Qiagen Cat#74004
SMARTer Ultra Low RNA Kit for Clontech Cat#634936
lllumina Sequencing
SuperScript™ Il Invitrogen Cat#18064022
Deposited Data
Sequencing data listed in the Tables This paper Table S1-4
Experimental Models: Organisms/Strains
C57BL/6J mice Jackson labs Stock # 000664
Lep°®* mice Jackson labs Stock # 000632
LepR®® mice Leshan et al., 2006 N/A
ROs@®CrP-L10a/eGFP-L10a mjce Krashes et al., 2014 N/A
Oligonucleotides
Primers for gPCR quantification | This paper | See Table S5

Software and Algorithms

CiiiDER

Gearing et al., 2019

http://ciiider.com/

Cytoscape(v3.7.2)

Cytoscape Software

http://www.cytosca
pe.org/

Cufflinks/Cuffdiff(2.1.1)

Trapnell et al., 2012

http://cole-trapnell-
lab.github.io/cufflin
ks/install/

DAVID(v6.8)

Huang da et al., 2009

https://david.ncifcr
f.gov/

GraphPad Prism (v8.0)

GraphPad Software

https://www.graph
pad.com/



http://cole-trapnell-lab.github.io/cufflinks/install/
http://cole-trapnell-lab.github.io/cufflinks/install/
http://cole-trapnell-lab.github.io/cufflinks/install/

R (v3.6.1) R Software https://www.R-
project.org/
STRING (v11.0) String Consortium https://string-
db.org/cgi/input.pl
TopHat (v2.0.13) Trapnell et al., 2012 http://ccb.jhu.edu/
software/tophat/do
wnloads/

VLAD (v1.8.0) Richardson & Bult, 2015 http://proto.inform
atics.jax.org/protot
ypes/vlad/

Experimental Model and Subject Details
Mice

Lep°®®* mouse (ob/+; JAX® mice, stock # 000632) purchased from Jackson labs were
intercrossed to generate Lep** (WT) and Lep°®®®® (Lep®®) female littermates. Lep°®* mice were
crossed to LepR®® (Leshan et al., 2006) to obtain Lep®*LepR®® mice, which were subsequently
crossed to Rosa®CrP-L10a/eGFP-L10a mjce (Allison et al., 2015; Krashes et al., 2014) to generate
Lep®”*LepRbc®RosacFP+19% (LepRbLepRec " 1102) mice, which express GFP-labeled L10a
ribosomal protein targeted to LepRb neurons. Lep°®*LepRb‘®Rosa®® 1% mice were then
intercrossed to generate Lep*’*; LepRbc®/c®Rosa®CrP-L10a/eGFP-L10a gng
Lep°o°LepRhbCre/ceRosaeCrP-L10a/eGrP-L10a (| @nRpeCFP-L108) female littermates. Adult (PND60-70)
and prepubertal (PND18) C57BL/6J females were generated from the intercrossing of C57BL/6J
mice (JAX® mice, stock # 000664). Mice were bred at the University of Michigan and maintained
in a light- (12 h light/dark cycle) and temperature- (21 to 23°C) controlled environment with free
access to water and food. Mice were fed with a phytoestrogen-reduced diet 2016 (16%
protein/4% fat, Teklad 2916 irradiated global rodent diet, Envigo) to minimize the effect of
exogenous estrogen in pubertal development. All procedures involving mice were approved by
the University of Michigan IACUC in accordance with AAALAC and NIH guidelines (protocol #
PRO08712).

Methods
Leptin treatment and harvesting of MBHp

Mice (PND60-70) were divided into three groups (n=4/group): a) wildtype (WT) diestrous
females treated with intraperitoneal (ip.) saline; b) leptin-deficient (Lep°®) females treated with ip.
saline (ob); and c) Lep°® females treated with ip. leptin (Lep®+leptin) 2.5 pg/g for 2 days, at 9:00
AM and 5:00 PM (leptin from A.F. Parlow, Harbor-UCLA Medical Center, National Hormone and
Peptide Program). One hour after the last saline or leptin injection (at 10:00 AM), females were
euthanized by decapitation following anesthesia (isoflurane) and brains were harvested. Frontal
sections of the hypothalamus (1 mm-thick) were collected using a brain matrix (Ted Pella, Inc.
cat# 15003). The MBHp was micro-dissected, processed for RNA extraction and submitted for
RNAseq analysis.




Translating Ribosome Affinity Purification (TRAP) of PMv and Arc LepRb cells

Diestrous LepReC¢FP1% and Lep°PLepReCcFPt% female mice (PND60-70) were used. The
expression of eGFP-L10a in LepRb neurons in the hypothalamus of the LepR®¢+1% mouse
line has been verified and validated by our group (Allison et al., 2018; Allison et al., 2015).The
experimental design and saline/leptin treatment were the same as detailed in the previous item
(“Leptin treatment and harvesting of MBHp”). The PMv and Arc were collected separately from
the left and right sides of each individual mouse brain by micro punches (1.25 mm diameter).
The third ventricle was used as anatomical reference for the medial and dorsal borders of the
hypothalamus and the fornix was used as the lateral limit of the medial hypothalamus.
Preliminary experiments assessing RNA concentration determined the need to pool micro
punches from both sides of three mice per treatment group. Each pooled set of PMv or Arc
punches was considered a single biological replicate, and four biological replicates in each
treatment group were used. The mRNA was isolated from eGFP-tagged ribosomes, as well as
eGFP-depleted supernatant (Allison et al., 2015; Burger et al., 2018; Heiman et al., 2014).
Tissue punches were immediately homogenized in ice-cold lysis buffer 20 mM HEPES-KOH,
150 mM KCl, and 10 mM MgCl. (Affymetrix/Thermo Fisher Scientific); 1x EDTA Free Protease
Inhibitor and 1.25% volume-to-volume ratio (v/v) of RNAse Inhibitor (Roche, Indianapolis, IN),
0.625% v/v RNAsin (Promega, Madison, WI), 0.625% v/v Superasin (Invitrogen/Thermo Fisher
Scientific), 0.5 mM dithiothreitol and 0.1 mg/ml cycloheximide. Lysis buffer volume was adjusted
for input amounts of PMv and Arc punches (100 pL of lysis buffer per punches). Anti-GFP
(HtzGFP-19F7 and HtzGFP-19C8; Antibody and Bioresource Core Facility, Memaorial Sloan
Kettering Cancer Center, New York, NY)-coated streptavidin magnetic beads (Streptavidin T1
Dynabeads; Invitrogen/Thermo Fisher Scientific) were applied to the samples.
Immunoprecipitation occurred overnight at 4°C. Polysome-RNA complexes bound to the anti—
GFP-coated streptavidin magnetic beads (LepRb neuron specific) were separated from the
supernatant by a magnet; RNA was isolated using the RNeasy Micro Kit with on-column DNAsiIn
(Qiagen, Valencia, CA). The RNA samples were subjected to RNA quantification and quality
evaluation using the RNA 6000 Pico Chip (Agilent Technologies) for RNAseq. Before generating
cDNA libraries, LepRb-enhanced and LepRb-depleted RNAs were reverse transcribed (Allison
et al., 2018; Allison et al., 2015; Burger et al., 2018) and amplified for Lepr and Actb (B-actin,
reference gene) using Tagman qPCR to determine enrichment for Lepr. The Lepr expression
levels were normalized to Actb (no difference between groups), and enrichment was calculated
as relative expression in LepRb-enhanced RNA samples divided by the normalized relative
expression in the LepRb-depleted samples. The LepRb-enhanced RNA of each sample was
used to create cDNA libraries with the SMARTer v4 Ultra Low Kit and Low Input DNA library Pre
Kits (Clontech) (Burger et al., 2018).

Tissue harvesting in prepubertal vs diestrus females

C57BL/6J prepubertal (P18) and adult diestrous (P60-70) females (n=4 per group) were
euthanized under isoflurane anesthesia. Vaginal cytology was monitored for approximately 7
days before tissue collection in adult females to determine estrous cycle stage. Only normally
cycling females were used. After euthanasia, uterine weight was measured to confirm diestrus
(< 100 mg). PMv and Arc micro punches were dissected and collected as detailed in the



previous section (“Translating Ribosome Affinity Purification (TRAP) of PMv and Arc LepRb
cells”) and processed for RNAseq analysis.

RNA-sequencing and Data Processing

RNA was extracted with miRNeasy®mini Kit (Qiagen, cat# 217004) according to the
manufacturer protocol. RNA was assessed for quality using the TapeStation (Agilent, Santa
Clara, CA). Samples with RNA integrity numbers (RINS) of 8 or greater were subjected to
lllumina TruSeq mRNA Sample Preparation v2 kit (Catalog #s RS-122-2001, RS-122-2002),
and 1-3g of total RNA was purified to mRNA using polyA purification. The mRNA was
fragmented via chemical fragmentation and reverse transcribed into cDNA using reverse
transcriptase and random primers. The 3’ ends of the cDNA were adenylated, and 6-nucleotide-
barcoded adapters ligated. The products were purified and enriched by PCR to generate the
final cDNA library. Final libraries were checked for quality and quantity by TapeStation (Agilent)
and gPCR using Kapa's library quantification kit for lllumina Sequencing platforms (Kapa
Biosystems, cat# KK4835). They were clustered on the cBot (lllumina) and 4 samples per lane
were sequenced on a 50-cycle single end run in a HiSeq 2500 (lllumina) by the University of
Michigan DNA Sequencing and Bioinformatics Cores. The Tuxedo Suite software package was
used for alignment, differential expression analysis, and post-analysis diagnostics (Trapnell et
al., 2013). Cufflinks/CuffDiff (http://coletrapnell-lab.github.io/cufflinks/) (Trapnell et al., 2012) was
used for quantitation, normalization, and determination of differential expression using
University of California Santa Cruz (Santa Cruz, CA) mm10.fa as the reference genome
sequence (http:// genome.ucsc.edu/). Hierarchical cluster analysis was conducted to assemble
genes with similar expression patterns across groups using Cluster 3.0 software. After
normalization of the expression of each gene by log2 transformation, gene clustering was
performed with average linkage method with Euclidean distance. The hierarchical cluster
heatmap was organized by Java TreeView software. DEGs in pairwise comparisons among
groups were determined using Cufflinks/Cuffdiff analysis, with thresholds for differential
expression set to fold change (fc)>1.5 or <0.66 and a false discovery rate (q value) of < 0.05.
The Gene List analysis and Visualization (VLAD) v1.8.0 was used to define the enriched
biological processes (BP), cellular component (CC) and molecular function (MF) of DEGs. For
pathway analysis, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database
using DAVID v6.8 was used to reveal physical and/or functional interactions among the genes.
Gene ontology (GO) and pathway terms showing unadjusted p-values < 0.05 were selected.
STRING online database (http://string-db.org) was used to assess protein-protein interaction
(PPI1) and Cytoscape software (http://www.cytoscape.org/) was employed to visualize PPI
network interaction of common DEGs.

Mapping of phosphoSTAT binding sites

The potential pSTAT3/STATS binding sites across the promoter region (1500bp upstream and
500bp downstream of the transcription start site) of the core genes were scanned by CiiDER
software. JASPAR2020 CORE_vertebrates clustering was used as the transcription factor
position frequency matrix. Deficit threshold was defined as 0.15. One thousand genes with close
to zero-fold change between WT and Lep® from PMv TRAP-seq and Arc TRAP-seq,
respectively, were used as the background gene list to identify significantly over-represented



STAT3/STAT5S-targeting core genes in PMv and Arc, respectively. Fisher's exact test was used
and gene coverage p-value < 0.05 was considered significant.

Analysis of Overlapping DEGs in all three RNAseq Assays

All analyses were generated in R (v3.6.1) language for statistical computing (https://www.R-
project.org/). Independent RNA-seq data (MBHp, TRAPseq, and PP vs Di CuffDiff results) and
DAVID enrichments were used as input files (Huang da et al., 2009a, b; Trapnell et al., 2012).
To determine shared DAVID functional enrichments between comparisons from different
projects, shared DEGs and identity of all measured genes across the comparisons were first
determined. Group comparisons:

Group 1: WT_v_Ob_Saline_DE.xIsx (MBHp), PMV.diestrus_v_PMV.ob_saline.xIsx (TRAPseq),
PMV.Adult_v_PMV.Pre.xlsx (PP vs Di);

Group 2: WT_v_Ob_Saline_DE.xIsx (MBHp), ARC.diestrus_v_ARC.ob_saline.xIsx (TRAPseq),
ARC.Adult_v_ARC.Pre.xlsx (PP vs Di);

Group 3: Supp Table 1 DEGs (MBHp), Supp Table 4 PMV DEGs (TRAPseq),
PMV.Adult_v_PMV.Pre.xlsx (PP vs Di);

Group 4: Supp Table 1 DEGs (MBHp), Supp Table 6 Arc DEGs (TRAPseq),
ARC.Adult_v_ARC.Pre.xlIsx (PP vs Di)

Shared DEGs and all measured genes between comparison sets were converted from gene
symbols to ENSEMBL ids and used as query sets and background sets, respectively, for DAVID
enrichments using R package RDAVIDWebService (v3.10) (Fresno and Fernandez, 2013).
Enrichments were repeated with rDEGs as query sets for Group 3 and Group 4. The
background sets generated for Group 1 (PMv) and Group 2 (Arc) were used for DEGs and
rDEG DAVID enrichments for Group 3 (PMv) and Group 4 (Arc), matched by cell-type.

Quantitative PCR (qPCR) validation of RNA-sequencing data

To validate the RNAseq data, PMv and Arc samples obtained by micro punches were
evaluated. Tissue was homogenized in Qiazol reagent (Qiagen), and total RNA was isolated
using an RNA extraction kit (miRNeasy, Qiagen). Total RNA (200 ng) was used to synthesize
cDNA using SuperScript Il reverse transcriptase and random primers (Invitrogen) according to
the manufacturer’s protocol. Gene expression analyses were performed by gPCR using a CFX-
384 Bio-Rad Real-Time PCR detection system (SYBR Green reaction). The mRNA levels were
normalized to the 18s ribosomal RNA reference gene, and changes related to the control levels
(WT, diestrous females) were determined using 24 method. We initially evaluated the
variation of 18s Ct values across samples and experiment groups and no difference was
observed (all groups showed Ct values ranging from 12.8 to 13.4) indicating the 18s was an
adequate reference gene. Primers for targeted and reference genes are listed in Table S5.

Immunofluorescence

A group of PP and Di mice were intracardially perfused with 10% formalin, and brains were
prepared for histological examination. Hypothalamic sections of PP and Di females were labeled
with sheep anti-VWF (1:1,000 Abcam, cat#ab11713) and/or rabbit anti-Laminin (1:1000 Novus,
cat#NB300-144). According to the manufacturers, the laminin antibody is pan-specific and
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reacts with all laminin isoforms tested: Laminin-1 (alpha-1, beta-1, and gamma-1) and Laminin-2
(alpha-2, beta-1, and gamma-1). Following overnight incubation at room temperature, tissue
was incubated in secondary conjugated to AF488 or AF594 (Invitrogen) for 1h. Another series of
hypothalamic sections from PP and Di mice were also incubated in rabbit anti-CART peptide
(1:10,000 Phoenix, cat#H-003-62) and processed for immunoperoxidase using DAB and silver
enhancement.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data other than RNAseq are reported as mean + standard error of the mean (SEM) and were
analyzed using the GraphPad Prism 7 software. Statistical analyses of RT-qgPCR data and
changes in body weight and food intake of Lep®® mice before and after saline or leptin treatment
were done by one-way ANOVA followed by Tukey’s test. Quantification of CART-ir fiber density
was performed in one section and one side of the Arc (n=3/group) at the tuberal level (image
67, Allen Mouse Brain Atlas). Fiber density was quantified by integrated optical density using
fixed illumination, background normalization and gray scale in Image J (NIH). Quantification of
colocalization between GFP- and Laminin-ir was performed in one section and one side of the
PMv (n=4-5, Image 76, Allen Mouse Brain Atlas). F test to compare variances and one-way
ANOVA followed by Tukey’s test were used. Significance was set at p< 0.05.
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