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1 Differential Equations for Non-Instantaneous Testing
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2 Calculation of R0 for Misclassification Model

We calculate the basic reproduction number R0 using the The Next Generation Matrix Method as described by
van den Driessche [3]. Suppose the whole population is divided into n compartments in which there are m < n infected
compartments. Let xi, i = 1, 2, ..,m be the number of infected individuals in the ith infected compartment at time t.
Now, the epidemic model is:

@xi

@t
= Fi(x)� Vi(x)

Here, Vi(x) = [V �
i
(x) � V +

i
(x)], where V +

i
(x) represents the rate of transfer of individuals into compartment i

from all other components containing individuals infected with the disease (here E, U , P and F ) and where V �
i
(x)

represents the rate of transfer of individuals out of compartment i. Here, Fi(x) represents the rate of appearance of
new infections in compartment i. Let x0 denote the disease free equilibrium. Now F and V are m⇥m matrices such that :

Fij =
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Now, FV�1 is called the Next Generation Matrix. The basic reproduction number R0 is calculated by the spectral
radius or the largest eigenvalue of FV�1. For our case,
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Now, we calculate the jacobian of F and V at the Disease Free Equilibrium (DFE).
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Now, we need to find the inverse of V̇ . Since it is a lower triangular matrix, it is easy to find the inverse.
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Now, we multiply Ḟ and V̇�1. The spectral radius of ḞV̇�1 gives the basic reproduction number. Note that the matrix
ḞV̇�1 has only one non-zero row, which is the first one. All other rows of ḞV̇�1 are 0. Hence, the spectral radius is
given by

⇣
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⌘
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3 Motivation Behind the 3-parameter Multinomial Model

We can observe from figure (S1) that mCFR varies widely across countries and also across time. Now note that while
countries like Belgium, USA, Italy, Spain have very high mCFR, India and Russia have comparatively much lower
mCFR. Also, we observe that initially most countries experience high mCFR and it gradually settles to a comparatively
lower value in most countries as the case counts and recoveries rise. This supports modeling mCFR as a time-varying
quantity.
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Figure S1: Variation of mCFR with time

4 Transmission Dynamics Diagram for Symptoms Model

Figure S2: Misclassification Model with Symptoms

The only difference in this model from the Multinomial 2-parameter model is that, from the Exposed Node, an infected
person can enter into one of three possible nodes: Severe Symptomatic Infectious(Se), Mild Symptomatic Infectious(Mi)
and Asymptomatic Infectious(As) with probabilities p1 , p2, and p3 respectively. Now, we assume people with severe
symptoms (people in Se) are tested with probability 1. While the Mi people and the As people are tested with
probabilities t1 and t2.

5 Misclassification model - complete distributional assumptions

In the main paper, we have given the distribution of observed nodes given the other nodes and parameters. Here, we
describe the distribution of the latent nodes also. After getting the estimates of the parameters using MCMC, we want to
obtain model-based forecasts. In order to predict the future counts, we use the following multinomial random sampling
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strategy:

⇣S!E , ⇣S!O, ⇣S!S ⇠ Multinomial (S(t� 1), pS!E , µ, 1� pS!E � µ)
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⇣RU!O, ⇣RU!RU ⇠ Multinomial (RU(t� 1), µ, 1� µ)

⇣RR!O, ⇣RR!RR ⇠ Multinomial (RR(t� 1), µ, 1� µ)

where ⇣X!Y denotes the number of individuals moving from compartment X to compartment Y at time t. ⇣X!0

denotes the number of individuals in compartment X that die at time t. The counts in each compartment at time t are
given by,

S(t) = ⇣S!S

E(t) = ⇣E!E + ⇣S!E

U(t) = ⇣U!U + UE ! U

P (t) = ⇣P!P + ⇣E!P

F (t) = ⇣F!F + ⇣E!F
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RR(t) = ⇣RR!RR + ⇣P!RR

DU(t) = ⇣DU!DU + ⇣U!DU + ⇣F!DU

DR(t) = ⇣DR!DR + ⇣P!DR

Given the parameters and the counts at time (t� 1), we obtain the predicted counts for time t. Using this approach, we
obtain the posterior means of the future predicted counts at each of the 9 compartments using the MCMC estimated
parameters. For the purpose of future prediction beyond the training period, we use the parameter estimates from the
last time period.

6 Differential Equations for the Selection Model
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7 Selection Model : Complete Distributional Assumptions

To generate data using the test model, we perform the following steps.

⇣S!E , ⇣S!O, ⇣S!S ⇠ Multinomial(S(t� 1), pS!E , µ, 1� pS!E � µ)

Now, we assume the probability of an individual being severely symptomatic, mildly symptomatic or asymptomatic
given he/she is susceptible is given by the probability vector p0 = (p01, p02, p03). The probability for an infected
individual is given by p1 = (p11, p12, p13). To obtain the number of individuals in the groups Se0,Mi0, andAs0, we
assume that the outgoing individuals from the susceptible group follow the distribution given by p0.

Se0
new

(t), Mi0
new

(t), As0
new

(t) ⇠ Multinomial(⇣S!S ,p0)
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Now, from our assumption that the individuals in E follow the distribution given by p1, we can write,

⇣E!Se1 , ⇣E!Mi1 , ⇣E!As1 , ⇣E!O, ⇣E!E ⇠ Multinomial
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Recall, we assume that all individuals with severe symptoms are tested provided adequate tests are available. This
implies
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In the case when number of test T (t) is less than that of severe individuals, we assume that the number of tested Se1

and Se0 individuals is proportional to their respective counts.
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If the total number of remaining tests is greater than or equal to the number of mild and asymptomatic individuals, then
all of them are tested i.e :
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If number of tests are not adequate for all the mild symptomatic and asymptomatic people to be tested, then the
remaining tests (after testing the severe symptomatic people) are distributed among the mildly symptomatic and
asymptomatic individuals in the ratio t1 : t2.

Mitested, Astested ⇠ Binomial (T � Setested, (t1, t2))

As we did in the case of severely symptomatic, we allocate the tests among infected and uninfected mildly symptomatic
(and also asymptomatic) individuals randomly.
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We also assume the false negative probability = f . The numbers of new individuals to P and F states are given by :

Pnew, Fnew ⇠ Multinomial
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Finally we write the number of people in each state at time t as follows :

UI(t) = ⇣UI!UI + Se1
untested

+Mi1
untested

+As1
untested

P (t) = ⇣P!P + Pnew

F (t) = ⇣F!F + Fnew

RU(t) = ⇣RU!RU + ⇣UI!RU + ⇣F!RU

RR(t) = ⇣RR!RR + ⇣P!RR

DU(t) = ⇣DU!DU + ⇣UI!DU + ⇣F!DU

DR(t) = ⇣DR!DR + ⇣P!DR
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Figure S3: Special case of Selection Model : Uniform testing

8 Special case of Selection Model : Uniform testing

To understand the effect of selection bias on R0, we consider a special case of the Selection model where we assume
uniform testing. Here, uniform testing means tests are offered independently of symptoms. The model is represented
diagrammatically in Figure (S3).

The transmission dynamics of this model are very similar to the Selection model. We provide the differential equations
describing the dynamics of the nodes S,E, UI, P and F . The rest of the nodes (RU,RR, DU and DR) have differential
equations exactly same as in Selection Model.
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Now that we have all the differential equations governing the dynamics of this model, we calculate the basic reproduction
number using Next Generation Matrix method [3]. Using calculations similar to what we did for the Misclassification
model, we arrive at the following expression of R0 for Uniform testing model.
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9 Real Data Analysis for India

9.1 Table for Initial Values of the Different Compartments for India

Variable Value Justification

S(0) 1340933446 N-(E(0) + U(0) + P(0) + F(0) + RU(0) + RR(0) + DU(0) + DR(0)) (N = 1341 million)

E(0) 48780 Thrice the number of current infected

U(0) 13821 1�r

r
(P(0) + F(0))

P(0) 1829 Reported current infected on 1st April

F(0) 610 f

1�f
P(0)

RU(0) 958
⇣

1�r

r
+ f

1�f

⌘
RR(0)

RR(0) 169 Reported recovered on 1st April

DU(0) 329
⇣

1�r

r
+ f

1�f

⌘
DR(0)

DR(0) 58 Reported deceased on 1st April

Table S1: Initial Values of the Different Compartments

Now for India, we have fitted data from 1st April to 30st June. So for our prediction, we need the counts of the different
compartments on the initial date, that is on 1st April. So the table S1 presents the counts of the compartments for India
on 1st April.

9.2 Additional Plots for India

We have done our estimation using the MCMC Metropolis Method and predicted the counts for the different com-
partments by using the posterior means conditional on the estimated parameters. So the large number of iterations of
MCMC provide a 95% credible interval for the parameters as well as for the predictions of the compartments. So the
following figure shows the credible regions for the Reported Active, False negative active and Untested Active cases.

Figure S4: 95% Credible Intervals of estimates of Current Active Cases in India

Figure (S4), shows the 95% CI’s of the estimates of Current Active cases in India from 1st April to 31st August. Here,
we have fit the model using the data from 1st April to 30th June dividing the training period into 5 parts as described
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earlier. The estimates of � and r for the last period (1st June to 30th June) was used to predict the cases from 1st July
to 31th August. As it is easily visible from Figure (S4), the CI’s for estimates of untested cases is the highest. This is
expected due to the much higher estimated number of untested cases than tested positives or false negatives.

10 Additional Plots for Maharashtra and Delhi

(a) Basic Reproduction Number for Delhi (b) Basic Reproduction Number for Maharashtra

Figure S5: Basic reproduction number of Delhi and Maharashtra

From Figure (S5b), we observe that the estimates of basic reproduction number for Maharashtra have been strictly
decreasing throughout the training period. The value of R0 started at 3.58 in the first 2 weeks of April and eventually
dropped to 1.51 in June. The value of R0 dropped below 2 first time in lockdown 3 which was from 4th to 17th May.
From figure (S5a), we note that the basic reproduction number was quite high (> 3) in 1st, 2nd, 4th and 5th periods and it
decreased to 1.22 in the 6th period.

11 Results for Simulations - Effect of Misclassification

In the main paper we have shown the effect of misclassification on number of total active cases. We concluded that the
effect of misclassification on total active cases was substantial, but it was negligible on reported active cases. Here, we
provide the mean estimates of R0 obtained by the 3 different models with 3 different false negative rates f = 0, 0.15
and 0.3.

Basic Reproduction Number MRE
R01 R02 R03 R04 R05 Lower C.I Mean Upper C.I

Actual 3.99 3.65 2.12 1.59 1.69 - - -
Predicted Using f = 0 3.64 3.51 1.97 1.48 1.65 0.0036 0.0041 0.0045
Predicted Using f = 0.15 3.52 3.64 2.01 1.51 1.69 0.0035 0.004 0.0044
Predicted Using f = 0.3 3.83 3.73 2.04 1.53 1.71 0.0009 0.0012 0.0015

Table S2: Effect on Basic Reproduction Number

It is quite evident from the table S2 that the R0 is quite robust with the change of the value of false negative rate (f ).
Under all the false negative rates, the estimation of R0 is quite accurate which is evident from the MRE provided in the
table S2.
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12 Sensitivity Analysis

Since we have not estimated the values of quite a few parameters, a sensitivity analysis is necessary. Now, as doing
sensitivity analysis of all the parameters and initial values is impractical, we will do sensitivity analysis for the following
parameters only.

1. E0 : The initial value of Exposed had been chosen as 3 times the sum of initial values of Untested, Confirmed
and False Negative cases. Such a choice might seem arbitrary. Hence, we try 4 different values of E0 and
check how the estimates of R0 and Current Active cases vary across different values of E0.

2. ↵U : The value of ↵U had been taken as 0.5 in the main analysis. We also assumed ↵P = 0.5. So, we effectively
assumed that the rate of transmission of disease by untested and tested positive individuals was same. Some
things to consider when choosing the value of ↵U and ↵P were that individuals who were tested positive
are quarantined and/or hospitalized reducing their rate of transmitting the disease. And untested cases are
predominantly asymptomatic cases whose rate of spreading the virus is much less than symptomatic cases.
So, we have ↵U < 1 and ↵P < 1. However, we do not know if ↵U > ↵P or ↵U < ↵P . So we try 4 different
values of ↵U here which are ↵U = 0.3, 0.5, 0.7 and 1.

3. De : We stated in the beginning of this paper that we have assumed the Incubation period equals the Latency
period (= De). We have taken De = 5.2 days following the results by Lauer et al. [2]. However research
by other groups suggest different values of incubation period like 6.4 days by Becker et al. [1] etc. So we
consider 3 values of De for sensitivity analysis. They are De = 6.4, 5.2 and 4.1 (lower limit of 95% CI of
estimates of incubation period by Lauer et al. [2])

4. k : For Multinomial Symptoms model, one important parameters is k which is the ratio of probability of a
mildly symptomatic person being tested to that of an asymptomatic person being tested. Since the probability
of testing is higher for a mildly symptomatic person than an asymptomatic person, so k > 1. In our main
analysis, we assumed k = 4. The choice of k was not supported by any data. So, we try 4 different values of k
: k = 3, 4, 5 and 6 and look at the different estimates.

12.1 Effect of initial value of Exposed

We start with the initial value of Exposed individuals. Throughout our analysis we have assumed that the number of
exposed individuals on the starting day i.e. 1st April was thrice the number of total expected infected up to that day. So
we check how much our estimates vary if we vary the starting value of Exposed (E0). So, we use 4 starting values for
E0:

1. E0 = U0 + P0 + F0

2. E0 = 2(U0 + P0 + F0)

3. E0 = 3(U0 + P0 + F0)

4. E0 = 4(U0 + P0 + F0)

Figure S6: Variation of estimates of R0 with different values of E0
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We can observe from subfigure B of Figure (S6) that our estimates of R0 are relatively robust with respect to choice of
initial values of exposed. The only substantial variation is observed in the first time period - 1st - 14th April. Now, let
us look at how the estimates of number of active cases change with different initial values.

We can observe from subfigure A of Figure (S6) that all the estimates for total active cases increases with increasing
values of E0. The estimate of total active cases on 30th June for E0 = 4(U0 + P0 + F0) was more than 2 times that
for E0 = (U0 + P0 + F0). Hence we observe that though the estimates of total active cases vary substantially with
different initial number of Exposed people, the estimates of Basic Reproduction Number are much more robust to such
variations. Now we look at the effect of ↵U on our estimates.

12.1.1 Effect of ↵u

In our main analysis we assumed ↵U = 0.5. Here, we try 4 different values of ↵U , ↵ = 0.3, 0.5, 0.7 and 1. First, we

Figure S7: Variation of estimates of R0 with different values of ↵U

look at the estimates of R0. Similar to the previous section, from subfigure B of (S7), we observe that the estimates of
R0 are more or less similar for different values of ↵U . Once again, the only R0 that substantially varies with different
values of ↵U is the first one i.e. R01. Now, we look at the estimates of total active cases.

Subfigure A of (S7) shows that the estimated value of total active cases decreases with increasing value of ↵U . The
reason behind this is if the value of ↵U is higher, then a smaller number of untested cases will spread the same amount
of infection as a larger number of cases would have if the value of ↵U had been lower.

So, once again, we observe that while the estimates of the number of active cases are influenced heavily by ↵U , the
estimates of R0 remain relatively unaffected by the change.

12.2 Effect of De

For our main analysis, we had assumed De = 5.2. Here, we try 2 more values of De and check how our estimates vary
with different values of De.

Again, we observe from subfigure B of (S8), that estimates of R0 are very robust with respect to different values of De.
From subfigure A of Figure (S8), we note that the predicted number of active cases vary with the different values of De.
However, unlike the previous cases, we do not substantial variation with different variation of De. Now, we move on to
our last sensitivity analysis which is for the value of k in multinomial symptoms.

12.3 Effect of k

In Multinomial symptoms model, we defined k as the ratio of the probability of a mildly symptomatic individual getting
tested to the same for an asymptomatic individual. We chose the value k = 4 for our main analysis. We had argued why
the value of k should be greater than 1 but could not provide any justification for choosing that particular value. So, we
try 4 different values of k : k = 3, 4, 5 and 6. We will start with the estimates of R0.

Figure subfigure B (S9) shows that similar to previous cases, the estimates of R0 do not vary much with different values
of k. We now look at the estimates of total active cases. From subfigure A of Figure (S9), we note that the estimates of
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Figure S8: Variation of estimates of R0 with different values of De

Figure S9: Variation of estimates of R0 with different values of k for multinomial symptoms model

total active cases vary with different values of k and with higher values of k we have lower predictions of number of
total active cases.

To summarize, we observe that the estimates of the Basic Reproduction number are not substantially influenced by
these parameters with an exception of the first Reproduction number. We also note that the estimated number of active
cases varies with different values of parameters in most of the cases. It is clearly visible that the sensitivity of the total
active case predictions vary across parameters. While it does not vary much with De, there is substantial variation with
different values of E0.
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