
Supplementary Data

to NormiRazor – Tool Applying GPU-accelerated Computing for Determination of Internal

References in MicroRNA Transcription Studies

Suppl. Table 1: Hardware and software configuration of benchmark platforms.

 Platform 1 Platform 2

CPU 2x Intel Xeon E5-2620 v4
(8 cores, 16 threads per CPU)

2.1 GHz

Intel Xeon E5-2695 v3
(14 cores, 28 threads)

2.3 GHz

RAM 128 GB 32 GB

GPU Nvidia Quadro P6000
24 GB GDDR5X

3840 CUDA cores

ASUS GeForce GTX 1080Ti
11 GB GDDR5X

3584 CUDA cores

CUDA Toolkit
Version

9.1 8.0.62

Python Version 3.6.8 3.5.2

Relevant Python
modules

Numpy 1.15.2
Scipy 1.0.1

Pandas 0.23.4

Numpy 1.14.5
Scipy 1.2.1

Pandas 0.24.1

Threads assigned
to Python

24 16

Additional results of benchmark test 1

Suppl. Table 2: Speed-up gained by CUDA implementation with respect to previous Python version.

Result from both benchmark platforms.

Speed-up

± SD
total kernel

Comb. len. 3 2 3

Platform 1 2 1 2 1 2

GN
18.7

± 0.6

25.6

± 0.9

19.3

± 1.8

26.7

± 2.2

18.3

± 0.6

25.0

± 0.8

BK
104.7

± 4.2

153.7

± 42.1

12887.5

± 1846.3

17123.8

± 1841.3

21993.4

± 1479.2

29775.5

± 1773.2

NF
76.5

± 2.2

115.0

± 11.3

6195.2

± 1035.1

8798.6

± 1284.5

11877.1

± 433.5

15116.2

± 564.5

NFG
84.0

± 3.3

113.9

± 17.9

6665.7

± 1105.0

7887.2

± 1251.4

13164.5

± 595.6

15260.3

± 558.8

Suppl. Fig. 1: Comparison of the calculation (kernel) time of Python and CUDA implementations for 3-element

normalizers on datasets with varying number of miRNAs. Benchmark done on the platform 1.

Suppl. Fig. 2: Distribution of execution time in CUDA implementations for 3-element normalizers. Test 1 on the

platform 1. cudaMalloc: memory allocation on GPU, memcpyHtD – coping data from RAM to GPU memory,

memcpyDtH – coping data from GPU memory to RAM, combdet – generation of a combination list, algorithSingle –

execution of a given algorithm for single miRNAs.

Suppl. Fig. 3: Distribution of execution time in Python implementations for 3-element normalizers. Test 1 on the

platform 1.

Results of the benchmark test 2

Suppl. Fig. 4: Comparison of total execution time of Python and CUDA implementations for 3-element normalizers on

dataset with varying number of samples. Benchmark done on the platform 1.

Suppl. Fig. 5: Comparison of calculation time of Python and CUDA implementations for 3-element normalizers on

dataset with varying number of samples. Benchmark done on the platform 1.

Comparison of two benchmark platforms

We compared kernel execution time on 2 platforms and plotted the results in Fig. 4. Even though

the GPUs that the machines are equipped with are dedicated for different segments of the market,

their performance in our case was comparable. Slight advantage of Platform 2 in BK, NF/NFG can

be observed, while the Platform 1 was slightly faster with GN.

Suppl. Fig. 6: Comparison of total execution time on 2 platforms.

