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SUMMARY
Dentate gyrus granule cells (GCs) connect the entorhinal cortex to the hippocampal CA3 region, but how they
process spatial information remains enigmatic. To examine the role of GCs in spatial coding, we measured
excitatory postsynaptic potentials (EPSPs) and action potentials (APs) in head-fixed mice running on a linear
belt. Intracellular recording frommorphologically identified GCs revealed that most cells were active, but ac-
tivity level varied over a wide range. Whereas only �5% of GCs showed spatially tuned spiking, �50%
received spatially tuned input. Thus, the GC population broadly encodes spatial information, but only a sub-
set relays this information to the CA3 network. Fourier analysis indicated that GCs received conjunctive
place-grid-like synaptic input, suggesting code conversion in single neurons. GC firing was correlated
with dendritic complexity and intrinsic excitability, but not extrinsic excitatory input or dendritic cable prop-
erties. Thus, functional maturation may control input-output transformation and spatial code conversion.
INTRODUCTION

The entorhinal-cortex-hippocampus network plays a key role in

the encoding, processing, and storing spatial information

(O’Keefe and Dostrovsky, 1971; Hafting et al., 2005). Dentate gy-

rus granule cells (GCs) form an integral part of this circuit (Scharf-

man, 2007; Jonas and Lisman, 2014). They represent the most

abundant neurons in the hippocampus, with �1 million in ro-

dents and �10 million in humans. Furthermore, they provide

the main synaptic connection between the entorhinal cortex

and the hippocampal CA3 region. Finally, they are believed to

be involved in several higher-order network computations,

such as grid-to-place code conversion, pattern separation,

and storage of engrams (de Almeida et al., 2009b; Josselyn

and Tonegawa, 2020). Thus, it is widely assumed that GCs

play a critical role in spatial information processing.

A hallmark property of GCs is that they fire more sparsely

than any other neuron type in the hippocampus (Alme et al.,

2010; Pilz et al., 2016). Although early extracellular recordings

suggested that GCs fire action potentials (APs) at high fre-

quency in the center of a place field and during short-term

memory tasks (Jung and McNaughton, 1993; Wiebe and

St€aubli, 1999; Leutgeb et al., 2007), more recent electrophysi-

ological recordings, analysis of expression of immediate early

genes (Arc), and Ca2+ imaging experiments indicated that

only a minor subpopulation of GCs is sparsely active in a given

environment (Neunuebel and Knierim, 2012, 2014; GoodSmith

et al., 2017; Senzai and Buzsáki, 2017; Alme et al., 2010; Pilz

et al., 2016; Danielson et al., 2016, 2017; Hainmueller and Bar-
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tos, 2018; Diamantaki et al., 2016a). Juxtacellular recordings

further suggested that GC activity may be linked to more com-

plex dendritic trees (Diamantaki et al., 2016a). However,

whether sparse activity is determined by specific dendritic ca-

ble properties, excitatory synaptic input, or intrinsic excitability

of the neurons remains elusive.

The spatial tuning properties of identified GCs were only

recently elucidated (GoodSmith et al., 2017; Senzai and Buzsáki,

2017; Danielson et al., 2016, 2017; Hainmueller and Bartos,

2018; Diamantaki et al., 2016a). Within the population of active

GCs in the dentate gyrus, only a minor subset shows spatially

tuned firing (Senzai and Buzsáki, 2017; Hainmueller and Bartos,

2018). In contrast, within the CA1 pyramidal cell population, a

major fraction shows spatially tuned activity (Thompson and

Best, 1989; Epsztein et al., 2011; Lee et al., 2012). Why only a

small subset of GCs fires APs in a spatially tuned manner is un-

clear. Although early studies suggested that GCs show multiple

place fields (Jung and McNaughton, 1993), recent work indi-

cated that GCs often exhibit a single place field (Senzai and Buz-

sáki, 2017; Diamantaki et al., 2016a; GoodSmith et al., 2017).

GCs are thought to receive inputs from multiple sources, such

as grid cells in the medial entorhinal cortex (MEC), nongrid and

cue-specific neurons in the MEC (Diehl et al., 2017; Campbell

et al., 2018; Casali et al., 2019), object cells in the lateral entorhi-

nal cortex (LEC) (Deshmukh and Knierim, 2011), hilar mossy cells

(Jackson and Scharfman, 1996; Danielson et al., 2017), and CA3

pyramidal neurons (Scharfman, 2007). How GCs integrate these

diverse synaptic inputs to form a unified place field remains to be

determined.
ors. Published by Elsevier Inc.
creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. Sparse but Heterogeneous Firing of GCs in Head-Fixed Mice during Spatial Navigation

(A) Scheme of experimental configuration. Mice were running on a linear belt while simultaneous whole-cell patch-clamp and LFP recordings were made.

(B) Location of GC cell bodies along the upper-lower blade axis (top) and along the inner-outer GC layer axis (bottom). Green line, active GCs; blue line, silent GCs.

Distance was normalized to maximum value.

(legend continued on next page)
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Based on their unique connectivity, it is widely assumed that

GCs play a critical role in grid-to-place code conversion (de Al-

meida et al., 2009b). However, experimental work suggested

that place and grid activity can be dissociated under various

conditions, for example, during development (Langston et al.,

2010; Wills et al., 2010) and after septal lesions (Brandon et al.,

2011; Koenig et al., 2011). Thus, whether GCs receive place-

or grid-tuned synaptic input remains to be determined. Theoret-

ical studies supported the hypothesis that GCs participate in

grid-to-place code conversion (de Almeida et al., 2009b; Rolls

et al., 2006; Si and Treves, 2009; Solstad et al., 2006; Ormond

and McNaughton, 2015). However, established models of grid-

to-place code transformation rely on various mechanisms,

including competitive Hebbian synaptic plasticity (Rolls et al.,

2006), superposition of grid input with different spatial fre-

quencies (Solstad et al., 2006; Ormond and McNaughton,

2015), and network competition via a winner-takes-all mecha-

nism (de Almeida et al., 2009b). Whether any of these mecha-

nisms contributes to grid-to-place code conversion remains to

be tested.

To experimentally address these questions, we performed

intracellular, whole-cell patch-clamp recordings from morpho-

logically identified GCs in awake mice during spatial navigation.

This approach allowed us to study subthreshold excitatory post-

synaptic potential (EPSP) input, suprathreshold AP output, and

mechanisms of input-output conversion in GCs at the single-

cell level. Our results showed that amajor fraction of GCs receive

spatially tuned input, but only a minority is selected to convey

spatial information to the output. Furthermore, intrinsic excit-

ability of GCs gates the flow of spatial information at the sin-

gle-cell level.

RESULTS

Heterogeneous Activity of Morphologically Identified
GCs In Vivo

Previous studies using extracellular recording and Ca2+ imaging

reported a range of activity rates in hippocampal GCs (Jung and

McNaughton, 1993; Wiebe and St€aubli, 1999; Leutgeb et al.,

2007; Neunuebel and Knierim, 2012, 2014; GoodSmith et al.,

2017; Senzai and Buzsáki, 2017; Alme et al., 2010; Pilz et al.,

2016; Danielson et al., 2016, 2017; Hainmueller and Bartos,

2018; Diamantaki et al., 2016a). To obtain ground-truth data on

the activity of GCs during spatial navigation, we performed
(C) Recording from an active GC, which fired a mixture of single APs and bursts.

recording. Right, Vm (top), LFP (center), and velocity (bottom) (dotted horizontal

(D) Similar to (C) but for a silent GC that did not fire APs during the 22-min recor

(E) Maximum branch order (left) and number of branches for each branch order (rig

branch order and a larger number of higher-order branches in comparison to sile

(F) Summary pie chart of the fraction of active and silent GCs during 5–30 min

identified GCs.

(G) Histogram of average AP frequency in active GCs. The red line indicates log

magnitude.

(H) Summary bar graph of AP frequency during theta versus nontheta periods (left)

median (horizontal line), and upper quartile (Q3). The interquartile range (IQR = Q

extreme data point that is no more than 1.5 3 IQR from the edge of the box (Tuk

(I) Polar plot of phase preference of APs in active GCs in relation to theta (left) an

Representative LFP traces band-pass filtered in the theta and gamma frequency r

gamma oscillations.

1214 Neuron 107, 1212–1225, September 23, 2020
whole-cell patch-clamp recordings in head-fixed running mice

(Figure 1A; Royer et al., 2012; Bittner et al., 2015). To achieve

rigorous GC identification, cells were filled with biocytin during

recording and scrutinized by post hoc morphological analysis.

In total, we recorded from 73 morphologically identified GCs in

the dorsal hippocampus. Somata of recorded GCs were located

in both upper and lower blades and distributed over the entire in-

ner-outer GC layer axis (Figure 1B). In 46 GCs, it was possible to

fully reconstruct soma and dendrites and to perform a detailed

morphometric analysis (Figures 1C and 1D; Tables S1–S3).

To characterize the activity of GCs, we first analyzed the

spiking of the neurons during the entire recording time. 53%

(39/73) of identified GCs were active, generating APs during

the 5–30 min recording period (Figures 1C and 1F; Table S4).

In contrast, 47% (34/73) of cells were silent during the recording

period (Figures 1D and 1F). In agreement with previous observa-

tions (Diamantaki et al., 2016a), active GCs had more complex

dendritic trees than silent cells. In particular, active GCs showed

a significantly larger maximum dendritic branch order (6 versus

5, n = 26/20, p = 0.0004;Mann-Whitney U test) and a significantly

larger number of higher-order branches (12 versus 10, n = 26/20,

p = 0.016) than silent GCs (Figure 1E).

In the population of active neurons, the AP frequency varied

over a wide range (median ± SEM: 0.031 ± 0.096 Hz; coefficient

of variation 3.59; Figure 1G), consistent with a log-normal distri-

bution of activity (Buzsáki and Mizuseki, 2014). To exclude the

possibility that the low AP frequency and the high variability of

firing in the GC population arose from our recording conditions,

we performed interleaved control experiments in CA1 pyramidal

neurons (O’Keefe and Dostrovsky, 1971; Thompson and Best,

1989; Epsztein et al., 2011; Lee et al., 2012; Royer et al., 2012;

Bittner et al., 2015). All 17 CA1 pyramidal neurons were active

under our experimental conditions. In comparison to GCs, the

mean AP frequency was higher, but the variability was less pro-

nounced (median ± SEM: 2.56 ± 0.52 Hz; coefficient of variation

0.78; Table S4). Thus, both mean activity and variability differed

between GCs and CA1 pyramidal neurons.

To investigate whether the firing of GCs showed dependence

on the network state, we compared the AP frequency between

theta and nontheta periods and between running and immobile

epochs, and we quantified the phase relation of APs to theta

and gamma cycles of the local field potential (LFP) recorded in

the molecular layer. The average AP frequency was not signifi-

cantly different between theta and nontheta periods (p = 0.31;
Left, reconstruction of soma and dendrites of the GC filled with biocytin during

line indicating zero velocity) versus experimental time.

ding period.

ht) in active versus silent GCs. Active GCs show a significantly higher maximal

nt GCs. *** indicates p < 0.001.

recording periods. In total, recordings were made from 73 morphologically

-normal distribution fit to the data. AP frequency varies over three orders of

and running versus immobile periods (right). Boxplots show lower quartile (Q1),

3–Q1) is represented as the height of the box. Whiskers extend to the most

ey style). Red crosses illustrate outliers. n.s., not significant.

d gamma (right) oscillations. The red arrow indicates the mean tuning vector.

anges are shown on top. APs were significantly phase locked to both theta and
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Wilcoxon signed rank test; Figure 1H). Likewise, the mean AP

frequency was similar in running and immobile periods (p =

0.09; Figure 1H). However, APs preferentially occurred in the de-

scending phase of theta oscillations and slightly before the peak

of gamma oscillations (p < 0.001; Rayleigh test; Figure 1I),

consistent with previous observations (Senzai and Buzsáki,

2017). In conclusion, our results suggest that a major fraction

of GCs is active but that activity is sparse, heterogeneous, and

phase locked to rhythmic network activity.

A Small Proportion of GCs Are Place Cells, but a Large
Fraction Receives Spatially Tuned Excitatory
Synaptic Input
To characterize the spatial coding properties of GCs, we next

analyzed their activity during running periods (Figure 2). First,

we examined whether active GCs showed AP place fields under

our experimental conditions. GCs were considered spatially

tuned when the spatial information score of the original data

was significantly larger than that of surrogate datasets in which

the interspike intervals (ISIs) were shuffled and when the score

exceeded a threshold of 0.4 bit s�1 (STARMethods). Using these

criteria, 9.7% (3/31) of active GCs (59GCs total; p < 0.05; Figures

2A, 2D, 2G, and 2M) showed a clear place field. To exclude the

possibility that the low proportion of place cells in the GC popu-

lation was influenced by the simplified nature of the recording

system, we performed interleaved control experiments in CA1

pyramidal neurons (O’Keefe and Dostrovsky, 1971; Thompson

and Best, 1989; Epsztein et al., 2011; Lee et al., 2012; Royer

et al., 2012; Bittner et al., 2015). Quantitative analysis revealed

that 29% of CA1 pyramidal neurons were place cells under iden-

tical experimental conditions (5 of 17 CA1 pyramidal neurons;

Figures 2J and 2M), validating our approach to analyze spatial

coding.

Our results reveal that only a small proportion of GCs are place

cells. This may be explained by the absence of spatially tuned

synaptic input. Alternatively, the low firing frequency may

obscure the reliable detection of place fields. To distinguish be-

tween these possibilities, we first analyzed the subthreshold ac-

tivity in GCs displaying a clear single AP place field (Figures 2B,

2C, 2E, 2F, 2H, and 2I). We measured the membrane potential

(Vm) median (after AP removal), Vm variance (a proxy of synaptic
Figure 2. A Subpopulation of GCs Shows Spatially Tuned Place Cell A

(A) Top, AP rate map of an active GC. The abscissa represents the position on the

number represents the mean AP rate (top), and the color-code bar indicates the A

position across laps. This GC fires consistently at a position of 80–130 cm.

(B) Left top, Vm median (after AP removal) plotted against the position in the sam

median against the position across laps. Right top, Vm variance (after AP remov

variance. Right bottom, plot of Vm variance against the position across laps. Not

(C) Spatial tuning of subthreshold EPSP activity. Left, polar plot of EPSP event f

Black circles represent EPSP event frequency in each bin (number of events divi

EPSP frequency tuning vector (multiplied by 10 for illustration purposes). Right, dis

line indicates the mean TVL of the original data. The mean TVL from the original

(D–F) Similar data as shown in (A)–(C) but for another GC with spatially tuned firi

(G–I) Similar data as shown in (A)–(F) but for another GC with spatially tuned firin

(J–L) Similar data as shown in (A)–(I) but for a CA1 pyramidal neuron.

(M) Left, proportion of active GCs with spatially tuned AP output. 3 of 31 cells w

spatially tuned AP output. 5 of 17 cells were classified as place cells.

(N) Proportion of place GCs with spatially tuned input. 3 of 3 cells showed spatia
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activity), and subthreshold EPSP rate as a function of position on

the linear belt. To detect individual EPSPs, a detection algorithm

combining machine learning and optimal filtering was applied

(Zhang et al., 2020; Figure S1). We found that the GCs with clear

place fields showed a more depolarized Vm median, a higher Vm

variance (Figures 2B, 2E, and 2H), and an elevated EPSP fre-

quency infield in comparison to outfield (Figures 2C, 2F, and

2I). To test the statistical significance, we computed the mean

spatial tuning vector of EPSP events and compared it against

surrogate data in which the interevent intervals (IEIs) were shuf-

fled (Danielson et al., 2017). We found that 100% of GCs with

spatially tuned APs (3 of 3) received spatially tuned EPSPs (p =

0.005, p < 0.001, and p = 0.001, respectively; Figures 2C, 2F,

and 2I). Similarly, CA1 place cells showed a depolarized Vm me-

dian, higher Vm variance, and significantly elevated EPSP fre-

quency in their place fields (Figures 2K and 2L).

After successfully benchmarking the analysis of subthreshold

activity in GC place cells, we applied the same analysis to active

GCs classified as nonplace cells and to silent GCs (Figure 3; Fig-

ure S2). Surprisingly, a major fraction of both active nonplace and

silent GCs showed a depolarized Vm median, higher Vm variance,

and elevated EPSP frequency in specific locations on the linear

belt (Figures 3B, 3C, 3E, and 3F). In the population of active non-

placeGCs, 46% (13/28) showed significant spatial tuning of EPSP

frequency tuning vector length (p < 0.05; Figures 3A–3C). Simi-

larly, in the population of silent GCs, 50% (14/28) showed signifi-

cant spatial tuning of EPSP frequency tuning vector length (p <

0.05; Figures 3D–3F). In contrast, EPSP amplitude was not signif-

icantly tuned (1/28 active nonplace GCs, 1/28 silent GCs; p <

0.05). Overall, the proportion of cells with spatially tuned input

was similar in active nonplace and silent GCs (p = 0.209; Fisher’s

exact test; Figure 3J). To test whether EPSP frequency was tuned

to position or to individual texture objects on the belt, transitions

between textures, or reward locations, we plotted tuning vector

directions for all spatially tuned GCs over position. Tuning vector

directions spanned the range of positions, consistent with encod-

ing of space (Figure 3K). In addition, spatial information per time

was significantly correlated with EPSP frequency tuning vector

length (r = 0.43, p = 0.048; Figure 3L; Figure S6). These results

were corroborated using a randomizationmethod based on circu-

lar shifting (Figure S3A; STAR Methods) and analysis of median
ctivity

linear belt (2-cm spatial binning), and the ordinate denotes the lap number. The

P rate in spatial bins (right). Bottom, plot of average AP frequency against the

e cell. The color code indicates Z-scored Vm values. Left bottom, plot of Vm

al) plotted against the position in the same cell. The color code indicates Vm

e more depolarized Vm and higher Vm variance at a specific location.

requency. Spatial positions (0–180 cm) were converted into angles (0�–360�).
ded by time spent in the respective bin), and the red arrow indicates the mean

tribution of mean tuning vector length (TVL) from shuffled data. The red vertical

data is significantly larger than the values obtained from the shuffled data.

ng.

g.

ere classified as place cells. Right, proportion of CA1 pyramidal neurons with

lly tuned EPSPs.
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Figure 3. Approximately 50% of Active and Silent GCs Receive Spatially Tuned Synaptic Input

(A) Top, AP rate map of an active GC that fired only sparsely. The abscissa represents the position on the linear belt (2-cm spatial binning), and the ordinate

denotes the lap number. The number represents the mean AP rate (top), and the color-code bar indicates the AP rate in spatial bins (right). Yellow arrowheads

indicate APs. Bottom, plot of average AP frequency against the position across laps.

(B) Left top, Vm median (after AP removal) plotted against the position in the same cell. The color code indicates Z-scored Vm values. Left bottom, plot of Vm

median against the position across laps. Right top, Vm variance (after AP removal) plotted against the position in the same cell. The color code indicates Vm

variance. Right bottom, plot of Vm variance against the position across laps. Note more depolarized Vm and higher Vm variance at a specific location.

(C) Spatial tuning of subthreshold EPSP activity. Left, polar plot of EPSP event frequency. Spatial positions (0–180 cm) were converted into angles (0�–360�).
Black circles represent EPSP event frequency in each bin (number of events divided by time spent in the respective bin), and the red arrow indicates the mean

EPSP frequency tuning vector (multiplied by 10 for illustration purposes). Right, distribution of mean TVL from shuffled data. The red vertical line indicates the

mean TVL of the original data. The mean TVL from the original data is significantly larger than the values obtained from the shuffled data. Although this cell fired

APs �80–120 cm in only 2 of 21 laps, it showed a consistently higher Vm median, Vm variance, and EPSP rate at the same location.

(legend continued on next page)
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and variance as a proxy of synaptic activity (Figures S3C and

S3E). Similar results were obtained for the fully reconstructed sub-

set of neurons (active GCs: 11/24 cells; silent GCs: 11/16 cells

spatially tuned). In conclusion, a large fraction of both active and

silent GCs received spatially tuned synaptic inputs. Both the pro-

portion and the degree of spatial tuning were independent of the

activity level.

Single- and Periodic-Field Structure of Subthreshold
Activity
Our tuning vector analysis revealed that a subset of GCs

received spatially tuned synaptic input. However, GCs may

also receive spatially periodic input, e.g., from grid cells, which

would be undetectable by tuning vector analysis. To test whether

GCs received periodic input, we analyzed the fine structure of

EPSP frequency as a function of position by Fourier transforma-

tion (Figure 4; STAR Methods; Ormond and McNaughton, 2015;

Yoon et al., 2016). For both active and silent GCs, the amplitude

of the first ten Fourier components was plotted against spatial

frequency (Figures 4B, 4D, 4F, and 4H). A major subpopulation

of cells showed a prominent low-frequency component, consis-

tent with single-field synaptic input (Figure 4B). Another major

subpopulation of cells had a prominent higher-frequency

component, suggesting periodic synaptic input (Figure 4D). In

addition, subsets of cells showed combinations of multiple

higher-order frequency components, consistent with super-

position of periodic inputs with different spatial frequencies (Fig-

ure 4F), or combinations of 1st-order and higher-order compo-

nents, consistent with conjunctive input (Figure 4H).

To assess the statistical significance of these components, we

performed identical Fourier analysis on shuffled data; frequency

components were considered significant if p < 0.05 with Benja-

mini-Hochberg correction for multiple comparisons according to

the presence of multiple Fourier components (Figure 4I, top).

Within the population of place GCs, the input in 1 cell was classi-

fied as single field and in 2 cells was classified as conjunctive field

(Figure 4J). Within the population of active nonplace GCs, the

input in 6 of 28 cells was classified as single field, in 6 cells was

classified as periodic field, and in 6 cells was classified as

conjunctive field (Figures 4I and 4J). Finally, within the population

of silentGCs, the input in 4 of 28 cells was classified as single field,

in 3 cells was classified as periodic field, and in 5 cells was clas-

sified as conjunctive field (Figures 4I and 4J). Overall, the propor-

tion of cells with single-, periodic-, and conjunctive-field input was

similar between the three categories of GCs (p = 0.21, 0.08, and

0.20, respectively; Fisher’s exact test). Within the population of

periodic cells, 6 of 12 activeGCs and 3 of 7 silent GCs hadmultiple

grid-like components (p = 0.34; Fisher’s exact test). Furthermore,

the three peakiness score, a metric of grid cell firing in 1D environ-
(D–F) Similar analysis as in (A)–(C) but for a silent GC. This silent GC also receive

(G–I) Similar analysis as in (A)–(F) but for another GC that showed no significant sp

data (not significantly different from the shuffled distribution in this cell).

(J) Proportion of GCs with spatially tuned synaptic input. Left, proportion of active

tuned EPSPs. Right, proportion of silent GCs with spatially tuned EPSP input; 14

(K) Summary of EPSP frequency tuning vector directions of all significantly tuned

(L) Double-logarithmic plot of spatial information score per time against EPSP frequ

was significantly correlated with TVL. The red line represents the results from lin
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ments (Yoonet al., 2016),was significantly higher in original than in

shuffled data in 3 active and 7 silent cells.

Several additional results corroborated our conclusions. First,

statistical significance of our findings was confirmed by log-like-

lihood ratio (LLR) analysis, followed by testing against the Akaike

information criterion (AIC) (Akaike, 1974; Figure 4I, bottom; STAR

Methods). Second, similar results were obtained using a different

randomization procedure (Figure S3B) and analysis of median

and variance as a proxy of synaptic activity (Figures S3D and

S3F). Third, almost identical results were obtained for the fully re-

constructed subset of neurons (6, 6, and 4 of 24 active GCs and

3, 1, and 3 of 16 silent GCs). In contrast to EPSP frequency,

EPSP amplitude was less tuned (0 of 3 place cells; 1, 3, and

0 of 28 active nonplaceGCs; and 0, 5, and 0 of 28 silent GCs; Fig-

ure S4). In conclusion, our results suggest that a significant sub-

set of GCs receives single, periodic, or conjunctive inputs.

Furthermore, our results indicate that conjunctive inputs are

similarly directed to both active and silent GCs.

Differences in Excitability Control the Efficacy of Input-
Output Conversion in GCs
Our results indicate that GCs receive a common spatially tuned

input but generate a highly heterogeneous AP output. Which

mechanisms underlie this heterogeneity in GC firing?Differences

may arise at the level of extrinsic synaptic input, dendritic inte-

gration, and intrinsic excitability. To distinguish among these

possibilities, we performed multiparametric correlation analysis,

plotting several measured parameters against mean AP fre-

quency (Figure 5; Figure S5). First, we tested whether the prop-

erties of EPSPs were correlated with activity (Figure S5). Both

EPSP frequency and peak amplitude showed a nonsignificant

negative correlation with AP frequency (EPSP frequency: Pear-

son’s correlation coefficient r = �0.15, p = 0.25; EPSP peak

amplitude: r = �0.17, p = 0.20; n = 59 GCs total; Figures S5C

and S5D). EPSP frequency tuning vector length showed a

nonsignificant positive correlation with mean AP frequency (r =

0.04, p = 0.77; Figures S5E and S5F). Finally, Z-scored Vm, Vm

variance, and higher-order moments showed a nonsignificant

positive correlation with mean AP frequency (Z-scored Vm: r =

0.13, p = 0.36; Vm variance: r = 0.1, p = 0.49; Figures S5G and

S5H). Thus, differences in frequency, amplitude, or spatial tuning

of EPSPs did not explain heterogeneity in AP frequency.

Next, we examined whether differences in dendritic integra-

tion could underlie heterogeneity in GC activity. To address

this possibility, we fully reconstructed biocytin-labeled neurons,

converted them into detailed passive cable models, and simu-

lated synaptic inputs at different locations (Figure S7). Cable

modeling revealed subtle differences in dendritic integration.

Whereas the length constant was positively correlated with
d significant spatially tuned input.

atially tuned input. The gray vertical line indicates the mean TVL of the original

nonplace GCs with spatially tuned EPSP input; 13 of 28 cells showed spatially

of 28 cells received spatially tuned EPSPs.

GCs, plotted against the position. Cells were sorted in ascending order.

ency TVL. Each data point represents a single GC recording. Spike information

ear regression.
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Figure 4. Mixed Spatial Tuning of EPSP Frequency in GCs
(A) EPSP event rate as a function of position in a spatially tuned active GC. The black line indicates original data, the red line represents the sum of the first five

largest Fourier components, and colored lines indicate individual components (significant components plotted with vertical offset for clarity).

(B) Amplitude of spectral components of the EPSP event rate. Numbers indicate significant Fourier components. In this cell, the 1st Fourier component had the

largest amplitude, indicating single-field input. The dotted horizontal line indicates the 99.5% quantile of shuffled data (corresponding to p = 0.005).

(C and D) Similar data as shown in (A) and (B) but in a GC in which the 3rd Fourier component had the largest amplitude, suggesting periodic input.

(E and F) Similar data as shown in (A) and (B) but in a GC in which three higher-order components had an amplitude above the 99.5% quantile line of shuffled data,

suggesting superposition of multiple periodic inputs with different spatial frequencies.

(G and H) Similar data as shown in (A) and (B) but in a GC in which both the 1st and the 4th Fourier components had an amplitude above the 99.5% quantile line of

shuffled data, suggesting conjunctive input.

(I) Top, analysis of statistical significance of Fourier components based on shuffling in active (top) and silent (bottom) GCs. Significant differences are shown in

color; the color code indicates the p value (before correction for multiple comparisons). The abscissa shows the spatial frequency of the first ten Fourier

components, and the ordinate represents the cell index. GCs were sorted according to p values of individual Fourier components (first according to the base

component and then iteratively according to higher-order components). Bottom, analysis of LLRs of Fourier components in the same cells. LLR was determined

for a model with a constant and a given Fourier component over a model with only a constant and tested against the AIC. Significant differences are shown in

color; the color code indicates the LLR value. Because each Fourier component introduced two free parameters (amplitude and phase), AIC was set to 2.

(J) Proportion of active place GC (left), active nonplace GCs (center), and silent GCs (right) with single-, periodic-, and conjunctive-field input, based on shuffling

(p < 0.05; Benjamini-Hochberg correction for multiple comparisons).
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Figure 5. Intrinsic Excitability Determines

Firing of GCs In Vivo during Spatial Naviga-

tion

(A) APs evoked by depolarizing current injection in

an active GC. Depolarizing current amplitude varied

from �100 to 150 pA in 50 pA steps. The inset

shows the first AP in temporal expansion.

(B–F) Correlation analysis of possible determinants

of AP frequency in GCs in vivo. Mean AP frequency

in vivo is plotted on the abscissa on a log scale.

Each data point represents a single GC recording.

Lines represent results from linear regression: red

line, correlation significant; gray line, correlation not

significant. r, Pearson’s correlation coefficient; p,

corresponding significance value. Relative AP

threshold (absolute AP threshold � resting poten-

tial) (B), maximal rate of rise of AP ((dV/dt)max) (C), AP

peak amplitude (D), burstiness (E), and input resis-

tance (F) are plotted against mean AP frequency.

The relative AP threshold shows significant negative

correlation with AP frequency, whereas both (dV/

dt)max and AP amplitude exhibit significant positive

correlation with AP frequency.

(G) Parallel model of information processing in the

dentate gyrus. Individual GCs receive similar excit-

atory synaptic input, probably conjunctive place-

grid-tuned input, but convert it into output of a

different frequency. The more complex dendritic

tree and enhanced excitability suggest a higher

degree of maturity of the active GCs.
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mean AP frequency (Pearson’s correlation coefficient r = 0.29,

p = 0.049), the maximal somatic EPSP amplitude showed a

negative correlation with activity (r = �0.30, p = 0.042; 1 nS syn-

aptic peak conductance). Spatial attenuation curves were

different only for proximal locations but converged for dendritic

distances > 100 mm (Figure S7G). Furthermore, somatic EPSP

amplitudes were larger for silent cells, in contrast to the predic-

tion that cable properties explain differential firing.

Toexplorealternativepossibilities,we testedwhetheractiveand

silent GCs differed in intrinsic excitability (Figures 5B–5F). Relative
1220 Neuron 107, 1212–1225, September 23, 2020
AP threshold, defined as the difference be-

tween absolute AP threshold and resting

potential, showed a highly significant nega-

tive correlation with mean AP frequency

(Pearson’s correlation coefficient r =

�0.41, p = 0.003; Figure 5B). Furthermore,

both the maximal rate of rise and the peak

amplitude of the AP were positively corre-

lated with AP frequency (r = 0.43, p =

0.002; Figure 5C; r = 0.39, p = 0.006; Fig-

ure 5D). In contrast, burstiness, a predictor

of firing rate and place field formation in

CA1 pyramidal neurons (Mizuseki and Buz-

sáki, 2013; Epsztein et al., 2011), was not

significantly correlated with GC activity (r =

0.11,p=0.45;Figure5E). Finally, input resis-

tance, a measure of the passive properties

of the neuron, showed nonsignificant nega-

tive correlation with activity (r = �0.24, p =
0.09; Figure 5F). Altogether, these results indicate that different

intrinsic excitability levels explain differential firing of GCs. Thus,

excitability controls the efficacy of input-output conversion in

GCs (Figure 5G).

DISCUSSION

Strengths and Limitations of the Present Study
The major strength of our study is that both subthreshold EPSP

and suprathreshold spiking activity were recorded from
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morphologically identified GCs during spatial navigation. This

unique approach allowed us to generate ground-truth data and

revealed four major findings. First, activity of identified GCs var-

ied over a range. Second, not only place cells but also active

nonplace GCs and even silent GCs received spatially tuned syn-

aptic input. Third, some GCs were driven by single-field inputs,

whereas others were activated by periodic or conjunctive inputs.

Finally, the heterogeneous activity of GCs is explained by differ-

ences in intrinsic excitability, rather than frequency or spatial tun-

ing of excitatory synaptic input or dendritic cable properties.

Altogether, our results constrain models of spatial information

processing in the dentate gyrus and indicate that intrinsic excit-

ability plays a major role in the selective routing of information

flow from the input to the output of the dentate gyrus.

An unavoidable limitation of our study is that experiments were

performed in head-fixed mice during a simple 1D spatial naviga-

tion task. On the linear treadmill, the animal relies on proximal

somatosensory and visual cues, whereas distal visual cues are

stationary and vestibular inputs are lacking. It is possible that

spatial tuning of GCs may become broader and more sensitive

to local objects under these conditions (see Chen et al., 2018).

Furthermore, the relation between activity in 1D and that in 2D

environments may be complex. Although activity of grid cells in

1D virtual reality may be interpreted as slices through 2D lattices

(Yoon et al., 2016; Pröll et al., 2018), grid cell firing in circular

tracks or treadmills seemsmore consistent with perception of in-

tegrated distance or time (Jacob et al., 2019; Kraus et al., 2015).

Finally, the dynamics of place fields may be affected; although

GC place fields are stable in a virtual environment (Hainmueller

and Bartos, 2018), they undergo fast remapping in freely moving

animals (GoodSmith et al., 2017). More work is needed to

address these possibilities.

Sparse, Heterogeneous Activity of Identified GCs
Early extracellular recordings suggested that GCs fire APs at

high frequency in the center of a place field and during short-

term memory tasks (Jung and McNaughton, 1993; Wiebe and

St€aubli, 1999; Leutgeb et al., 2007). In contrast, more recent

electrophysiological recordings, analysis of expression of imme-

diate early genes (Arc), and Ca2+ imaging experiments indicated

that GCs fire only sparsely in a given environment and that a

major fraction is silent (Neunuebel and Knierim, 2012, 2014; Dia-

mantaki et al., 2016a; GoodSmith et al., 2017; Alme et al., 2010;

Senzai andBuzsáki, 2017; Pilz et al., 2016; Danielson et al., 2016,

2017; Hainmueller and Bartos, 2018). Our findings may help to

reconcile these apparent contradictions. Using whole-cell

recording from identified GCs, we found that GC firing is highly

heterogeneous, ranging from apparent silence to firing rates as

high as 3 Hz (Figure 1G). It has been suggested that active units

in extracellular recording studies (Jung and McNaughton, 1993;

Wiebe and St€aubli, 1999; Leutgeb et al., 2007) may represent

nongranule neurons (Neunuebel and Knierim, 2012, 2014; Sen-

zai and Buzsáki, 2017). However, the firing frequency of the

most active GCs in our sample is consistent with the view that

at least some previously recorded active units are GCs. Our re-

sults agree with extracellular tetrode recordings fromGCs tenta-

tively identified based on location or optogenetic responses

(GoodSmith et al., 2017; Senzai and Buzsáki, 2017) but raise ca-
veats regarding the interpretation of Ca2+ imaging data, which

give a lower average frequency of activity and a smaller propor-

tion of active cells than our measurements (Pilz et al., 2016; Dan-

ielson et al., 2016; Hainmueller and Bartos, 2018). Themost likely

explanation is that Ca2+ imagingmay be insufficiently sensitive to

detect single spikes or bursts with small numbers of APs.

Cellular Determinants of Sparse Activity
Our results shed light on the cellular determinants of sparse, het-

erogeneous GC activity. Previous work suggested that active

GCs have more complex dendritic trees than silent GCs (Dia-

mantaki et al., 2016a). Our results confirm and extend these

findings. However, cable modeling revealed that differences in

dendritic integration are unlikely to be responsible for the

different activity levels. Likewise, differences in frequency or

spatial tuning of excitatory synaptic input are not involved. In

contrast, our results indicate that differences in intrinsic GC

excitability are important. The tight correlation between relative

AP threshold and average firing frequency suggests that a

threshold setting mechanism contributes to differential activity.

Furthermore, the higher maximal rate of rise and the larger

peak amplitude of the AP indicate a higher density of voltage-

gated Na+ channels (Koch, 1999). Both morphological and func-

tional differences may be related to GC maturity (Ambrogini

et al., 2004; Spigelman et al., 1992). Active GCs resemble devel-

opmental substage IV with complex dendritic branching,

whereas silent GCs are similar to developmental substage III

with simpler dendritic branching (Ambrogini et al., 2004; Diaman-

taki et al., 2016a). Furthermore, it is well established that the den-

sity of voltage-gated channels is upregulated during functional

maturation of neurons (Spigelman et al., 1992; Schaller and

Caldwell, 2000; Doischer et al., 2008). Thus, active GCs appear

to be more mature than silent GCs, both structurally and func-

tionally. If active GCs are more mature than the silent ones, as

our data suggest, this clearly challenges the retirement hypoth-

esis, which holds that older GCs may become progressively

more silent (Alme et al., 2010). In contrast, our results appear

more consistent with the view that GCs become increasingly

active during the life of the animal (Ambrogini et al., 2004; Espó-

sito et al., 2005; Zhao et al., 2006).

Spatial Code Conversion in GCs
Previous work suggested a key role of GCs in grid-to-place code

conversion, but proposed models differ in the method of imple-

mentation at the synaptic level (Rolls et al., 2006; Si and Treves,

2009; Solstad et al., 2006; Ormond andMcNaughton, 2015; deAl-

meida et al., 2009b). Our results are not entirely consistent with

any of the proposed models (Figure S8). Spatial tuning of EPSP

frequency, rather than EPSP peak amplitude, may argue against

a model in which place-tuning in synaptic input emerges from

grid-tuned input by Hebbian synaptic plasticity (Rolls et al.,

2006; Si and Treves, 2009; Figure S8A). In addition, the similar

spatial tuning of excitatory input in active and silent GCs seems

inconsistent with such a model, because plasticity will require

postsynaptic spiking. Furthermore, the small proportion of GCs

with multigrid input would not be fully compatible with the origi-

nally proposed superposition-Fourier model of grid-to-place field

transformation (Solstad et al., 2006; Ormond and McNaughton,
Neuron 107, 1212–1225, September 23, 2020 1221
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2015) (Figure S8B). Finally, the high proportion of GCs with

spatially tuned input argues against a model in which the average

synaptic input is weakly tuned and place-tuning emerges from a

competitive network mechanism, e.g., a winner-takes-all mecha-

nism (de Almeida et al., 2009b) (Figure S8C). In such a model, one

would expect EPSP peak amplitude to be larger infield than

outfield, because shunting inhibition reduces amplitude. Previous

work suggested that inhibition shapes place fields in CA1 pyrami-

dal neurons (Royer et al., 2012; Grienberger et al., 2017). In den-

tate gyrus GCs, the contribution of inhibition may be smaller,

because the reversal potential of g-aminobutyric acid A (GABAA)

receptor-mediated currents is close to the resting potential

(Kraushaar and Jonas, 2000) (Table S2). In conclusion, our results

support an alternative model in which GCs receive conjunctive

place- and grid-tuned input (Figure S8D).

Possible Sources of Synaptic Input of GCs In Vivo

If GCs are driven by single (place-like), periodic (grid-like), and

conjunctive inputs, where do these inputs originate? The place-

like input component could be generated by nongrid neurons,

which represent approximately two-thirds of neurons in the

MEC and are highly abundant in layer 2 (Diehl et al., 2017). Alter-

natively, this component may originate from place cells residing

inside the hippocampus, for example, place cells in the CA3 re-

gion (Senzai andBuzsáki, 2017;GoodSmith et al., 2017), via back-

projections to the dentate gyrus (Scharfman, 2007). In addition,

because the length of the belt in our paradigm is limited, the

place-like component might originate from grid cells with low

spatial frequency. The periodic, grid-like component could be

generated by grid cells in the MEC (Hafting et al., 2005). However,

only a minority of neurons in the MEC are grid cells and project to

the hippocampus (10%–20%) (Sargolini et al., 2006; Diehl et al.,

2017; Zhang et al., 2013; Sun et al., 2015). Alternatively, it is

possible that dentate gyrus mossy cells contribute to periodic

GC input. These neurons often show multiple place fields (Senzai

and Buzsáki, 2017; GoodSmith et al., 2017; Danielson et al.,

2017), and the proximal location of output synapses might

emphasize their contribution (Figure S7G). Finally, both compo-

nents in principle might be generated by cue- or reward-selective

neurons in the MEC (Campbell et al., 2018; Casali et al., 2019;

Boccara et al., 2019; Butler et al., 2019) or object cells in the

LEC (Deshmukh and Knierim, 2011), which might be locally or

periodically activated on the linear belt (Figure 1A). However, the

uniform distribution of EPSP tuning vector directions (Figure 3K)

may argue against this possibility. Further work, combining in vivo

intracellular recordings with selective ablation of synapses, will be

required to disentangle the contributions of these different inputs.

Role of Sparsely and Heterogeneously Active GCs in the
Dentate Gyrus Network
Our results indicate that both active and silent cells receive

spatially tuned synaptic input but only a subset of highly active

GCs relays this spatial information to the output (Figure 5G).

This design differs from that of CA1 pyramidal neurons, in which

spatial input tuning and activity level are tightly correlated (Ep-

sztein et al., 2011). Thus, dentate gyrus GCs follow specific rules

of input-output transformation. What are the functional implica-

tions of such specific rules? The specific design of the dentate
1222 Neuron 107, 1212–1225, September 23, 2020
network may have several advantages. First, it may allow easy

recruitment of GCs into active cell assemblies or engrams, for

example, by neuromodulator-mediated depolarization or plas-

ticity of excitability (Diamantaki et al., 2016b; Lopez-Rojas

et al., 2016; Pignatelli et al., 2019). In this model, the pool of

totally silent GCs may represent a valuable, free neuronal

resource, readily available to participate in the encoding of

new information. Second, this network configuration may sup-

port a form of parallel information processing in which the

incoming spatial information is split into differentially active

neuronal populations. Parallel processing and rate code expan-

sion by reliance on both sparse and more active neuronal sub-

populations may increase computation speed, accuracy, and

energy efficiency (Buzsáki and Mizuseki, 2014). Finally, this

network model may facilitate pattern separation and pattern

completion, fundamental higher-order computations in the den-

tate-gyrus-CA3 network (Pignatelli et al., 2019). For example, the

active GCs may promote the conversion of incomplete activity

patterns in the dentate gyrus into complete activity patterns in

the CA3 region. Whether GCs with different activity levels differ

in properties of synaptic output, such as synaptic efficacy of

plasticity (Vandael et al., 2020), remains to be determined.
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Guzman, S.J., Schlögl, A., and Schmidt-Hieber, C. (2014). Stimfit: quantifying

electrophysiological data with Python. Front. Neuroinform. 8, 16.

Hafting, T., Fyhn, M., Molden, S., Moser, M.B., and Moser, E.I. (2005).

Microstructure of a spatial map in the entorhinal cortex. Nature 436, 801–806.

Hainmueller, T., and Bartos, M. (2018). Parallel emergence of stable and dy-

namic memory engrams in the hippocampus. Nature 558, 292–296.

Jackson, M.B., and Scharfman, H.E. (1996). Positive feedback from hilar

mossy cells to granule cells in the dentate gyrus revealed by voltage-sensitive

dye and microelectrode recording. J. Neurophysiol. 76, 601–616.

Jacob, P.Y., Capitano, F., Poucet, B., Save, E., and Sargolini, F. (2019). Path

integration maintains spatial periodicity of grid cell firing in a 1D circular track.

Nat. Commun. 10, 840.

Jonas, P., and Lisman, J. (2014). Structure, function, and plasticity of hippo-

campal dentate gyrus microcircuits. Front. Neural Circuits 8, 107.
Neuron 107, 1212–1225, September 23, 2020 1223

http://refhub.elsevier.com/S0896-6273(20)30523-7/sref1
http://refhub.elsevier.com/S0896-6273(20)30523-7/sref1
http://refhub.elsevier.com/S0896-6273(20)30523-7/sref2
http://refhub.elsevier.com/S0896-6273(20)30523-7/sref2
http://refhub.elsevier.com/S0896-6273(20)30523-7/sref2
http://refhub.elsevier.com/S0896-6273(20)30523-7/sref2
http://refhub.elsevier.com/S0896-6273(20)30523-7/sref3
http://refhub.elsevier.com/S0896-6273(20)30523-7/sref3
http://refhub.elsevier.com/S0896-6273(20)30523-7/sref3
http://refhub.elsevier.com/S0896-6273(20)30523-7/sref3
http://refhub.elsevier.com/S0896-6273(20)30523-7/sref4
http://refhub.elsevier.com/S0896-6273(20)30523-7/sref4
http://refhub.elsevier.com/S0896-6273(20)30523-7/sref4
http://refhub.elsevier.com/S0896-6273(20)30523-7/sref5
http://refhub.elsevier.com/S0896-6273(20)30523-7/sref5
http://refhub.elsevier.com/S0896-6273(20)30523-7/sref5
http://refhub.elsevier.com/S0896-6273(20)30523-7/sref6
http://refhub.elsevier.com/S0896-6273(20)30523-7/sref6
http://refhub.elsevier.com/S0896-6273(20)30523-7/sref8
http://refhub.elsevier.com/S0896-6273(20)30523-7/sref8
http://refhub.elsevier.com/S0896-6273(20)30523-7/sref8
http://refhub.elsevier.com/S0896-6273(20)30523-7/sref9
http://refhub.elsevier.com/S0896-6273(20)30523-7/sref9
http://refhub.elsevier.com/S0896-6273(20)30523-7/sref10
http://refhub.elsevier.com/S0896-6273(20)30523-7/sref10
http://refhub.elsevier.com/S0896-6273(20)30523-7/sref11
http://refhub.elsevier.com/S0896-6273(20)30523-7/sref11
http://refhub.elsevier.com/S0896-6273(20)30523-7/sref11
http://refhub.elsevier.com/S0896-6273(20)30523-7/sref11
http://refhub.elsevier.com/S0896-6273(20)30523-7/sref12
http://refhub.elsevier.com/S0896-6273(20)30523-7/sref12
http://refhub.elsevier.com/S0896-6273(20)30523-7/sref13
http://refhub.elsevier.com/S0896-6273(20)30523-7/sref13
http://refhub.elsevier.com/S0896-6273(20)30523-7/sref14
http://refhub.elsevier.com/S0896-6273(20)30523-7/sref14
http://refhub.elsevier.com/S0896-6273(20)30523-7/sref14
http://refhub.elsevier.com/S0896-6273(20)30523-7/sref15
http://refhub.elsevier.com/S0896-6273(20)30523-7/sref15
http://refhub.elsevier.com/S0896-6273(20)30523-7/sref15
http://refhub.elsevier.com/S0896-6273(20)30523-7/sref15
http://refhub.elsevier.com/S0896-6273(20)30523-7/sref16
http://refhub.elsevier.com/S0896-6273(20)30523-7/sref16
http://refhub.elsevier.com/S0896-6273(20)30523-7/sref16
http://refhub.elsevier.com/S0896-6273(20)30523-7/sref17
http://refhub.elsevier.com/S0896-6273(20)30523-7/sref17
http://refhub.elsevier.com/S0896-6273(20)30523-7/sref17
http://refhub.elsevier.com/S0896-6273(20)30523-7/sref18
http://refhub.elsevier.com/S0896-6273(20)30523-7/sref18
http://refhub.elsevier.com/S0896-6273(20)30523-7/sref18
http://refhub.elsevier.com/S0896-6273(20)30523-7/sref19
http://refhub.elsevier.com/S0896-6273(20)30523-7/sref19
http://refhub.elsevier.com/S0896-6273(20)30523-7/sref19
http://refhub.elsevier.com/S0896-6273(20)30523-7/sref20
http://refhub.elsevier.com/S0896-6273(20)30523-7/sref20
http://refhub.elsevier.com/S0896-6273(20)30523-7/sref20
http://refhub.elsevier.com/S0896-6273(20)30523-7/sref21
http://refhub.elsevier.com/S0896-6273(20)30523-7/sref21
http://refhub.elsevier.com/S0896-6273(20)30523-7/sref21
http://refhub.elsevier.com/S0896-6273(20)30523-7/sref22
http://refhub.elsevier.com/S0896-6273(20)30523-7/sref22
http://refhub.elsevier.com/S0896-6273(20)30523-7/sref22
http://refhub.elsevier.com/S0896-6273(20)30523-7/sref23
http://refhub.elsevier.com/S0896-6273(20)30523-7/sref23
http://refhub.elsevier.com/S0896-6273(20)30523-7/sref23
http://refhub.elsevier.com/S0896-6273(20)30523-7/sref24
http://refhub.elsevier.com/S0896-6273(20)30523-7/sref24
http://refhub.elsevier.com/S0896-6273(20)30523-7/sref24
http://refhub.elsevier.com/S0896-6273(20)30523-7/sref25
http://refhub.elsevier.com/S0896-6273(20)30523-7/sref25
http://refhub.elsevier.com/S0896-6273(20)30523-7/sref25
http://refhub.elsevier.com/S0896-6273(20)30523-7/sref25
http://refhub.elsevier.com/S0896-6273(20)30523-7/sref26
http://refhub.elsevier.com/S0896-6273(20)30523-7/sref26
http://refhub.elsevier.com/S0896-6273(20)30523-7/sref26
http://refhub.elsevier.com/S0896-6273(20)30523-7/sref27
http://refhub.elsevier.com/S0896-6273(20)30523-7/sref27
http://refhub.elsevier.com/S0896-6273(20)30523-7/sref27
http://refhub.elsevier.com/S0896-6273(20)30523-7/sref28
http://refhub.elsevier.com/S0896-6273(20)30523-7/sref28
http://refhub.elsevier.com/S0896-6273(20)30523-7/sref28
http://refhub.elsevier.com/S0896-6273(20)30523-7/sref29
http://refhub.elsevier.com/S0896-6273(20)30523-7/sref29
http://refhub.elsevier.com/S0896-6273(20)30523-7/sref30
http://refhub.elsevier.com/S0896-6273(20)30523-7/sref30
http://refhub.elsevier.com/S0896-6273(20)30523-7/sref31
http://refhub.elsevier.com/S0896-6273(20)30523-7/sref31
http://refhub.elsevier.com/S0896-6273(20)30523-7/sref32
http://refhub.elsevier.com/S0896-6273(20)30523-7/sref32
http://refhub.elsevier.com/S0896-6273(20)30523-7/sref32
http://refhub.elsevier.com/S0896-6273(20)30523-7/sref33
http://refhub.elsevier.com/S0896-6273(20)30523-7/sref33
http://refhub.elsevier.com/S0896-6273(20)30523-7/sref33
http://refhub.elsevier.com/S0896-6273(20)30523-7/sref34
http://refhub.elsevier.com/S0896-6273(20)30523-7/sref34


ll
OPEN ACCESS Article
Josselyn, S.A., and Tonegawa, S. (2020). Memory engrams: Recalling the past

and imagining the future. Science 367, eaaw4325.

Jung, M.W., and McNaughton, B.L. (1993). Spatial selectivity of unit activity in

the hippocampal granular layer. Hippocampus 3, 165–182.

Klausberger, T., Magill, P.J., Márton, L.F., Roberts, J.D., Cobden, P.M.,
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, Peptides, and Recombinant Proteins

NaCl VWR (Merck) Cat # 1.06404.1000

Sucrose Sigma-Aldrich Cat # 16104

NaHCO3 VWR (Merck) Cat # 1.06329.1000

D-glucose VWR (Merck) Cat # 1.08342.1000

KCl VWR (Merck) Cat # 26764.232

Na2HPO4 VWR (Merk) Cat#1.06580.0500

NaH2PO4 VWR (Merck) Cat # 1.06346.0500

CaCl2 VWR (Merck) Cat # 1.02382.0250

MgCl2 Honeywell Cat # M9272-1KG

HEPES Sigma-Aldrich Cat # M3375-100G

EGTA Sigma-Aldrich Cat # EO396-100G

Na2ATP Sigma-Aldrich Cat # A3377-100G

Potassium D-Gluconate Sigma-Aldrich Cat # G4500-100 g

NaGTP Sigma-Aldrich Cat # G8877-250 mg

Biocytin Molecular probes Cat # B1592

Ketamine Intervet Z.Nr. 8-00335 100 mg/ml

Xylazine Graeub Z.Nr. 8-00178 20 mg/ml

Lidocaine Sigma L-1026-1VL

Dexpanthenol ointment Bayer Cat # PZN 0829388

Cyanoacrylate superglue Uhu Cat #45570 3 g

Metacam Boehringer 2 mg/ml

Silicone elastomer Kwik-cast, World Precision

Instruments

N/A

Paraformaldehyde TAAB Cat # FO 17/1

Glutaraldehyde CarlRoth Cat # 4157.1

Saturated picric acid solution Sigma-Aldrich Cat # P6744-1GA

Triton X-100 Sigma-Aldrich Cat # X100-100ml

Avidin-biotinylated horseradish peroxidase

complex

ABC, Vector

Laboratories

Cat # PK6100

3,30-Diaminobenzidine tetrahydrochloride Sigma-Aldrich Cat # D5637-5 g

Cobalt Sigma-Aldrich Cat # C8661-25 g

Nickel (II) chloride hexahydrate Sigma-Aldrich Cat # 223387-25 g

Mowiol 4-88 CarlRoth Cat # 713.2

H2O2 Sigma-Aldrich Cat # 95321-100 ml

Experimental Models: Organisms/Strains

C57BL6/J wild-type mice Charles River Germany (from The Jackson

Laboratory)

RRID:IMSR_JAX:000664

Software and Algorithms

HEKA Patchmaster acquisition

software (2x90.1)

HEKA https://www.heka.com/

MATLAB 2016, 2017 Mathworks https://www.mathworks.com/

Octave 4, 5 GNU https://www.gnu.org/software/octave/

Neurolucida 2017 MBF Bioscience https://www.mbfbioscience.com/

neurolucida
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Neurolucida Explorer 2017 MBF Bioscience https://www.mbfbioscience.com/

neurolucida

Neuron 7.6.2 Neuron https://neuron.yale.edu/neuron/

Mathematica 12.0 Wolfram https://www.wolfram.com/mathematica/

Sigviewer https://github.com/cbrnr/sigviewer

Biosig http://biosig.sourceforge.net/

Coreldraw X8 Coreldraw https://www.coreldraw.com/en/

Other

Borosilicate glass (1.75 mm outside/

1.25 mm inside)

Hirschmann ringcaps Cat# 9600299

Sutter puller P-1000 Sutter instrument https://www.sutter.com/MICROPIPETTE/

p-1000.html
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RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact, Peter Jonas (peter.

jonas@ist.ac.at).

Materials Availability
This study did not generate new unique reagents.

Data and Code Availability
Original data, analysis programs, and computer code were stored in the scientific repositories of the Institute of Science and Tech-

nology Austria and are available upon reasonable request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animal experiments
Whole-cell patch-clamp recordings in vivo were performed in 35- to 63-day-old C57BL/6 mice (RRID:IMSR_JAX:000664). Animals

were housed under a reversed light cycle (dark: 7:00 am – 7:00 pm, light: 7:00 pm – 7:00 am). For experiments, both male and female

animals were used. All experiments were carried out in strict accordance with institutional, national, and European guidelines for an-

imal experimentation, and approved by the Bundesministerium f€ur Wissenschaft, Forschung und Wirtschaft of Austria (A. Haslinger,

Vienna; BMWFW-66.018/0007-WF/II/3b/2014).

METHOD DETAILS

Surgery and animal training
Head-bar implantation and craniotomy were performed under anesthesia by intraperitoneal injection of 80 mg kg-1 ketamine (Inter-

vet) and 8 mg kg-1 xylazine (Graeub), followed by local anesthesia with lidocaine (Astra Zeneca). Oxygen was supplied during both

procedures. The eyes of the mice were covered with dexpanthenol ointment (Bayer) to prevent exsiccation of the cornea. The skull

was gently scratched with a small dental drill and cleaned with fresh 0.9% saline. A custom-made steel head-bar was attached to the

skull using cyanoacrylate superglue (Uhu) and stabilized by dental cement. Mice were kept on a heating pad until fully awake. Anal-

gesia was ensured by intraperitoneal application of 50 mg kg-1 metamizole (Sanofi-Aventis) twice per day for three days after the

surgery. Mice were housed separately and provided with a nutrition-rich diet after head-bar surgeries.

After a week of recovery, running wheels were added to the home cage. Mice were placed on mild water restriction (2 ml per day;

Guo et al., 2014) and handled by the experimenter every day for�10 min for 3–4 days. After the mice adapted to the water restriction

and the experimenter, they were trained to run for water reward on the linear treadmill for 45 min per day. Water rewards were given

when the animal ran over a distance of 180 cm. The training sessions took place for 7–10 days until the total distance run per day was

similar for 3 consecutive days.

The day before the recording, two small (�0.5 mm in diameter) craniotomies, one for the patch electrode and one for the LFP elec-

trode, were gently drilled at the following coordinates: approximately �2.0 mm and�2.5 mm anterio-posterior (whole-cell recording
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and LFP, respectively; measured from bregma), and �1.2 mm medio-lateral (measured from midline). The dura was left intact, and

craniotomies were covered with silicone elastomer (Kwik-cast, World Precision Instruments).

Behavioral set-up
Custom-made linear treadmills were used for training and electrophysiological experiments. Belts were 180 cm long and made from

velvet fabric (McMaster Carr). Belts were divided into three equally long segments and enriched with three types of cues: glue spines,

velcro tabs, and zigzag glue tracks (Royer et al., 2012). Thewater reward was delivered by a syringe pump triggered by a TTL signal at

the beginning of the glue spine segment. Licks were detected using a custom-made lick port, which detected occlusion of an infrared

light beam using an optical sensor (RS Components). Three IR reflective sensors (RS Components) and reflective tapes at the end of

each texture were used to determine the location of the animal along the belt and trigger reward delivery. The animal’s speed and

location were measured using an incremental rotary encoder attached to one of the wheel axes. An Arduino-based interface was

used to provide analog velocity, location, texture, and licking detection signals. To synchronize with electrophysiological recording,

these signals were fed into A/D inputs of the Heka amplifier.

In vivo electrophysiology
Whole-cell patch-clamp recordings in vivoweremade fromGCs of the dorsal hippocampus according to previously established pro-

tocols (Lee et al., 2006, 2009; Pernı́a-Andrade and Jonas, 2014; Bittner et al., 2015). Pipettes for both whole-cell and LFP recording

were fabricated from borosilicate glass capillaries (1.75 mm outer diameter, 1.25 mm inner diameter) using a horizontal P-1000 elec-

trode puller (Sutter Instrument). The LFP electrodes with resistance ranging from 3 to 5MUwere filled with artificial cerebrospinal fluid

(ACSF) andmounted on a second custom-modifiedmicromanipulator posteriorly at a 20� angle relative to the bregma. LFP electrode

tips were positioned in the CA1 pyramidal neuron layer, as recognized by the occurrence of sharp wave-ripples, and then axially

advanced toward the dentate gyrus by another 400–500 mm. Long-taper whole-cell patch electrodes (9–12 MU) were filled with

an intracellular solution containing: 130 mM Kgluconate, 2 mM KCl, 10 mM HEPES, 2 mM MgCl2, 2 mM Na2ATP, 0.3 mM NaGTP,

18 mM sucrose, 10 mM EGTA (in 35 active GCs and 31 silent GCs) or 0.1 mM EGTA (in 4 active GCs and 3 silent GCs), and 0.3%

biocytin for post hoc morphological identification (pH adjusted to 7.3 with KOH). Thus, the intracellular Cl- concentration was

6 mM, mimicking physiological conditions in GCs (Kraushaar and Jonas, 2000) and minimizing the contribution of GABAA recep-

tor-mediated inhibition in our recordings. Whole-cell patch electrodes were advanced through the neocortex with 500–600 mbar

of pressure to prevent the electrode tip from clogging. After passing the hippocampal CA1 subfield, the pressure was reduced to

20mbar. Approach to a putative cell bodywas detected based on reproducible increase in electrode resistance. After seal formation,

activity was first recorded in the cell-attached configuration. Action currents were not observed in this condition, consistent with pre-

vious observations (Kowalski et al., 2016; Diamantaki et al., 2016a). Next, suction was applied to initiate a transition into the whole-

cell recording configuration. Access resistance was determined by applying voltage test pulses (+50 mV and �10 mV). Recordings

were immediately discarded if series resistance exceeded 80 MU. After the bridge balance was compensated, step currents from

�100 pA to 400 pA were injected to determine the input resistance and the maximal AP frequency of the recorded cell. All recordings

were performed in the whole-cell current-clamp configuration with zero current injection, using a HEKA EPC double amplifier. EPSP

recording under current-clamp conditions was preferred for the present set of experiments, because it is less sensitive to changes in

access resistance than EPSC recording, and less sensitive to space-clamp errors in general (Major et al., 1994, their Figure 12).

Pipette capacitance was compensated asmuch as possible, and access resistance was compensated using the bridge-balance cir-

cuit of the amplifier. Signals were low-pass filtered at 10 kHz and sampled at 25 kHz with HEKA Patchmaster acquisition software

(2x90.1). At the end of each recording, patch pipettes were slowly withdrawn to form an outside-out patch, permitting verification of

the integrity of the seal and reliable GC labeling.

Neuron labeling and reconstruction
After the recording, animals were deeply anesthetized and sacrificed by decapitation. Brains were rapidly removed from the skull and

immersed for R 24 h in a 100-mM phosphate buffer (PB) solution, containing 2.5% paraformaldehyde (PFA), 1.25% glutaraldehyde

(GA), and 15% (volume/volume) saturated picric acid solution. After fixation, brains were cut into 150-mm-thick parasagittal slices,

and slices were washed 3 times in PB. Slices were treated with hydrogen peroxide (1%, 10 min) to block endogenous peroxidases,

and rinsed in PB several times. Membranes were permeabilized with 1% Triton X-100 in PB for 1 h. Slices were then transferred to a

PB solution containing 1% avidin-biotinylated horseradish peroxidase complex (ABC, Vector Laboratories) and 1% Triton X-100 for

�12 hr. Excess ABC was removed by several rinses in PB and slices were developed with 0.04% 3,30-diaminobenzidine tetrahydro-

chloride, 0.008%Co2+, 0.006%Ni2+ (all from Sigma-Aldrich), and subsequently hydrogen peroxide. Finally, slices were embedded in

Mowiol (Roth).

Labeled neuronsweremanually reconstructed by an expert technician, who had no prior knowledge about the electrophysiological

properties of the cells, using a Neurolucida reconstruction system (version 2017; MBF Bioscience). The labeling quality and filling

efficiency were similar between active and silent neurons. Quantitative analysis of GC dendrites was performed using Neurolucida

explorer (version 2017). Centrifugal ordering was used to label the branch order for each reconstructed neuron. Maximal branching

order, number of branches, and total length of the dendritic tree were calculated for each neuron and compared between silent and

active GCs. The soma location was estimated as the relative position in relation to the anatomical borders of the GC layer, with either
e3 Neuron 107, 1212–1225.e1–e7, September 23, 2020
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‘0’ representing the border to the hilus and ‘1’ the border to the molecular layer, or ‘0’ the tip of the upper blade and ‘1’ the tip of the

lower blade (Figure 1B). Based on biocytin labeling, all cells included in this study were identified as mature GCs (Schmidt-Hieber

et al., 2007). Adult-born GCs (Schmidt-Hieber et al., 2004) were not encountered in the present experiments. Three semilunar

GCs with cell body in the molecular layer and wide dendritic field (Williams et al., 2007; Larimer and Strowbridge, 2010; Save

et al., 2019) were excluded from our dataset. In a subset of experiments, recordings were made from CA1 pyramidal neurons for

comparison (Figures 2J–2M).

QUANTIFICATION AND STATISTICAL ANALYSIS

Data analysis
Data analysis was performed using MATLAB (2016, 2017; Mathworks) or Octave (version 4 and 5; GNU). The resting membrane po-

tential was averaged over 200 ms before current injection. Passive and active membrane properties were obtained by injecting 1 s

depolarizing current pulses, starting from�100 pA with 50 pA increment. The input resistance (Rin) was measured as the slope of the

linear relationship between steady-state subthreshold voltage and injected current. Bursts of APs were defined as a series of APs

with < 10 ms ISI. Burstiness was quantified as the number of bursts divided by the total number of spikes during rheobase current

injection. The first evoked AP was used for analysis of AP properties. AP threshold was defined as the Vm value where the corre-

sponding dVm / dt for the first time exceeded 50 V s-1. AP peak amplitude was measured from threshold. The maximal rate of rise

of the AP was determined as the maximum of the first derivative of the first single AP. The maximum firing rate was determined

as the inverse of the mean ISI for the first three spikes during current injections. GCs were operationally classified as ‘‘active’’ if

they generatedR 1 APwithout current injection during the 5–30min recording period, and as ‘‘silent’’ otherwise. For correlation anal-

ysis, we plotted the parameter of interest against mean AP frequency on logarithmic scale. To include ‘‘silent GCs’’ in the semilog-

arithmic plot, we estimated an upper limit of the firing frequency as the inverse of the recording time in a given cell.

EPSP detection
For EPSP detection, we used aMachine-learning Optimal-filtering Detection-procedure, termedMOD (Zhang et al., 2020; Figure S1).

First, short epochs of data (typically 30 s at the beginning and 30 s at the end of the recording) weremanually scored by an expert. The

expert was asked to put the event marker to a consistent fiducial point throughout the entire scoring period (e.g., onset or peak). In a

subset of 6 cells, data were scored by two independent experts; consensus between experts, as quantified by accuracy = (sum of

true positive + sum of true negative) / total), was 79.98%. Second, each marker time point was symmetrically extended by a total

window length twin, to account for possible jitter in marker positioning. This generated a ‘‘manual scoring trace’’ of zeros (0) and

ones (1), with the same length and sampling frequency as the original data. Third, the coefficients of an optimal filter that minimized

the sum of squared deviations between filtered trace and manual scoring trace were determined solving the Wiener-Hopf equations

(Wiener and Hopf, 1931; Wiener, 1949). In brief, optimal filter coefficients were computed as the product of the inverse of the Toeplitz

matrix of the autocorrelation functions of the original data and the vector of the cross-correlation function between observed data and

manual scoring trace (Zhang et al., 2020). Fourth, detection performance was analyzed by plotting the true positive rate (TPR) against

the false positive rate (FPR) to obtain a receiver operating characteristic (ROC) curve, and computing the area under the curve (AUC).

In the present dataset, the estimated AUC was between 0.88 and 0.97, with a mean value of 0.93. When benchmarked using a

(1�AUC)�1 metric, MOD outperformed previous methods (template-fit and deconvolution) by factor of 2–3 (Pernı́a-Andrade

et al., 2012).

To exclude over-fitting effects, a potential caveat with machine-learning based approaches, cross-validation was applied to the

third and fourth processing step. Three different cross-validation schemes were tested: a within-cell scheme (S1–S2; Zhang

et al., 2020), a within-cell-split-half scheme (A1B2–A2B1; Zhang et al., 2020), and a leave-one-(cell)-out-method (LOOM; Zhang

et al., 2020; this paper). All three tests revealed that MOD reliably worked on unscored data, not previously used for training. For

AUC analysis, training data and test data were strictly separated, and AUC values were exclusively computed from test data. Finally,

to obtain the optimal detection threshold, Cohen’s k coefficient was computed for all possible thresholds, and the value with the

largest k value was selected. Once the optimal filter coefficients and the optimal threshold were determined, the algorithm was

applied to the entire recording period to detect EPSP time points automatically. A general classifier was applied to all cells. For anal-

ysis of EPSP amplitudes, the peak amplitudes of the Wiener-filtered detector trace were converted into peak amplitudes of EPSPs,

using a calibration factor obtained by detector trace-triggered averaging. In synthetic datasets, in which EPSP frequency and ampli-

tude were changed in an overlapping manner, MOD was able to distinguish between changes in frequency and amplitude (Zhang

et al., 2020).

LFP analysis
The LFP signal was first down-sampled to 2.5 kHz and then detrended. Then, the pre-processed signal was digitally band-pass

filtered in the delta (2–4 Hz), theta (5–10 Hz), and gamma frequency range (30–80 Hz), respectively. Hilbert transformation was

applied to each band-pass filtered signal to extract information about power and phase. Epochs were classified as theta if the

theta-delta power ratio was R 4 in at least 3 consecutive 2 s time windows (Klausberger et al., 2003), and as non-theta otherwise.

The theta phase preference of APs or EPSPs was obtained as the number of events in every 30� bin of the theta cycle, normalized by
Neuron 107, 1212–1225.e1–e7, September 23, 2020 e4
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the total number of events during theta epochs. Similarly, the gamma phase preference of APs or EPSPs was computed as the

number of events in every 60� bin of the gamma cycle, normalized by the total number of events during gamma epochs. In polar

plot analysis, 0� and 360� phase correspond to two adjacent troughs of the LFP (Figure 1I), following previous conventions (Senzai

and Buzsáki, 2017).

Mean AP frequency of active GCs was calculated as the total number of APs divided by the total recoding time (�5–30 min). AP

frequency during theta oscillations was calculated as the number of APs during theta epochs, divided by the total duration of all theta

epochs for each cell. Similarly, AP frequency during running periods was calculated as the number of APs during epochs in which the

mouse was running with a velocity R 2 cm s-1, divided by the total duration of all running epochs.

Place cell analysis
For analysis of spatial tuning of APs, only recording epochs in which themousewas running with a velocityR 2 cm s-1 were analyzed.

Cells were considered spatially tuned if their spatial information score (Skaggs et al., 1993) was statistically significant from shuffled

controls and R 0.4 bits s-1. Spatial information was computed according to the equations:

I =
XN

i=1

pi li log2

li
l
and (Equation 1a)
IAP =
XN

i= 1

pi

li

l
log2

li
l

(Equation 1b)

where I is information per time, IAP is information per spike, i = 1, 2,., N represents bin number, pi is the probability of occupancy of

bin i, li is the firing rate in bin i, and l is themean firing rate of the cell on the linear track (Skaggs et al., 1993, 1996; Senzai and Buzsáki,

2017). The significance level of a cell’s spatial firingwas determined by shuffling of ISIs in each cell, using aMersenne-Twister random

number generator in MATLAB or Octave. An alternative randomization procedure based on circular shifting gave similar results

(Langston et al., 2010;Wills et al., 2010; GoodSmith et al., 2017; see below). The procedure was repeated 1,000 times, and the spatial

information score was computed for each set. The p value was determined as the fraction of datasets in which spatial information

score of the shuffled data was higher than that of the original data. Spatial tuning was considered significant if p < 0.05. AP rate

maps were generated by dividing the number of spikes in each 2-cm bin by the total time the mice occupied that bin, and smoothed

with a 5-bin Gaussian kernel (standard deviation 1 bin). For CA1 pyramidal cells, the AP place fields were identified by finding all bins

in the rate map in which the firing rate exceeded 20% of the maximal frequency inR 5 contiguous bins and in more than 60% of the

laps (Bittner et al., 2015). For GCs, all bins in which the firing frequency was > 0 were included, as required by the low firing rate

of GCs.

Subthreshold EPSP analysis
Similar to the place cell analysis, analysis of subthreshold activity was restricted to running periods (velocityR 2 cm s-1). To quantify

the underlying Vm, single APs and bursts were removed by linear interpolating 2.5ms before and 7.5ms after each event. The Vmmap

was obtained by computing the median of Vm in each spatial bin; values were Z-scored on a lap-by-lap basis to correct for baseline

drifts. The variance map was obtained by computing the variance of Vm in each spatial bin. Mean or median and variance are differ-

entially dependent on activity; according to Campbell’s theorem, mean is proportional to both event rate and peak amplitude,

whereas variance is proportional to event rate and square of peak amplitude (Neher and Sakaba, 2001). For an event frequency

of 20 Hz, an EPSP peak amplitude of 3 mV, a rise time constant of 2 ms, and a decay time constant of 20 ms, the predicted variance

was 2.7 mV2. Thus, the results of EPSP detection and variance analysis were in approximate agreement. The EPSP event rate was

obtained by dividing the number of EPSPs in each spatial bin by the time the mouse spent in that bin. EPSP events within the AP time

windows (2.5 ms before and 7.5 ms after the onset of APs) were excluded from the analysis. All maps were smoothed with a 5-bin

Gaussian kernel (standard deviation 1 bin). The mean EPSP spatial tuning vector was computed as

TVL =
1

N

XN

j= 1

ei qj
nj

oj

; (Equation 2)

where qj is the angular position (in radian) for the jth bin, nj is the number of events in each bin, oj is the time the mouse spent in each

bin, and N is the total number of bins (i.e., 90). The significance level of EPSP spatial tuning was assessed by shuffling EPSP IEIs for

each cell and computing mean spatial tuning vectors for the shuffled data. This procedure was repeated 1,000 times, and the p value

was determined as the fraction of datasets in which the mean spatial tuning vector length of the shuffled data was higher than that of

the original data (Danielson et al., 2017). EPSP spatial tuning was considered significant if p < 0.05. Additionally, we tested an alter-

native randomization procedure based on circular shifting (Langston et al., 2010;Wills et al., 2010; GoodSmith et al., 2017). Themem-

brane potential trace after exclusion of immobile periods was shifted against the position trace by a time interval randomly drawn

from a uniform distribution in the range [30 s, trial duration –30 s], wrapping time points around as required. Again, the procedure
e5 Neuron 107, 1212–1225.e1–e7, September 23, 2020
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was repeated 1,000 times (Figure S3A). For polar plot analysis, EPSP event rate was plotted against position x, and converted into

angular units as x / L 3 2 p, where L is the total length of the belt (180 cm).

To determine the possible periodic structure of synaptic input, average EPSP event rate–position curves were analyzed by Fourier

transformation (Yoon et al., 2016). Fourier transformation seems particularly valuable for analysis of grid tuning in 1D environments,

because it may produce similar spectral density functions for different parallel linear slices through 2D environments (Yoon et al.,

2016; Pröll et al., 2018). EPSP frequency was analyzed in running periods and averaged across laps. After subtraction of mean event

rate, amplitude spectra were computed by a discrete fast Fourier transformation algorithm. To exclude the effects of high-frequency

noise in the data, only the first ten Fourier components were considered for subsequent analysis. Significance of Fourier components

was tested against 2,000 surrogate datasets generated by shuffling of IEIs of EPSPs from running periods (Figure 4I, top). Statistical

significance of Fourier components was assessed by comparing peak amplitude against confidence interval for each component.

Fourier components were considered significant if p < 0.05 after correction for multiple comparisons using a Benjamini-Hochberg

procedure (Benjamini and Hochberg, 1995). Additionally, we tested statistical significance by random circular shifting (Figure S3B).

Finally, to corroborate the results from shuffling or shifting, we compared nested models using a likelihood approach (Figure 4I, bot-

tom). First, the EPSP rate versus position curve was converted into a probability density function. Second, log-likelihood values were

determined for a uniform model and the sum of a constant and any of the Fourier components. Third, LLRs were computed for each

component. Fourier components were considered significant if LLR > AIC (Akaike, 1974). As each Fourier component had two free

parameters (amplitude and phase), the AIC was set to 2. All three approaches gave a comparable proportion of cells with single, pe-

riodic, and conjunctive field input. To further test the possible relation between periodicity in our 1D paradigm and grid activity in 2D

environments, we analyzed a ‘‘three-peakiness score’’ (p3; Yoon et al., 2016), which should be close to 1, if tuning in 1D can be rep-

resented as a section through grids in 2D (Yoon et al., 2016). p3 was computed as the sum of the amplitudes of the three largest Four-

ier components, divided by that of all Fourier components. For analysis of statistical significance, p3 of the original data was

compared against shuffled data.

Cable modeling
To simulate dendritic integration in reconstructed GCs, EPSPs were simulated using Neuron (version 7.6.2; Carnevale and Hines,

2006). Excitatory postsynaptic conductances were simulated at the dendrite, and EPSPs were measured at the soma. Excitatory

postsynaptic conductances had a rise time constant tr = 0.2ms, a decay time constant td = 2.5ms, and the synaptic reversal potential

was Esyn = 0 mV. Unless stated otherwise, the peak amplitude gsyn was set to 1 nS. The time step of the simulations was set to 5 ms

throughout. The number of segments was defined according to the ‘‘d_lambda rule’’; the number of segments per section (nseg) was

increased until the length of all segments was below 3.3% of the alternating current length constant at 1,000 Hz (l1000 Hz; Carnevale

and Hines, 2006). Simulated somatic EPSPs were analyzed using Stimfit core algorithms adapted for Mathematica (version 12.0;

Guzman et al., 2014). Specific membrane resistance was set to Rm = 38,000 U cm2, specific membrane capacitance to Cm =

1 mF cm-2, and axial resistance to Ri = 194 U cm. Unless stated otherwise, the model was passive. In a subset of simulations,

gsyn was set to 0.1 nS; in another subset, Hodgkin-Huxley type Na+ and K+ conductances were included; these models produced

similar results.

To test the reliability of EPSP detection (Figures S1B–S1D), Poisson trains of EPSPswere simulated in GCs over 300 s time periods.

Synapses were placed on the center of each dendritic branch, and activated using Neuron’s class NetStim. gsyn was set to 1 nS, and

coefficient of peak amplitude variation was set to 0.1. Colored noise was produced by filtering of white noise with a 100-Hz first order

low-pass filter, and added to the simulated traces. TheMOD detection algorithm was trained on the first half (150 s) of the simulation,

and then tested on the second half of the data.

Models of grid-to-place conversion
To examine the predictions of different models of grid-to-place code conversion (Rolls et al., 2006; Si and Treves, 2009; Solstad et al.,

2006; Ormond andMcNaughton, 2015; de Almeida et al., 2009b) for the spatial tuning properties of excitatory synaptic input in GCs,

three different models were examined (Figure S8). Simulations were performed using Mathematica 12.0 (Wolfram). Grid-tuned excit-

atory synaptic input was modeled using a periodic von Mises distribution of the form

FðxÞ = a3Exp½kCos½ðx � mÞ 3 f��; (Equation 3)

where x is position in radian units (between 0 and 2 p), a represents an amplitude factor, k specifies the width of the von Mises dis-

tribution, m is spatial phase, and f represents spatial frequency. kwas set to give a standard deviation of 0.5. To examine the effects of

synaptic plasticity (Rolls et al., 2006; Si and Treves, 2009), synapses at a given location were strengthened in proportion to the degree

of activation, raised to the third power. Themean synaptic weight was held constant, introducing a competitive aspect in the plasticity

process. To examine the effects of superposition (Solstad et al., 2006; Ormond and McNaughton, 2015), 250 inputs with randomly

chosen amplitude (according to normal distribution with mean 1 and standard deviation 0.2) and spatial frequency (according to

equal distribution between 1 and 10) were summated. The phase was chosen such that all inputs showed maximal summation in

the center of the place field to be generated. Finally, to examine the effects of a winner-takes-all mechanism (de Almeida et al.,

2009a, 2009b), 250 inputs with randomly chosen amplitude (according to normal distribution with mean 1 and standard deviation

0.2), spatial frequency (according to equal distribution between 1 and 10), and spatial phase were generated in 250 cells and
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summated. For each location, the amplitude of the excitatory synaptic input in the examined cell was compared with the 95% quan-

tile of the excitatory input in the surrounding cells, implementing an E%-max rule (de Almeida et al., 2009a, 2009b). The examined cell

was assumed to firewhen the 95%quantile linewas exceeded. The three simulations allowed us to compare different mechanisms of

grid-to-place conversion for excitatory inputs with identical spatial tuning properties.

Statistics and conventions
Statistical significance was assessed using a two-sided Wilcoxon signed rank test for paired comparisons or a Mann-Whitney U test

for unpaired comparisons at the significance level (p) indicated, as implemented in MATLAB 2016 and 2017. Multiple comparisons

were performed with a Kruskal-Wallis test. For circular statistics, data were analyzed using a Rayleigh test. For comparison of dis-

tributions, a Kolmogorov-Smirnov test was applied. For analysis of contingency tables, Fisher’s exact test was used. For correlation

analysis, Pearson’s correlation coefficient was computed. Values are given as mean or median ± standard error of the mean (SEM).

Error bars in the figures also represent the SEM; they were plotted only when larger than symbol size. For graphical representation of

statistics, * indicates p < 0.05, ** p < 0.01, and *** p < 0.001. Membrane potentials were reported without correction for liquid junction

potentials. In total, data in this paper were obtained from 73 in vivo recordings from morphologically identified GCs (Tables S1–S3).

Burst activity of the activeGCswas analyzed and reported in a previous study (Vandael et al., 2020). For reference purposes, 17 in vivo

recordings from morphologically identified CA1 pyramidal neurons were included (Figures 2J–2M).
e7 Neuron 107, 1212–1225.e1–e7, September 23, 2020
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Figure S1, related to Figures 2 and 3. Accurate and efficient detection of individual 
EPSPs in GCs during spatial navigation 

(A) Flowchart of the EPSP detection procedure. After raw data were recorded, parts of 
the data sets were manually scored by experts. Using these manually scored events, the 
algorithm was trained to produce an output resembling as closely as possible the manual 
scoring trace. Optimal filter coefficients were computed based on Wiener-Hopf equation, 
which was subsequently applied to the original data to generate a raw detection trace.  
(B) Generation of synthetic data sets simulating EPSPs in a detailed passive cable model 
of a GC. Color code indicates normalized somatic EPSP peak amplitude.  
(C) Benchmarking the EPSP detection algorithm on synthetic data generated in detailed 
passive cable model of a GC. Traces show, from top to bottom: (1) simulated data with 
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added colored noise (signal-to-noise ratio 0 dB), (2) scoring trace generated by applying 
a symmetric ± 2 ms window to each marker (yellow), (3) raw detection trace generated by 
the detection algorithm (purple), and (4) underlying simulated data without added noise 
(blue) overlaid with the detection markers (red).  
(D) ROC curves, showing TPR against FPR, for synthetic data with different signal-to-
noise ratios (−12, −6, 0, 6, 14, and 20 dB). Red circles, points corresponding to the 
maximum  value. Inset, mean AUC, a quantitative measure of detection power and 
accuracy, plotted versus signal-to-noise ratio.  
(E) Subthreshold EPSP activity in an active (top) and a silent (bottom) GC. Top, detection 
markers; center, EPSP trace; bottom, velocity. Left, continuous traces at compressed time 
scale; right, individual EPSP traces at expanded scale (vertically aligned to a baseline 
point preceding the event). In the experiments shown, the AUC was 0.95 for the illustrated 
active GC and 0.90 for the depicted silent GC.  
(F) ROC curve analysis. The mean AUC was 0.93, implying highly reliable detection. Each 
line represents results from a single GC.  
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Figure S2, related to Figures 2 and 3. AP rate map and Vm analysis in all active GCs 

(A) Active GCs in which EPSPs were significantly spatially tuned. Left, AP rate map of a 
GC. Abscissa represents position on linear belt (2-cm spatial binning), ordinate denotes 
lap number. Color code scale bar indicates AP frequency in spatial bins (scale bar in upper 
left panel applies to all panels). Right top, plot of Vm median (after AP removal) against 
position across laps. Right bottom, plot of Vm variance (after AP removal) against position 
across laps.  
(B) Similar as (A), but for active GCs in which EPSPs were not significantly spatially tuned. 
In both (A) and (B), yellow arrowheads indicate APs, and dashed black rectangles 
demarcate cells which were classified as active, but fired APs only during quiet periods; 
thus, the map was empty.  
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Figure S3, related to Figures 2–4. Analysis of EPSP frequency, Vm median, and Vm 
variance as a proxy of synaptic activity confirms spatial tuning of GC input 

(A) Spatial tuning of EPSP rate with a randomization method in which membrane potential 
trace and positional trace were shifted by random amounts. Left, polar plot of EPSP event 
rate. Spatial positions (0–180 cm) were converted into angles (0–360°). Black circles 
represent EPSP event frequency in each bin (number of events divided by time spent in 
respective bin). Center, distribution of mean EPSP frequency tuning vector length from 
randomized data. Red vertical line indicates mean tuning vector length of original data. 
Note that the mean tuning vector length from the original data is significantly larger than 
the values obtained from the randomized data. Right, proportion of GCs with spatially 
tuned synaptic input.  
(B) Analysis of statistical significance of Fourier components based on random circular 
shifting in active (top) and silent (bottom) GCs. Significant differences are shown in color; 
color code indicates p value. Abscissa shows spatial frequency of the first ten Fourier 
components, ordinate represents cell index. GCs were sorted according to p values of 
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individual Fourier components (first according to base component, and then iteratively 
according to higher-order components).    
(C and D) Similar analysis as in (A and B), but for analysis of Vm median.  
(E and F) Similar analysis as in (A–D), but for Vm variance.  Red arrows in A left, C left, 
and E left indicate mean tuning vectors (multiplied by 10 for illustration purposes).  
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Figure S4, related to Figure 4. Minimal place tuning of EPSP peak amplitude in GCs 

(A–H) EPSP peak amplitude as a function of position in representative GCs (A, C, E, G) 
and amplitude of spectral components of EPSP amplitude (B, D, F, H). Same cells and 
representation as shown in Figures 4A–4H. Note that, in contrast to EPSP frequency, 
EPSP amplitude shows only minimal spatial tuning.  
(I) Analysis of statistical significance of Fourier components of EPSP peak amplitude 
based on shuffling in active (top) and silent (bottom) GCs. Significant differences are 
shown in color; color code indicates p value (before correction for multiple comparisons). 
Abscissa shows spatial frequency of the first ten Fourier components, ordinate represents 
cell index. GCs were sorted according to p values of individual Fourier components (first 
according to base component, and then iteratively according to higher-order components).     
(J) Proportion of active place GC (left), active non-place GCs (center), and silent GCs 
(right) with single, periodic, and conjunctive field input, based on shuffling (p < 0.05; 
Benjamini-Hochberg correction for multiple comparisons).  
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Figure S5, related to Figure 5. Place GCs, active non-place GCs, and silent GCs 
show similar excitatory synaptic input 

(A) Histogram of EPSP peak amplitudes (left) and EPSP IEIs (right) in active (green) and 
silent (blue) GCs.  
(B) Polar plot of phase preference of EPSPs in relation to theta (left) and gamma (right) 
oscillations. Red arrow indicates mean tuning vector. Note that EPSPs are significantly 
phase locked to theta (p < 0.001), but not gamma activity (p = 0.24), consistent with 



8 
 

previous results (Pernía-Andrade and Jonas, 2014). This confirms the reliability of EPSP 
detection.  
(C and D) Scatter plot of EPSP frequency (C) and EPSP peak amplitude (D), plotted 
against mean AP frequency (log scale). Inset shows summary bar graph illustrating the 
parameter for place GCs, active non-place GCs, and silent GCs.  
(E and F) Similar plots as shown in (C and D), but for EPSP frequency tuning vector 
length.  
(G and H) Similar scatter plots as shown in (C and D), but for Z-scored Vm and Vm 
variance. Each data point represents a single GC recording. Lines represent results from 
linear regression. r, Pearson’s correlation coefficient; p, corresponding significance value. 
None of the parameters is significantly correlated with AP frequency.  
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Figure S6, related to Figure 3. Properties of spatial information in GCs  

(A–D) Correlation analysis of spatial information given per time, plotted against mean AP 
frequency (A), EPSP frequency tuning vector length (B, same plot as shown in Figure 3L), 
Z-scored Vm (C), and Vm variance (D).    
(E–H) Similar plots as shown in (A–D), but for spatial information given per spike. Each 
data point represents a single GC recording. Lines represent results from linear 



10 
 

regression; red line, correlation significant; gray line, correlation not significant. r, 
Pearson’s correlation coefficient; p, corresponding significance value. Note that spatial 
information per time increases, whereas spatial information per AP decreases as a 
function of mean AP frequency. Thus, the increase in spatial information is related to an 
increase in the number of APs. Also note that spatial information per time, but not spatial 
information per AP is significantly correlated with tuning vector length, Z-scored Vm, and 
Vm variance. Thus, input-output conversion relies on an increase in the number, rather 
than the properties of a single spike.  
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Figure S7, related to Figure 5. Different dendritic architecture, but similar cable 
properties of active and silent GCs 

(A) Dendrograms of an active GC (left) and a silent GC (right). Numbers indicate length 
(in µm) and branch order.  
(B) Detailed passive cable model of a reconstructed active GC (mean AP frequency 
0.012 Hz). Color code indicates normalized somatic EPSP peak amplitude for synaptic 
conductances simulated at different dendritic locations.  
(C and D) Amplitude of local dendritic (C) and somatic (D) EPSP peak amplitude against 
distance of synapse from the center of the soma for a reconstructed active GC (same cell 
as shown in (A, left) and (B).  
(E) Plot of length constant  (decay constant of fit exponential function) against mean AP 
frequency.  
(F) Plot of maximal EPSP peak amplitude at distance = 0 against mean AP frequency. 
(G) Comparison of mean somatic EPSP peak amplitude against distance of synapse from 
the center of the soma for active (green) and silent (blue) GCs. Active cells are slightly 
less sensitive to proximal inputs in the inner molecular layer, equally sensitive to inputs in 
the middle molecular layer, and only slightly more sensitive to distal inputs in the outer 
molecular layer. Thus, cable properties cannot explain the differential activity of GCs.  
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Figure S8, related to Figures 3–5. Different models of grid-to-place code conversion 

 
(A) In the “competitive plasticity model”, grid-tuned excitatory GC input becomes place-
tuned by Hebbian plasticity (Rolls et al., 2006; Si and Treves, 2009). Curves indicate 
spatial tuning of input before (left) and after (right) plasticity induction (in the belt center, 
i.e. at x  = 90 cm).  
(B) In the “superposition model” or “Fourier model”, place-tuning arises from superposition 
of grid-tuned inputs with random spatial frequencies, but defined phase (Solstad et al., 
2006; Ormond and McNaughton, 2015). Phases of grid-tuned inputs were chosen to give 
maximal superposition in the belt center, i.e. at x = 90 cm.  
(C) In the “network competition model”, individual synaptic inputs are grid-tuned, but the 
average input is weakly tuned. Place-tuning arises via a competitive network mechanism 
in which cells with the highest excitation level (red) suppress cells with lower excitation 
level (black) (de Almeida et al., 2009b). Curves indicate spatial tuning of input in a given 
cell (blue continuous) and 95% quantile of activity in the total GC population (black 
dashed). Red area indicates locations in which the activity in the GC exceeds the 95% 
quantile in the population.  
(D) New model in which the GC receives conjunctive input, consistent with the results of 
the present paper. A fraction of inputs shows place-like tuning (left), whereas another 
fraction shows grid-like tuning (right). Place fields of place-tuned inputs and phases of 
grid-tuned inputs were chosen to give maximal superposition in the belt center, i.e. at 
x = 90 cm.  
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Table S1, related to Figure 1. Morphological properties of in vivo recorded GCs 
Morphological parameter Active GCs 

(n = 26) 
Silent GCs 

(n = 20)  
Soma location 0.49 ± 0.04 

[0 .. 0.85] 
 

0.43 ± 0.04 
[0.16 .. 0.71] 

Max. branching order 5.85 ± 0.14 
[5.. 7] 

5.00 ± 0.15 
[4 .. 6] 

Number of branches at all 
orders  

20.08 ± 0.74 
[13.. 29] 

18.00 ± 0.83 
[12 .. 26] 

Number of branches  
at lower orders (1–3) 

7.31 ± 0.38 
[4 .. 14] 

8.75 ± 0.74 
[5 .. 19] 

Number of branches  
at higher orders (4–7) 

12.77 ± 0.76 
[7.. 24] 

9.25 ± 0.93 
[2… 16] 

Dendritic length at all orders 
(μm) 

1626.7 ± 45.8 
[1099.1 .. 2003.8] 

1710.3 ± 64.1 
[1166.6 .. 2408.3] 

Dendritic length  
at lower orders (1–3) (μm) 

382.9 ± 42.6 
[91.8 .. 1104.6] 

643.2 ± 95.3 
[175 .. 1815.8] 

Dendritic length  
at higher orders (4–7) (μm) 

1243.8 ± 54.0 
[743 ..1668] 

1067.1 ± 99.8 
[152.3 ... 1855.2] 

Convex surface (μm2) 382.9 ± 42.6 
[91.79 .. 1104.6] 

643.2 ± 95.2 
[174.99.. 1815.8] 

Convex volume (μm3) 1243.8 ± 54.0 
[743.04 .. 1668] 

1067.1 ± 99.8 
[152.29 .. 1855.2] 

 
Values are specified as mean ± SEM [range].  
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Table S2, related to Figure 5. Passive and active properties of in vivo recorded GCs 
Functional parameter Active GCs 

(n = 26) 
Silent GCs 

(n = 25)  
Resting membrane potential 
(mV) 

−73.0 ± 1.7 
[−90.0 .. −54.0] 

 

−73.7 ± 1.5 
[−87.8 .. −57.2] 

Input resistance (M) 151.8 ± 10.7 
[61.0 .. 311.2] 

188.1 ± 12.0 
[107.4 .. 328.0] 

Apparent membrane time 
constant (ms)  

15.1 ± 4.3 
[4.5 .. 25.0] 

8.5 ± 2.4 
[7.8 .. 23.1] 

Current threshold 
(rheobase; in pA)  

128.6 ± 13.7 
[0 .. 300] 

122.0 ± 12.3 
[50 .. 250] 

Voltage threshold (mV) −39.4 ± 1.2 
[−52.0 .. −26.9] 

−35.8 ± 0.9 
[−48.1 … −26.6] 

AP (dV / dt)max 550.1 ± 35.3 
[321.1 .. 1003.9] 

366.9 ± 27.1 
[198.4 .. 729.7] 

AP peak amplitude (mV) 77.0 ± 3.1 
[52.0 .. 113.8] 

62.6 ± 2.5 
[38.5 .. 89.3] 

AP half-duration (ms)  0.56 ± 0.02 
[0.36 .. 0.76] 

0.65 ± 0.02 
[0.44 ... 0.84] 

Max. AP frequency  418 ± 48 
[133 .. 1316] 

373 ± 30 
[159 .. 1000] 

Series resistance Rs (M) 47.5 ± 1.7 
[26.0 .. 76.3] 

50.7 ± 2.1 
[34.8 .. 73.6] 

 
Values are specified as mean ± SEM [range].  
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Table S3, related to Figures 1–5. Total number of GCs and number of GCs used for 
specific analyses in the present data set 
  Active 

GCs 
Silent 
GCs 

Total  Reason for exclusion 

Total  39  34  73   

Detailed 
morphological 
analysis 

26  20  46  Faint labeling or multiple GCs 
stained 

Intrinsic 
properties  

26  25  51  Rs > 80 MΩ; bridge balance 
suboptimal 

AP and EPSP 
spatial 
analysis 

31  28  59  Mice ran < 4 laps 
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Table S4, related to Figures 1–5. Action potential activity of GCs and CA1 pyramidal 
neurons in vivo during spatial navigation  
  GCs  CA1 

pyramidal 
neurons  

Total number 
of cells  

73 17 

Number of 
active cells  

39 17 

Percentage of 
active cells 
(%) 

53 100 

Median AP 
frequency 
(Hz) 

0.031 ± 
0.096 

2.56 ± 
0.52 

Mean, range 
AP frequency 
(Hz) 

0.125 
[0.001, 3] 

3.06 
[0.004, 
10.1] 

 
 
 
 
 
 


	NEURON15338_proof_v107i6.pdf
	Selective Routing of Spatial Information Flow from Input to Output in Hippocampal Granule Cells
	Introduction
	Results
	Heterogeneous Activity of Morphologically Identified GCs In Vivo
	A Small Proportion of GCs Are Place Cells, but a Large Fraction Receives Spatially Tuned Excitatory Synaptic Input
	Single- and Periodic-Field Structure of Subthreshold Activity
	Differences in Excitability Control the Efficacy of Input-Output Conversion in GCs

	Discussion
	Strengths and Limitations of the Present Study
	Sparse, Heterogeneous Activity of Identified GCs
	Cellular Determinants of Sparse Activity
	Spatial Code Conversion in GCs
	Possible Sources of Synaptic Input of GCs In Vivo
	Role of Sparsely and Heterogeneously Active GCs in the Dentate Gyrus Network

	Supplemental Information
	Acknowledgments
	Author Contributions
	Declaration of Interests
	References
	STAR★Methods
	Key Resources Table
	Resource Availability
	Lead Contact
	Materials Availability
	Data and Code Availability

	Experimental Model and Subject Details
	Animal experiments

	Method Details
	Surgery and animal training
	Behavioral set-up
	In vivo electrophysiology
	Neuron labeling and reconstruction

	Quantification and Statistical Analysis
	Data analysis
	EPSP detection
	LFP analysis
	Place cell analysis
	Subthreshold EPSP analysis
	Cable modeling
	Models of grid-to-place conversion
	Statistics and conventions




	neuron_15338_mmc1.pdf
	SupplTitlePage
	Zhangetal_SupplementWithFiguresRRR


