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SUMMARY
In mammalian genomes, a subset of genes is regulated by genomic imprinting, resulting in silencing of one
parental allele. Imprinting is essential for cerebral cortex development, but prevalence and functional impact
in individual cells is unclear. Here, we determined allelic expression in cortical cell types and established a
quantitative platform to interrogate imprinting in single cells. We created cells with uniparental chromosome
disomy (UPD) containing two copies of either the maternal or the paternal chromosome; hence, imprinted
genes will be 2-fold overexpressed or not expressed. By genetic labeling of UPD, we determined cellular phe-
notypes and transcriptional responses to deregulated imprinted gene expression at unprecedented single-cell
resolution. We discovered an unexpected degree of cell-type specificity and a novel function of imprinting in
the regulation of cortical astrocyte survival. More generally, our results suggest functional relevance of im-
printed gene expression in glial astrocyte lineage and thus for generating cortical cell-type diversity.
INTRODUCTION

The cerebral cortex is composed of an extraordinary number of

neuronal and glial cell types assembling into cortical circuits that

account for cognitive abilities. Remarkable heterogeneity in the

cortical cell types has been described (Ecker et al., 2017; Lein

et al., 2017; Zeng and Sanes, 2017), yet the identity of neuronal

classes is largely hardwired genetically (Lodato and Arlotta,

2015). The mechanisms generating cortical cell-type diversity

are not well understood. However, efforts employing RNA

sequencing (RNA-seq) at the single-cell level indicate that devel-

opmentally regulated transcriptional programs play critical roles

in establishing the full spectrum of cortical cell fates (Mayer et al.,

2018; Mi et al., 2018; Nowakowski et al., 2017; Telley et al.,

2016, 2019).

The control of precise transcriptional programs establishing

cortical cell fates includes epigenetic mechanisms (Amberg

et al., 2019). For instance, DNA methylation represents a critical

epigenetic mark modifying DNA-protein interactions and thus

controlling transcriptional states and cellular identity (Albert

et al., 2017; Gray et al., 2017; Luo et al., 2017). Although many

DNA methylation regulatory mechanisms involve large-scale

and global chromatin modulation, some cues act at highly spe-

cific locations. In particular, differential DNA methylation at

imprinting control regions serves as a fundamental mechanism

of genomic imprinting. Imprinting is an epigenetic phenomenon
1160 Neuron 107, 1160–1179, September 23, 2020 ª 2020 The Auth
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and results in monoallelic parent-of-origin-specific gene expres-

sion (Barlow and Bartolomei, 2014; Ferguson-Smith, 2011).

Thus, certain genes are only expressed from the paternally in-

herited allele and others are only expressed from the maternally

inherited allele. The most characteristic feature of imprinted

genes is reflected in their cardinal gene-dosage sensitivity.

Whether and how allelic expression, and therefore imprinted

gene dosage, is regulated at the single-cell level and whether

imprinting contributes mechanistically to the generation of tran-

scriptional and/or phenotypic cell-type diversity are unknown.

Although the overall number of imprinted genes is relatively

small (<1%) (Tucci et al., 2019; Williamson et al., 2013), many im-

printed genes are prominently expressed during neural develop-

ment and in the adult brain (Andergassen et al., 2017; Babak

et al., 2015; Perez et al., 2015). The preferential expression of

the maternal or the paternal allele of certain genes suggests

widespread implications for the development and function of

the brain. Indeed, genetic deletion of individual imprinted genes

results in various neuronal and behavioral deficits (Perez et al.,

2016; Peters, 2014; Wilkinson et al., 2007). However, many phe-

notypes with loss of imprinted gene function have been analyzed

at the whole-animal and/or global tissue level. Thus, the func-

tional role of imprinting, and therefore the regulated expression

of imprinted gene dosage, at the individual-cell level is poorly un-

derstood (Barlow and Bartolomei, 2014; Chess, 2016; Huang

et al., 2018; Perez et al., 2016; Tucci et al., 2019).
or(s). Published by Elsevier Inc.
creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. Uniform Allelic Expression of Imprinted Genes in Major Forebrain Cell Types

(A) Strategy for cell-type-specific allelic expression analysis. Left: overview of parental Z/EG;Emx1Cre/+ and Ai14;Nkx2.1-Cre+/� reporter in a B6 genetic back-

ground and CAST mouse strains. Images depict neocortex (CX), hippocampus (HC), and OB (insets) in experimental B6/CAST mice with labeling of Emx1+ (Z/

EG;Emx1Cre/+) andNkx2.1+ (Ai14;Nkx2.1-Cre+/�) cell lineages in overview and at highermagnification (boxed areas in overview) at P0. GFP expression (green) and

tdT expression (red) are indicated. Nuclei were stained using DAPI (blue). Cortical layers are indicated (roman numerals). Scale bar: overview, 500 mm;

(legend continued on next page)
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The investigation of genomic imprinting at the organismal level

has vastly benefited from the analysis ofmice carrying uniparental

chromosome disomy (UPD, somatic cells containing either two

copies of the maternal or paternal chromosome) (Cattanach and

Kirk, 1985; Ferguson-Smith et al., 1991; Schulz et al., 2006).

Because one parental allele is duplicated and the other is not pre-

sent in cells carrying UPD, imprinted genes are in principle either

2-fold overexpressed or not expressed. Several imprinting phe-

notypes in mice, as well as certain human disorders, are due to

UPD and resulting imbalances of imprinted gene expression (Pe-

ters, 2014; Yamazawa et al., 2010). Two prominent examples

affecting the brain include Prader-Willi and Angelman syndromes

(Buiting et al., 2016; Horsthemke andWagstaff, 2008; Mabb et al.,

2011). Cell-type-specific and/or allelic expression strength of im-

printed genes could contribute to overall phenotype and clinical

manifestation in conditions with deregulated imprinted gene

expression in UPD (Buiting et al., 2016; Cassidy and Driscoll,

2009; Horsthemke and Wagstaff, 2008; LaSalle et al., 2015;

Mabb et al., 2011). However, the lack of experimental approaches

allowing the interrogation and phenotypic analysis upon deregu-

lated imprinted gene expression at the single-cell level has thus

far precluded the investigation of cell-type specificity.

Here, we first used single-cell RNA sequencing (scRNA-seq)

to map and quantitatively assess allelic expression strength in

genetically defined major forebrain cell types at single-cell reso-

lution. We then exploited the potential of UPD and established a

quantitative assay to probe genomic imprinting at unprece-

dented single-cell resolution in the developing cortex using

MADM (mosaic analysis with double markers) technology (Hip-

penmeyer et al., 2010, 2013; Zong et al., 2005). By capitalizing

upon the MADM assay, we determined the prevalence and

phenotypic cell-type specificity of imprinted gene dosage in

the developing cerebral cortex at the single-cell level.

RESULTS

Analysis of Allelic Expression in Genetically Defined
Major Forebrain Cell Types
Previous studies have established genome-wide allelic expres-

sion maps (allelomes) in many organs and tissues (Andergassen

et al., 2017; Babak et al., 2015; Bonthuis et al., 2015; Gregg et al.,
magnification, 60 mm; OB insets, 600 mm.Middle: breeding scheme for generating

SNP expression upon FACS and RNA-seq analysis for biallelically expressed ge

(B) Experimental strategy for the analysis of allelic expression in bulk samples from

the Allelome.PRO pipeline.

(C) Heatmap showing allelic expression of 25 known imprinted genes in whole tis

(blue); BAE (green); NI/B6, not informative or expression bias toward B6 allele (

consistently higher expression in that direction below the allelic ratio cutoff (0.7).

(D) Number of genes in (C) with biased expression or canonical imprinting.

(E) Allelic ratio (mat/pat) of genes with canonical imprinting (Sgce, Snrpn, Rian, a

(F) Experimental strategy for allelic expression analysis in single cells of Emx1+ line

from B6xCAST and reciprocal CASTxB6 crosses are indicated.

(G) Heatmap displays expression of a representative set of marker genes for clas

genes (rows) were ordered arbitrarily after hierarchical clustering. Colored bars ab

(orange), NI (gray), NII (black).

(H) Allelic expression of selected genes in single cells in defined cell types: Ncam

Inpp5f and Impact, biased pat. Numbers indicate informative cells.

See also Figure S1.
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2010; Perez et al., 2015) using well-established genetic differ-

ences (single-nucleotide polymorphisms, SNPs) in the F1 gener-

ation of crosses between distinct mouse strains (Figure 1A).

These efforts proved extremely useful to identify tissue-specific

imprinted gene expression but lacked the cellular resolution to

determine cell-type-specific allelic expression. To this end, we

set out to first analyze the allelomes of genetically defined cell

types compared with whole tissue. We focused on cortical pro-

jection neurons, interneurons, and olfactory bulb (OB) granule

cells and crossed Emx1- and Nkx2.1-Cre drivers to fluorescent

Z/EG and Ai14 reporter lines, respectively, all in the C57BL/6J

(B6) genetic background. These B6-Cre/reporter mice were

then crossed to CAST/EiJ (CAST) mice with the father in B6

and the mother in CAST (initial cross), or vice versa (reverse

cross). We used 2 biological replicates for both crosses (Table

S1A; Figure 1A). Next, labeled cells from F1 of the preceding

crosses were isolated by fluorescence-activated cell sorting

(FACS) followed by RNA-seq and allelic expression analysis us-

ing Allelome.PRO (Andergassen et al., 2015) to determine

genome-wide allelic gene expression (Figure 1B). For global im-

printed gene identification, we used a false discovery rate (FDR)

cutoff of 1% and an allelic expression ratio cutoff of 0.7, indi-

cating a 70/30 ratio of expressed/silent allele (Andergassen

et al., 2017). To refine this definition, we separated genes

showing canonical (allelic ratio cutoff of 0.95) and biased (allelic

ratio cutoff between 0.95 and 0.7) imprinted expression (Fig-

ure 1A). We confirmed cell-type identity in our samples using

principal-component analysis (Figure S1A) and marker gene

expression (Figure S1B). To identify cell-type-specific differ-

ences in imprinted gene expression, we focused our analysis

on 25 genes with imprinted expression in embryonic and adult

whole mouse brain (Andergassen et al., 2017; Perez et al.,

2015; Figure 1C). Most (20/25, or 80%) showed uniform canon-

ical allelic expression (i.e., no switching of parental allele-specific

expression) in all informative cell types, as well as in whole tissue

(Figure 1D). We next plotted the allelic maternal expression/

paternal expression (mat/pat) ratios for several representative

maternally (Rian andMeg3) and paternally (Sgce and Snrpn) ex-

pressed imprinted genes (Figure 1E). Only 5/25 genes appeared

to show biased imprinted expression (Ago2, Cdkn1c, Grb10,

Impact, and Inpp5f). Of these 5 genes, Grb10 is known to switch
F1 B6xCAST hybrids with expected SNPs in F1. Right: expected relative allelic

nes (BAE), canonical imprinted genes, and genes with expression bias.

whole tissue, Emx1+, and Nkx2.1+ lineages from CX, HC, and OB at P0 using

sue (whole), Emx1+, and Nkx2.1+ cell types in CX, HC, and OB. mat (red); pat

white). The mat and pat labeling within individual boxes indicates genes with

nd Meg3) or biased expression (Impact, Ago2, and Inpp5f).

age at P0 and P42 using the Allelome.PRO pipeline. Numbers of cells analyzed

sification of individual cell types in the Emx1+ lineage. Cell types (columns) and

ove the heatmap indicate different cell types: aIPC (pink), astros (purple), oligos

1 and Fgfr2, biallelic expression; Meg3, canonical mat; Snrpn, canonical pat;
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promoter usage and thus imprinted expression developmentally

and cell type specifically (Plasschaert and Bartolomei, 2015; Ya-

masaki-Ishizaki et al., 2007), and Cdkn1c shows almost exclu-

sive imprinted expression with only one cell-type exception

(OB, mat/pat ratio of 0.940 and cutoff of 0.95). Next, we investi-

gated Ago2, Impact, and Inpp5f and found marked cell-type-

specific variation in the allelic mat/pat ratios, contrasting with ca-

nonical imprinted expression (Figure 1E). In summary, most

(80%) expressed imprinted genes exhibit canonical imprinting

in all major, genetically defined, cortical cell types, with a smaller

fraction (20%) showing expression bias.

Allelic Imprinted Gene Expression in Cortical Cell Types
at the Single-Cell Level
Biased imprinted gene expression can arise either from uniformly

skewed expression in all cells within a population or from a major

population showing exclusive imprinted expression from one

parental allele and aminority population switching parental alleles

and showing exclusive expression of the opposite parental allele

(Chess, 2016; Huang et al., 2018; Perez et al., 2016). To discrim-

inate between these possibilities we isolated single cells from

the cortical Emx1+ lineage of F1 progeny from B6 and CAST par-

ents, as described earlier, at two developmental timepoints, post-

natal day (P) 0 and P42 using FACS (initial and reverse cross) (Fig-

ures 1F and S1C). Next, we performed scRNA-seq using

SMARTer technology. Uponquality control,we identified 404 cells

fromboth crosses (223B6xCAST and 181CASTxB6; thematernal

strain is written on the left).We classified all informative cells into 5

classes using hierarchical clustering of gene expression (Fig-

ure 1G; Table S1B; STAR Methods). Clustering did not result in

major bias with respect to the direction of B6xCAST cross in

any class (Figure S1C). We separated neurons into two groups,

with neuron I (NI, nascent projection neurons) and neuron II (NII,

mature projection neurons) originating mainly from P0 and P42,

respectively (Figure S1C). Astrocyte intermediate progenitor cells

(aIPCs) were mainly observed at P0, whereas mature astrocytes

(astros) and oligodendrocytes (oligos) were mostly identified at

P42 (Figure S1C). Using a modified version of Allelome.PRO, we

calculated allelic mat/pat ratios of the 25 known imprinted genes

as described earlier and two control (i.e., biallelically expressed)

genes (Ncam1 and Fgfr2) (STAR Methods). Our analysis revealed

that the parental bias of all investigated imprinted genes was pre-

sent at the single-cell level (Table S2). Importantly, biased paternal

expression of Inpp5f and Impact at the single-cell level was de-

tected in all major cell types (Figure 1H), similar to our observation

at the bulk level (Figure 1E). In contrast, almost exclusive expres-

sion from the maternal or the paternal allele was detected in each

informative cell for selected genes with canonical imprinted

expression (maternal,Meg3andRian; paternal,Snrpn) (Figure1H).

Highly expressed genes that are not subject to genomic

imprinting, e.g., Fgfr2 and Ncam1, were found to be expressed

either from both parental alleles (i.e., biallelic, green bar in Fig-

ure 1H) or from one of the parental alleles in equal amounts of sin-

gle cells (red/blue bars in Figure 1H), consistent with the observa-

tion and concept of transcriptional bursts (Larsson et al., 2019). In

summary, we found uniform canonical imprinted gene expression

across distinct cell types, which is in contrast to the idea of cell-

type-specific variation of biased expression. Both canonical
expression and biased expression of the respective analyzed im-

printed genes were observed in all different cortical cell types with

no detectable allele switching.

Quantitative Assessment of Imprinted Gene Expression
Levels in Major Forebrain Cell Types
In the above analysis, we noticed that although relative ratios of

allelic expression were rather uniform across cell types, absolute

imprinted gene expression levels were not. Extreme examples

included Rasgrf1 and Magel2, which were not informative in

allelic expression analysis because of low expression in several

(i.e., 2–4) cell types (Figure 1C, white boxes). These findings

prompted us to comparatively investigate the expression levels

of all 25 well-characterized imprinted genes listed earlier in all

distinct cortical cell types. We first re-analyzed the bulk RNA-

seq data of the preceding B6xCAST crosses (Figure 2A). We

plotted the relative expression levels in a heatmap to reveal sim-

ilarities and differences in expression profiles across specific

cortical cell types (Figure 2B). This analysis indicatedmarked dif-

ferences in the expression of most analyzed imprinted genes

across distinct cell types. We next plotted the normalized read

counts of Impact, which shows similar expression levels in all

cortical cell types. In contrast, the normalized read counts of

Meg3 and Grb10 revealed substantial differences of expression

in distinct cortical cell types (Figure 2C). To corroborate these

findings, we calculated a cell-type specificity index based on dif-

ferential gene expression (bulk) (see STAR Methods). This anal-

ysis identified progressively increasing but significant cell-type-

specific imprinted expression levels for 84% of the investigated

25 imprinted genes (Figure 2D). Next, we analyzed cell-type-

specific expression of imprinted genes at the single-cell level

and re-analyzed the data from scRNA-seq of the B6xCAST

crosses (Figure 2E). Normalized expression of 20 informative im-

printed genes, visualized in a heatmap, indicated that even in in-

dividual cells, imprinted gene expression varies strongly across

distinct cortical cell types (Figure 2F). Furthermore, normalized

expression values for three genes—Impact, similar expression,

andMeg3 andGrb10, cell-type-specific expression—supported

the preceding observation (Figure 2G). Based on the highest

fraction of cumulative expression, we calculated a specificity in-

dex for single cells (single cell) (see STAR Methods). Strikingly,

13/20 genes showed significant differential expression among

the 5 cortical cell types (Figure 2H, indicated with asterisks

next to the gene name, Monocle2, adjusted p value (padj) <

0.05). Altogether, we found that imprinted geneswith uniform ca-

nonical or biased allelic expression exhibit significant variation in

absolute expression levels across cortical cell types.

MADM Can Generate UPD to Probe Genomic Imprinting
at the Single-Cell Level
The preceding findings show that imprinted gene expression

strength varies significantly across distinct cortical cell types.

How relevant is the absolute expression of imprinted genes in

a particular cell type? To address this question, it is imperative

to modulate the expressed dose of imprinted genes in a cell-

type-specific manner while maintaining endogenous transcrip-

tional control of gene expression. Currently, the prime assay ful-

filling the preceding criteria is UPD. We therefore set out to
Neuron 107, 1160–1179, September 23, 2020 1163
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Figure 2. Imprinted Genes Show Distinct Expression Levels in Different Cortical Cell Types

(A) Overview of genetically defined cortical cell types that were analyzed in small bulk samples at P0.

(B) Heatmap depicting relative expression levels of imprinted genes in different cortical cell types.

(C) Normalized expression levels of three imprinted genes: Impact,Meg3, andGrb10. Note the uniform (Impact) but highly variable (Meg3 andGrb10) expression

levels in distinct cell types.

(D) Cell-type specificity index (bulk), with a low specificity score indicating more uniformity and a high specificity score reflecting increasing variance of cell-type-

specific expression levels.

(E) Overview of expression analysis at the single-cell level in aIPC (pink), astrocytes (purple), oligodendrocytes (orange), NI (gray), and NII (black).

(F) Heatmap depicting expression of 20 (informative) imprinted genes in distinct cell types.

(G) Expression levels of Impact, Meg3, and Grb10 in single cells.

(H) Cell-type specificity index (single cell) based on the highest fraction of cumulative expression.
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exploit the potential of UPD and established a quantitative assay

to probe genomic imprinting at single-cell resolution in the devel-

oping cortex usingMADM technology (Hippenmeyer et al., 2010,

2013; Zong et al., 2005; Figures 3A and S2). MADM can generate

UPD via Cre/LoxP-dependent mitotic recombination at G2

phase in dividing stem cells, followed by X segregation of recom-

bined chromosomes. G2-X events produce near-complete UPD

of particular chromosomes carrying the MADM cassettes in

genetically defined cell types (Hippenmeyer et al., 2013; Lau-

koter et al., 2020). As a consequence, imprinted genes located
1164 Neuron 107, 1160–1179, September 23, 2020
on such chromosomes are expected to be homozygosed and

show imbalanced imprinted gene expression, i.e., either a 2-

fold increase in expression or no expression (Schulz et al.,

2006). MADM-induced UPD thus represents a unique functional

assay with the possibility of both loss of function (LOF) and gain

of function (GOF) of imprinted gene dose. Furthermore, cells with

UPD can be visualized in vivo with distinct fluorescent colors

(Figures 3A, S2, and S3A–S3L), e.g., maternal UPD (matUPD)

in red (tdTomato [tdT+]) and paternal UPD (patUPD) in green

(GFP+). Fluorescently labeled cells with UPD can be compared
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Figure 3. MADM-Induced UPD Results in Highly Cell-Type-Specific Transcriptional Responses

(A) MADM events generate UPD labeled in fluorescent green (patUPD) and red (matUPD) and yellow control cells. Predicted gene expression levels ofmat (red)

and pat (blue) canonical imprinted genes in MADM-labeled cells with UPD, compared with BAE (biallelically expressed gene; black). See also Figure S2.

(legend continued on next page)
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in situ to control cells (carrying one maternal and one paternal

chromosome) labeled in yellow (tdT+/GFP+) in genetic mosaic

animals (Figures 3A, S2, and S3A–S3L). In summary, our exper-

imental paradigm provides a unique platform to systematically

generate and isolate MADM-induced UPDs in genetically

defined cell types and with single-cell resolution. Because

MADM-induced UPDs exhibit predictable imbalances in im-

printed gene expression, ensuing cell-type-specific phenotypes

can be analyzed at unprecedented transcriptomic and cellular

resolution.

MADM-Induced UPD Reveals Cell-Type-Specific
Transcriptional Responses to Imbalanced Imprinted
Gene Expression
We focused our analysis of UPD on chromosome 7 (chr7), chro-

mosome 11 (chr11), and chromosome 12 (chr12), which all har-

bor well-studied clusters of imprinted genes (Williamson et al.,

2013). By using Emx1- and Nkx2.1-Cre drivers, we genetically

targeted MADM-induced UPD to excitatory projection neurons

and inhibitory interneurons in developing neocortex and hippo-

campus and to OB granule cells (Figures 3B and S3A–S3L). To

validate our assay and assess the consequences of imbalanced

imprinted gene expression in the previously listed cell types

with UPD, we first analyzed their transcriptomes. Fluorescently

labeled cells carrying distinct UPDs and control cells were iso-

lated by FACS, followed by RNA extraction and library prepara-

tion for RNA-seq. We isolated between 1,000 and 10,000 cells,

depending on MADM recombination efficiency (Figures S3A–

S3L). For sequencing, we processed 2–4 biological replicates

of forward crosses (matUPD in red and patUPD in green) and

reverse crosses (matUPD in green and patUPD in red). A total

of 153 samples were used for analysis (Table S1C; STAR

Methods). We performed differential gene expression analysis

and first analyzed the expression status of known imprinted

genes. The expression of paternally expressed Ndn located

on chr7, maternally expressed Grb10 located on chr11, and

maternally expressed Meg3 located on chr12 displayed

skewed expression in patUPD and matUPD (Figure 3C). These

results validated our experimental approach, because both ma-
(B) Isolation and analysis of distinct classes of genetically defined (Emx1+ and Nk

CX, HC, and OB. Cells with MADM-induced UPDs were isolated by FACS, follow

(C) Relative expression, depicted as matUPD/patUPD fold change (log2), of imp

expressed on chr7; Grb10, maternally expressed on chr11; Meg3, maternally e

indicated (padj < 0.01, DESeq2, asterisks).

(D) Heatmap depicting the expression of select marker genes for excitatory proj

olfactory granule cells (Dlx1).

(E) Hierarchical clustering based on global gene expression of all samples (n = 153

structure indicates large differences between cell types but small differences be

100% bootstrap probability of sample clustering. See also Figure S3.

(F) Principal-component analysis (PCA) of gene expression in Emx1+ and Nkx2.1+

points reflect individual biological samples.

(G) Relative expression levels of imprinted genes (Cdkn1c, maternally expressed

patUPD of chr7 and control. Expression values are shown relative to the mean ex

STAR Methods).

(H) Number of significantly DEGs (padj < 0.05, DESeq2) in matUPD/control (light

(I) Genomic location of DEGs on chr7. Dots (black) indicate individual genes; pre

(J) Fraction of DEGs located on chr7 (black) and all other chromosomes (white).

(K) Heatmap depicting scores for DEGs. Gene clusters are based on hierarchic

geometric test) are indicated. See also Figure S4.
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tUPD- and patUPD-mediated changes in imprinted gene

expression occurred as predicted. Next, we determined

whether the UPD-mediated change in imprinted gene dose

influenced cell fate and identity. To this end, we determined

the expression status of groups of select marker genes, which

are characteristic of excitatory projection neurons (e.g., Pax6

and Tbr1) and inhibitory interneurons (e.g., Erbb4 and Dlx1) in

neocortex and hippocampus and of granule cells in OB (e.g.,

Dlx1) (Figures 3D and S3M). We confirmed sample identity

(i.e., cell type) but did not find bias in the expression state of

the tested marker genes that correlated with UPD status. We

also performed hierarchical clustering analysis of all sequenced

samples and found that the tissue and genetic identity, but

again not the state of UPD, defined significant clustering (aster-

isks in Figure 3E; STARMethods). In summary, MADM-induced

UPD of chr7, chr11, or chr12 did not affect cell-fate specifica-

tion of cortical excitatory and inhibitory neurons based on

marker gene expression. In contrast, UPD results in highly

imbalanced expression of imprinted genes located on the

respective chromosomes.

Even though the preceding experiments validated our experi-

mental approach, we evaluated the effects of imbalanced im-

printed gene expression in greater detail and greater depth. We

thus sequenced a higher number of replicates and usedSMARTer

technology to removepotential bias froma varying number of cells

present in each sample. We focused our analysis on chr7,

because it carries a large number of imprinted genes, including

some that have been shown to regulate cortical development

(Amberg et al., 2019; Perez et al., 2016; Tucci et al., 2019;William-

son et al., 2013). Upon RNA-seq, we performed principal-compo-

nent analysis of the 64 samples (Table S1D) that passed quality

control (Figure 3F). We found that clustering predominantly re-

sulted from cell-type identity and not UPD, reinforcing the preced-

ing findings. Differential imprinted gene expression analysis (ma-

tUPD/patUPD) confirmed the allele-specific expression pattern

(i.e., bias) of 15 imprinted genes on chr7 (Figure S4A). We also

plotted the relative expression levels in cells withmatUPDand pa-

tUPD and control cells for the following representative imprinted

genes: Ndn, Cdkn1c, and Snrpn (Figure 3G).
x2.1+) MADM-labeled cells with UPD of chr7, chr11, or chr12 from developing

ed by RNA-seq and differential gene expression analysis.

rinted genes in distinct cell types upon MADM-induced UPD. Ndn, paternally

xpressed on chr12. Significant differential expression in matUPD/patUPD is

ection neurons (Pax6 and Tbr1), inhibitory interneurons (Erbb4 and Dlx1), and

), including matUPD, patUPD, and controls of chr7, chr11, and chr12. The tree

tween control and UPD samples within a cell type. Asterisks indicate selected

cell types with matUPD or patUPD of chr7 and control in CX, HC, and OB. Data

; Ndn and Snrpn, paternally expressed) in distinct cell types with matUPD or

pression in control cells for each cell type. Values above 3 were removed (see

gray) and patUPD/control (dark gray) in different cell types.

dicted imprinted domains are also indicated (gray).

al clustering, and most significant terms for GO enrichment (p < 0.05, hyper-
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To systematically assess the consequences of imbalanced

imprinted gene expression, we monitored global transcriptional

states as an initial proxy for cellular responses to UPD. We per-

formed differential gene expression analysis between control

and matUPD or patUPD samples. We found great variance

among distinct cell types, with numbers of significantly differen-

tially expressed genes (DEGs) ranging from 18 to 1,202 (Fig-

ure 3H, padj < 0.05, DESeq2). The transcriptional response to

UPD included highly cell-type-specific components, because

23%–61% of DEGs were unique to a single cell type and/or

UPD (Figure S4B). We found no significant enrichment of DEGs

close to known imprinted regions on chr7 (Figure 3I, hypergeo-

metric test), or on chr7, carrying the MADM cassettes (Figure 3J,

hypergeometric test). Altogether, these findings indicate that

MADM-induced UPD of chr7 results in genome-wide transcrip-

tional responses, with their extent showing high (orders of

magnitude) variability across cortical cell types.

Next, we plotted in a heatmap the differential expression score

of 3,413 genes that were significantly differentially expressed in

matUPD/control and/or patUPD/control comparisons (Figure 3K,

padj < 0.05). We also performed hierarchical clustering of DEGs

based on their differential expression score pattern (STAR

Methods) and identified 10 clusters, of which 8 clusters (1–4 and

6–9) largely consisted of DEGs that were specific to only one

particular cell type and 2 clusters (5 and 10) consisted mainly of

DEGs that showed differential expression in multiple cortical cell

types (Figure 3K). Perhaps in contrast to expectations, matUPD

and patUPD of the same cell type appeared to show more similar

transcriptional changes than UPDs in the same direction for

different cell types (Figure S4C). To gain insight into how transcrip-

tional changes inMADM-induced UPD could translate into cellular

phenotypes, we performed Gene Ontology (GO) enrichment anal-

ysis of eachgene cluster (numbered in Figure 3K). TheGOanalysis

revealed several significant terms associated with various neural

developmental and physiological processes, but the terms were

highly specific for distinct cortical cell types (Figure 3K; Table S3).

Single-Cell Transcriptome Analysis of Neocortical
Emx1+ Lineage with chr7 UPD
So far, we have mapped transcriptional changes in response to

UPD in genetically defined cortical cell classes in bulk (still reflect-

ing amix of individual cell types) and at one time point (i.e., P0). To

increase the resolution of our analysis, we isolated single-cell tran-

scriptomes and at distinct developmental stages (embryo, birth,
Figure 4. Developmental Time Course Analysis of chr7 UPD Single-Ce

(A) Experimental outline for analysis of single-cell transcriptomes in the Emx1+ lin

(B) Heatmap displays expression of a representative set of marker genes for the cla

heatmap indicate different cell types: RGPs (cyan), neurons (light and dark gray)

(C) Fractions of cells with matUPD and patUPD in distinct cell types.

(D) Age distribution (E15, white; P0, light gray; P7, gray; P14, dark gray; P42, bla

(E–P) Re-clustering of RGPs, neuronal cells, oligos, and astros. (E, I, and M) UMA

developmental clusters; RGP, OBNB, and neuronal classes (E). oligos (n = 143) w

(OPCs) and newly formed and myelinating oligos (I). astros (n = 290) were separa

(M). See also Figure S5. (F, J, and N) Violin plots show distribution of imprinted g

expressed) in single cells (black dots) with matUPD (red, left side) and patUPD (bl

and O) Number of DEGs in matUPD and patUPD at defined developmental stag

astrocytes (O). (H, L, and P) Number of significantly enriched GO terms (p < 0.01

neurons (H), oligodendrocytes (L), and astrocytes (P).
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early postnatal, and adult). We carried out scRNA-seq as

described earlier but in cells restricted to the neocortical Emx1+

lineage and carrying UPD of chr7. We collected individual cells

withmatUPDandpatUPDand control cells from initial and reverse

crosses at embryonic day (E) 15, P0, P7, P14, and P42 by FACS

(Figure 4A). Upon scRNA-seq and quality control, we identified

1,153 cells for further analysis (530 cells with matUPD, 532 cells

with patUPD, and 91 control cells) (Table S1E). We reduced the

dimensionality of our data by uniform manifold approximation

and projection (UMAP) and cell clustering (STAR Methods). We

could identify all major cell types (radial glial progenitors [RGPs],

neurons, olfactory bulb neuroblasts [OBNBs], oligodendrocytes

[oligos], and astrocytes [astros] by marker gene expression (Fig-

ure 4B; Table S1E). The clusters defined by distinct cell types

included comparable numbers of cells with matUPD and patUPD

(Figure 4C). We classified single cells according to their develop-

mental age for each cell type (Figure 4D).

Next, we performed refined analyses (STAR Methods) sepa-

rately for 717 neurons, RGPs, and OBNBs (Figure 4E); 143 oligo-

dendrocytes (Figure 4I); and 290 astrocytes (Figure 4M). We re-

constructed expected developmental trajectories, with 3–4

distinct states for each lineage (Figures 4E, 4I, 4M, S5A, S5C,

and S5E; Table S1E). Trajectories corresponded well to the

developmental time of origin and marker gene expression (Fig-

ure S5). Next, we investigated the expression levels of imprinted

genes in all cell clusters. Consistent with our earlier allelic

expression data, we found higher expression of Ndn, Peg3,

andSnrpn (paternally expressed) in cells with patUPD and higher

expression of Cdkn1c (maternally expressed) in single cells with

matUPD (Figures 4F, 4J, and 4N). Some genes, e.g., Snrpn,Ndn,

and Cdkn1c, showed marked cell-type-specific expression

changes during development (Figures 4F and 4N).

To analyze developmental transcriptional responses upon

UPD, we performed differential gene expression analysis be-

tween matUPD and patUPD cells in each cell cluster. In neuronal

cells and oligodendrocytes, we identified between 56 and 436

DEGs, with no consistent bias toward one UPD (Figures 4G

and 4K, padj < 0.2, likelihood-ratio test; Table S4). In contrast,

astrocytes showed the most dramatic changes, with up to

2,079 DEGs. We noticed a bias toward higher numbers of

DEGs in patUPD at later stages (Figure 4O, padj < 0.2, likeli-

hood-ratio test; Table S4). To gain information about putative

phenotypes because of deregulated gene expression, we per-

formed GO enrichment analysis (Table S4). We focused the
ll Transcriptomes

eage with MADM-induced UPD of chr7 at E15, P0, P7, P14, and P42.

ssification of individual cell types in the Emx1+ lineage. Colored bars above the

, OBNBs (light and dark blue), oligos (orange), astros (purple).

ck) of analyzed cells indicated as the relative fraction in distinct cell types.

P dots indicate individual cells. Neuronal cells (n = 717) were separated into 7

ere separated into 4 developmental clusters; oligodendrocyte progenitor cells

ted into 4 developmental clusters; aIPCs, immature astros, and mature astros

ene expression (Ndn, Peg3, Snrpn: paternally expressed; Cdkn1c: maternally

ue, right side) from neurons (F), oligodendrocytes (J), and astrocytes (N). (G, K,

es (padj < 0.2, likelihood-ratio test) in neurons (G), oligodendrocytes (K), and

, hypergeometric test) in apoptosis, growth/cell cycle, and synapse groups in
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Figure 5. Neocortical Astrocytes with chr7 patUPD

Are Relatively Increased to chr7 matUPD

(A and B) Analysis of brain lipid-binding protein (BLBP) (white)

expression in developing cortical plate in MADM-

7GT/TG;Emx1-Cre+/� at P0. matUPD cells are labeled in red

(tdT+), patUPD cells are labeled in green (GFP+), and nuclei

are labeled in blue (A) or unlabeled (B).

(C) Quantification of the fraction (%) of BLBP+/MADM+ dou-

ble-positive cells of the total number of MADM-labeled cells

with matUPD (orange) and patUPD (green).

(D–F) Analysis of the MADM-labeling pattern (cross section

hemisphere (D) and boxed area (E)) and relative abundance

(F) of matUPD (red, tdT+) and patUPD (green, GFP+) in CX in

P21 MADM-7GT/TG;Emx1-Cre+/� mice.

(G) Quantification of the fraction (%) of MADM-labeled as-

trocytes of the total number of MADM-labeled cells with

matUPD (orange) and patUPD (green) at P7, P14, P21, and

3 months.

(H) Quantification of the fraction (%) of Ki67+/MADM+ astro-

cytes of the total MADM-labeled astrocytes with matUPD

(orange) and patUPD (green).

(I) Quantification of the fraction (%) of EdU+/MADM+ astro-

cytes of the total MADM-labeled astros with matUPD (or-

ange) and patUPD (green).

Bars and error bars represent mean ± SEM. *p < 0.05; **p <

0.01; ***p < 0.001 t test. Cortical layers are indicated (roman

numerals). Scale bar: 50 mm (A and B), 25 mm (b0–b0 0 0, h0, h0 0, i0,
and i0 0 ), 500 mm (D), and 60 mm (E). See also Figure S6.
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Figure 6. TranscriptomeAnalysis inCortical Astrocyteswith chr7UPDReveals DeregulatedGeneNetworksModulatingGrowth andApoptosis

(A) Strategy to FACS-enrich cortical astrocytes with chr7 UPD using hGFAP promoter-driven LacZ transgene at P0 and P14 for RNA-seq and differential gene

expression analysis.

(legend continued on next page)
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analysis on a set of well-established imprinted gene functions

(genes located on chr7) relevant for neural development: regula-

tion of cell cycle and growth (Huang et al., 2013; Martı́n et al.,

2015; Zhang et al., 1997), apoptosis (Broad et al., 2009; Huang

et al., 2013; Kurita et al., 2006), and synaptic connectivity (Jud-

son et al., 2016; Li et al., 1999, 2016; Rotaru et al., 2018; Wallace

et al., 2012). The distribution of significantly enriched GO terms

within these 3 categories was distinct for different cell types (Fig-

ures 4H, 4L, and 4P). Whereas no trend was obvious in neuronal

cells, oligodendrocytes showed consistent enrichment for syn-

apse-containing terms, and astrocytes showed consistent

enrichment for all three categories: synapse-, cell cycle/

growth-, and apoptosis-containing terms.

Dosage-Sensitive ImprintedGene Expression Regulates
Cortical Astrocyte Development
The preceding results show that UPD leads to highly cell-type-

specific, genome-wide transcriptional responses, which could

translate into distinct cellular phenotypes. Strikingly, cortical as-

trocytes show by far the highest number of DEGs and significantly

enriched GO terms compared with projection neurons and oligo-

dendrocytes. We thus began phenotypic analysis with a focus on

the astrocyte lineage. Because we observed a high number of GO

terms related to cell cycle and apoptosis in single cells of astro-

cyte lineage, we first analyzed absolute numbers of aIPCs (Beattie

et al., 2017). Around birth (P0), the number of BLBP+ aIPCs with

patUPD was significantly increased when compared with aIPCs

with matUPD (Figures 5A–5C; Table S7A). These data indicate

that aIPC and subsequent cortical astrocyte development may

be regulated differently in cells with distinct UPDs. Parenchymal

astrocytes with patUPD were relatively increased compared

with astrocytes with matUPD in brains of 3-week-old mice (P21)

(Figures 5D–5F; Table S7A). The increased relative number of as-

trocytes with patUPD was apparent from P7 onward but did not

further increase from P21 up to three months, and we could not

detect signs of astrocytoma formation (Figure 5G). In contrast,

the relative numbers of projection neurons with patUPD or ma-

tUPD at P0 and P21 were�1, indicating that RGP-mediated neu-

rogenesis occurs equally, regardless of the UPD state.

Next, we analyzed marker expression and morphology of as-

trocytes with chr7 matUPD and patUPD. We found no differ-

ences in marker gene expression (Figures S6A–S6F), branching

pattern (Figures S6G–S6K), or cellular volume (Figure S6L). To

assess whether differences in proliferation rate could explain dif-

ferential abundance of astros with matUPD versus patUPD, we

(1) stained cryosections for Ki67 at P7 (Figure 5H; Table S7A)

and (2) injected 50-ethynyl-20-deoxyuridine (EdU) at P4/P6, with
(B) Normalized expression of marker genes for neurons (Camk2b and Mapt) and

(C) Heatmap showing differential expression of 9 imprinted genes in matUPD/pat

(log2 fold change > 0) are marked in red, and genes with higher expression in pat

differential expression (padj < 0.05, DESeq2).

(D) Number of DEGs (padj < 0.1, DESeq2) in astrocytes with matUPD (light gray)

(E) Number of significantly enriched GO terms (p < 0.1, hypergeometric test) rela

(F and G) Merged top significant gene subnetworks identified by PhenomeExpr

astrocytes with chr7 UPD. Each circle represents an individual gene. Imprinted g

(F) Genes detected in P0, P14, or both subnetworks are in pink, purple, or gray, re

DEG) at P0 and/or P14. Small circles indicate expressed genes (EGs).

(G) Deregulated gene subnetworks highlighting genes involved in apoptosis (bla
analysis of incorporation at P21 (Figure 5I; Table S7A). These ex-

periments revealed a slight increasing, albeit non-significant,

trend in patUPD/Ki67+ and patUPD/EdU+ when compared with

matUPD/Ki67+ and matUPD/EdU+ double-positive cells.

Imprinted Genes on chr7 Associate with Deregulated
Gene Networks Implicated in Growth and Apoptosis in
Cortical Astrocytes with chr7 UPD
The preceding results indicate that astrocytes with chr7 patUPD

have a growth and/or survival advantage over astrocytes with ma-

tUPD. To refine and deepen the analysis, we isolated pure popu-

lations of cortical astrocytes with UPD at different time points for

RNA-seq, affording higher sensitivity compared with scRNA-seq.

To enrich for cortical astrocytes, we combined MADM with a

LacZ transgene driven by the human GFAP promoter that marks

the cortical astrocyte lineage (Brenner et al., 1994). We isolated

LacZ+/tdT+ and LacZ+/GFP+ chr7 UPD astrocytes at P0 and P14

and LacZ�/tdT+ and LacZ�/GFP+ neurons at P0 as control, using

FACS and followed by RNA-seq (Figure 6A). After quality control,

we identified 2–4 replicates for each matUPD and patUPD astro-

cytes at P0 and P14, respectively (Table S1F; STAR Methods).

The effectiveness of our approach was validated by high

expression of neuronal markers (Camk2b and Mapt) in LacZ�

compared with LacZ+ samples, and high expression of astro-

cytic markers (Serpine2a and Glast) in LacZ+ compared with

LacZ� samples (Figure 6B). Next, we performed differential

gene expression analysis in matUPD/patUPD LacZ+ astrocyte

samples at P0 and P14. We found 9 known imprinted genes on

chr7, with the expected expression bias toward patUPD or ma-

tUPD samples (Figure 6C). Overall, we identified 51 and 549

significantly DEGs at P0 and P14, respectively, with a bias to-

ward higher numbers in patUPD (Figure 6D, padj < 0.1, DESeq2;

Table S5). GO term enrichment analysis revealed many terms

associated with growth and apoptosis (Figure 6E; Table S5),

corroborating our findings from scRNA-seq.

To connect imprinted genes to the observed phenotype

(increased relative numbers of astrocytes with chr7 patUPD), we

usedPhenomeExpress (Soul et al., 2015). PhenomeExpress com-

bines information from differential gene expression with protein-

protein interaction networks to identify statistically significant sub-

networks. We first performed PhenomeExpress analysis sepa-

rately for P0 and P14 astrocyte samples and merged networks

with the largest number of genes fromboth time points (Figure 6F;

STAR Methods). This analysis produced a single connected

networkwith 275 genes, ofwhich 75 genes showed significant dif-

ferential expression at P0 and/or P14 (padj < 0.1, DESeq2),

including 5 imprinted genes (Snrpn, Peg12, Cdkn1c, Ndn, and
astrocytes (Serpine2a and Glast).

UPD astrocytes at P0 and P14. Genes with higher expression in matUPD cells

UPD cells (log2 fold change < 0) are marked in blue. Asterisks mark significant

or patUPD (dark gray) at P0 and P14.

ted to apoptosis, growth/cell cycle, and synapse.

ess (p = 0.001) at P0/P14 that associate with deregulated imprinted genes in

enes are in red (mat) and blue (pat).

spectively. Large circles indicate significant deregulation (padj < 0.1, DESeq2,

ck), cell cycle/growth (green), or both (dark green).
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Peg3) (Figure 6F). Genes that were present at both P0/P14 time

points in the preceding network included Nos3 and Sarm1, which

are critically involved in apoptosis (de la Monte et al., 2000; Mu-

kherjee et al., 2015; Osterloh et al., 2012). To gain a more holistic

understanding of the gene groups present in the network, we per-

formed GO enrichment analysis. Besides apoptosis-related

terms, we identified terms related to cell cycle and growth in the

top enrichedGO terms (Figure 6G; Table S6). In summary, the pre-

ceding analysis revealed connections of 5 imprinted genes

(located on chr7) to deregulated gene networks associated with

growth and apoptosis in astrocytes with chr7 UPD.

Increased Relative Numbers of Astrocytes with chr7
patUPD Emerge Independent of Igf2
The preceding results imply a mechanism of growth and/or sur-

vival advantage of astrocytes with chr7 patUPD over cells with

matUPD. To functionally test such a hypothesis, we carried out

MADM-based candidate gene analysis. First, we focused on im-

printed paternally expressed Igf2 (located on chr7), with the

rationale that in liver, Igf2 is the major component driving

massive growth dominance of hepatocytes with chr7 patUPD

(Hippenmeyer et al., 2013). As such, increased Igf2 dosage in

the astrocyte lineage with patUPD (23 Igf2 dose) could result

in a growth advantage when compared with matUPD (no Igf2

expression because of imprinting). We tested such a possibility

and introduced an Igf2 null allele into distinct MADM paradigms

(Figures 7A and S7). We first introduced the Igf2 null allele from

the father and compared this with control (Figures 7A–7G).

Because of imprinting (no expression from the maternal allele),

the offspring upon paternal deletion reflects full Igf2 knockout

(KO) (DeChiara et al., 1991), which would predict an equalizing

patUPD growth advantage. In contrast, introduction of the Igf2

mutation from the mother (Figures 7A and 7H–7J) would not

change Igf2 expression levels (i.e., 23 paternal Igf2 and no

mat); therefore, the patUPD advantage would remain. Lastly,

introduction of the Igf2 deletion allele from both parents results

in full Igf2KO (Figures 7A and 7K–7M), again predicting equaliza-

tion of the patUPD growth advantage. To our surprise, however,

the relative numbers of astrocytes with chr7 patUPD compared

with matUPD remained increased in all preceding MADM para-

digms, regardless of the status of Igf2 (Figures 7D, 7G, 7J, and

7M; Table S7B). These findings indicate no major role for Igf2

in promoting a growth advantage and thus higher relative

numbers of cortical astrocytes with patUPD.
Figure 7. Genetic Dissection of Igf2 and Bax in Cortical Astrocyte Gen

(A–M) Schematics of Igf2 expression in MADM-deletion paradigms, correspondi

[PP/MM]) in cells with matUPD (orange) and patUPD (green) (A); experimental MAD

F, I, and L); and quantification of PP/MM ratios of cortical astrocytes (D, G, J, andM

Igf2 deletion,MADM-7GT/TG,Igf2;Emx1-Cre+/�; and Igf2 full KO,MADM-7GT,Igf2/TG,Ig

because comparisons of values in all Igf2 deletion paradigms relative to control

(N–Z) Schematics of Bax ablation in MADM-deletion paradigms, corresponding

(orange) and patUPD (green) (N); experimental MADM-labeling in CX at P21 in ove

of PP/MM ratios of cortical astrocytes (Q, T, W, and Z) in control, MADM-7GT/TG

7GT/TG,Bax;Emx1-Cre+/�; and Bax cKO,MADM-7GT,Bax/TG,Bax;Emx1-Cre+/� (X–Z). I

equalized to�1 and showed significant differences compared with control (Q) (ma

error bars represent mean ± SEM.

Cortical layers (C, F, I, L, P, S, V, and Y) are indicated (roman numerals). Scale bar

Figure S7.
Loss of Bax Equalizes Increased Numbers of Astrocytes
with patUPD Relative to matUPD
In the preceding analysis, we could connect imprinted genes

located on chr7 to gene networks functionally implicated in the

regulation of apoptosis (Figure 6). Therefore, we tested whether

increased numbers of astrocytes with chr7 patUPD could result

froma survival advantage. To this end,we introduced a conditional

allele for the pro-apoptotic gene Bax into distinct MADM para-

digms (Figures 7N and S7). Because Bax is not subject to

imprinting, we could generate MADM mosaics with, for example,

homozygous Bax�/� mutant patUPD and wild-type matUPD cells,

andviceversa (Figure7N).DeletionofBax inpatUPDastrocytesdid

not change the relatively increased numbers of patUPD compared

with matUPD, similar to in control (Figures 7O–7T; Table S7B). In

contrast, ablation ofBax in astrocyteswith chr7matUPDequalized

the increased numbers of patUPD astrocytes relative to matUPD

(Figures 7U–7W; Table S7B). These findings indicate that astro-

cytes with chr7 matUPD had a survival disadvantage when

comparedwithpatUPDand that lossofBax rescuedmatUPDcells.

To corroborate these results, we analyzed Bax conditional

knockout (cKO) in the Emx1+ lineage, in which both patUPD and

matUPD astros lack Bax expression. We found that in this genetic

paradigm, the increased ratio of patUPD/matUPD was equalized

with a value of �1 (Figures 7X–7Z; Table S7B). In summary, the

neocortical astrocyte lineage with patUPD has a survival advan-

tage over cells with matUPD, and elimination of pro-apoptotic

Bax from matUPD equalized increased patUPD/matUPD ratios.

DISCUSSION

Genomic imprinting controls the allelic expression of a subset

of dosage-sensitive genes in a parent-of-origin-dependent

manner. Here we uncovered allelic expression of all imprinted

genes in the major cortical cell types during development and

in adult with unprecedented single-cell resolution. Our data

show that the control of imprinting acts independently of cell

type but that expression strength is highly cell type specific (Fig-

ures 8A and 8B). To assess whether the preceding findings are

functionally relevant, we probed changes in imprinted gene

dosage by UPD and with single-cell phenotypic analysis. We

found highly cell-type-specific transcriptional responses precip-

itating in unique cellular phenotypes in response to UPD (Figures

8C and 8D). We discuss our findings in the general context of

imprinting control and function in health and disease and the
esis and Survival

ng to predictions of growth/astrocyte genesis (?) and ratios (patUPD/matUPD

M-labeling in CX at P21 in overview (B, E, H, and K) and at higher resolution (C,

) in control,MADM-7GT/TG;Emx1-Cre+/� (B–D); paternal (E–G) ormaternal (H–J)
f2;Emx1-Cre+/� (K–M). Loss of Igf2 in astrocytes has no effect on PP/MM ratios,

were non-significant.

predictions of astrocyte survival (?) and ratios (PP/MM) in cells with matUPD

rview (O, R, U, and X) and at higher resolution (P, S, V, and Y); and quantification

;Emx1-Cre+/� (O–Q); paternal (R–T) or maternal (U–W) Bax deletion, MADM-

n maternal Bax deletion (W) and Bax cKO animals, ratios of astrocytes (PP/MM)

t deletion to control, **p = 0.0061; cKO to control, *p = 0.0207; t test). Bars and

: 50 mm (B, E, H, K, O, R, U, and X) and 60 mm (C, F, I, L, P, S, V, and Y). See also
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Figure 8. Cell-Type Specificity of Genomic Imprinting in Cerebral Cortex

(A) Uniform allelic expression of imprinted genes in major forebrain cell types, including projection neurons, interneurons and astrocytes in CX and HC and

olfactory granule cells.

(B) Imprinted genes show highly variable expression levels in distinct cortical cell types.

(C) UPD results in imbalanced imprinted gene expression, which in turn leads to highly cell-type-specific but global transcriptional changes.

(D) UPD results in highly cell-type-specific phenotypes, revealing a novel function for dosage-sensitive imprinted gene expression in cortical astrocyte devel-

opment. The astrocytes with chr7 patUPD show a survival advantage compared with chr7 matUPD astrocytes.
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role and implications of imprinted gene expression in cortical

astrocyte development.

Cell-Type Specificity of Allelic Expression
Imprinting controls animal development, and disturbed imprinted

gene expression is associated with human disease (Monk et al.,
1174 Neuron 107, 1160–1179, September 23, 2020
2019; Peters, 2014; Tucci et al., 2019). Many previous studies

aimed to identify all imprintedgenesand tomap their allelic expres-

sionpatternat the individualorganor tissue level inbothmouseand

human (Andergassen et al., 2017; Babak et al., 2015; Baran et al.,

2015; DeVeale et al., 2012; Gregg et al., 2010; Perez et al., 2015).

These pioneering works provided an invaluable tissue map of
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imprinted genes, which can be classified into three broader cate-

gories (Chess, 2016; Huang et al., 2018; Perez et al., 2016): (1) Im-

printed genes with exclusive (all or none) allelic expression,

whereby one parental allele is silenced; the genes that fall into

this category are also called canonical imprinted genes. (2) Genes

that show biased allelic expression with detectable expression of

both parental alleles, also called non-canonical imprinted expres-

sion. (3) Genes that switch expression of their parental alleles in

different tissues and/or during development. Genes belonging to

the third category include Dlk1. Importantly, it has been shown

that the loss of Dlk1 imprinting (i.e., change in overall imprinting

and expression status) serves a critical function for postnatal neu-

rogenesis (Ferrón et al., 2011). Along the same lines, changes in

biased imprintedMagel2 gene expression result in distinct animal

behavior (Stacher Horndli et al., 2019). Thus, dynamic changes in

imprinting translate intobiologically relevant functions.Thebreadth

of such phenomena, among all imprinted genes, andwhether they

are common or restricted to distinct cell types are unknown. Our

allelic expression data show that in all major forebrain cell types

(including excitatory and inhibitory neurons, OB granules, and glial

cells), imprinting is rather stable.We observed nomajor loss of im-

printed expression and no allele switching, indicating no wide-

spreadrole for these imprintingcontrolmechanisms,at leastduring

cortical development. However, it will be important to extend the

analysis of allelic expression at the individual-cell level to more,

ideally all, cellular classes in the entire developing brain.

The emergence of biased imprinted expression at the popula-

tion level and its existence in single cells has been subject to

speculation and debate (Chess, 2016; Huang et al., 2018; Perez

et al., 2016). One scenario postulates the concurrency of two

distinctly sized populations of cells with opposite allelic expres-

sion patterns (Huang et al., 2018; Perez et al., 2016). However, ef-

forts to obtain conclusive insights suffered from technical chal-

lenges. For instance, fluorescence in situ hybridization (Ginart

et al., 2016) or reporter fusionproteins (Judsonet al., 2014; Stelzer

et al., 2016) provided some evidence for individual genes but lack

the throughput required to systematically analyze all imprinted

genes. RNA-seq of genetically distinct alleles at the single-cell

level promised a powerful approach (Deng et al., 2014) but thus

far lacks the depth to conclusively determine canonical and

biased imprinted gene expression at the single-cell level (Lin

et al., 2016; Santoni et al., 2017). Here we used crosses of genet-

ically defined inbred mouse strains, with genetic fluorescent re-

porters and in combination with scRNA-seq, and explored the

cortical Emx1+ cell lineage in the developing and adult cerebral

cortex. Our approach for the first time revealed allelic expression

of all imprinted genes at the single-cell level in a series of well-

defined cell types. Our data also unambiguously demonstrated

that allelic expression in single cells follows the pattern observed

at the population level for both canonical and biased imprinting.

We therefore conclude that genomic imprinting modulates the

probability of expression from one parental allele independent

of the cell type. This is in line with our results from bulk RNA-

seq, which revealed that the tissue-specific expression control

acts in parallel with genomic imprinting. Future efforts with the

goal of establishing a single-cell brain atlas (Ecker et al., 2017; Re-

gev et al., 2017), in combination with systematic allelic mapping,

will further the generality of our findings across all cell types.
Cell-Autonomous and Cell-Type-Specific
Transcriptional Responses in UPD
Imprinted gene expression renders a cell functionally haploid for

particular genes and therefore vulnerable to genetic defects that

may cause diseases in human. Besides mutations and epigenetic

alterations, UPDs are important underlying causes for human syn-

dromes involving imprinted genes (Peters, 2014; Yamazawa et al.,

2010). However, UPDs have been exploited successfully to iden-

tify imprinted genes (Bittel et al., 2005; Schulz et al., 2006) and to

investigate the function of the parental genomes in embryonic and

brain development (Allen et al., 1995; Cattanach and Kirk, 1985;

Ferguson-Smith et al., 1991; Keverne et al., 1996). Despite this

initial interest in UPDs, virtually nothing is known about the cellular

responses to these structural chromosome aberrations. Technical

limitations so far only allowed the investigation of UPD at the

whole-animal level; they lacked the resolution to obtain insights

at the cellular level. Another major drawback in the analysis of

UPD in whole animals is reflected in the key importance of many

imprinted genes in nutrient transfer during pregnancy (Barlow

and Bartolomei, 2014). Thus, the phenotypic interpretation of

UPD at the individual-cell level is confounded by putative whole-

animal systemic effects. MADM technology provides a solution

and is to date the sole technology that can produce UPD sparsely

in genetic mosaic animals within genetically defined cell popula-

tions (Hippenmeyer et al., 2013; Laukoter et al., 2020). Here we

used the MADM approach to systematically probe the conse-

quences of UPD at the single-cell level in neocortical Emx1+ cell

lineages. Our results revealed that UPD leads to global genome-

wide transcriptional changes that were highly cell type specific.

In other words, the sameUPD induced in different cell types leads

to distinct changes in gene expression.

In a broader context, our findings could be relevant for under-

standing of the etiology of syndromic imprinting diseases. In ef-

fect, many neurological imprinting disorders caused by UPD

lead tomultiple symptoms that likely emerge from functional def-

icits in several brain areas and therefore affect distinct cell types.

In this context, UPD of mouse chr7, which includes syntenic

stretches to human chromosome 15 (chr15) that are causal for

Prader-Willi and Angelman syndromes (Bervini and Herzog,

2013; Mabb et al., 2011), leads to deregulation of many genes

and enrichment of several GO terms associated with synaptic

signaling. In summary, our results contribute to understanding

of the intricate interplay between common and cell-type-specific

responses because of UPD. It will be important in the future to

assess putative differences in neuronal activity in distinct

parental UPDs and to correlate putative phenotypical manifesta-

tions at the physiological level to the observed transcriptional

changes. Such efforts hold the potential to obtain unprece-

dented and possibly general mechanistic insights into the etiol-

ogy of neurological and psychiatric imprinting disorders associ-

ated with UPD.

Imprinted Gene Expression Regulates Cortical
Astrocyte Production
The function of imprinted genes has been mainly studied using

genetic full/global tissue KO (Amberg et al., 2019; Perez et al.,

2016; Tucci et al., 2019). However, the functional requirement

of imprinted genes in single cells is mostly unknown. Here we
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analyzed phenotypic attributes due to UPD of chr7 during the

development of the neocortex. Although neurogenesis appeared

normal, cortical astrocyte development was distinct in cells car-

rying patUPD compared with matUPD. About two times more

astrocytes with patUPD were observed relative to matUPD.

Several mechanistic models could explain these differences.

Igf2-mediated selective growth stimulation of astrocytes with

patUPD was not involved, unlike in liver hepatocytes (Hippen-

meyer et al., 2013). However, astrocytes with patUPD appeared

to have a survival advantage over astrocytes with matUPD,

because loss of pro-apoptotic Bax in matUPD in the MADM

paradigm equalized relative ratios of patUPD/matUPD astro-

cytes to �1. Bax is located on chr7 but is not an imprinted

gene and is not dosage sensitive. Thus, differential expression

of paternal versus maternal Bax alleles is not the primary cause

for the observed patUPD astrocyte survival advantage—unlike

in the case of Bcl-x, which shows biased imprinted expression

(Perez et al., 2015). How does imbalanced imprinted gene

expression translate to a survival advantage in astrocytes with

chr7 patUPD? Imprinted genesmay act within broader imprinted

gene networks (Al Adhami et al., 2015; Varrault et al., 2006).

Given the cell-type-specific expression strength and resulting

genome-wide transcriptional changes in UPD, it is intriguing to

speculate that imprinted genes could play key roles at critical

hubs in highly cell-type-specific gene networks that in turn

modulate or instruct the intracellular state and/or cellular pheno-

type. Indeed, in our gene network analysis, we found 5 imprinted

genes on chr7 (and therefore deregulated in UPD) that could be

connected to major gene hubs regulating apoptosis and/or cell

survival. We also found a large number of deregulated genes,

and with a bias toward patUPD at later stages (P14) of astrocyte

development, when patUPD were significantly overrepresented

relative to matUPD. Thus, the large amount of patUPD-ex-

pressed genes likely reflects a gene expression signature of a

surviving astrocyte population that is missing from matUPD

samples. These data may indicate an apoptosis protective func-

tion of imprinted genes during astrocyte development. Ndn and

Cdkn1c, two imprinted genes that we identified in UPD-associ-

ated gene networks, have been reported to be involved in

cortical neuron survival during development (Hasegawa and

Yoshikawa, 2008; Imaizumi et al., 2020; Laukoter et al., 2020).

It will thus be important in future studies to investigate precise

roles of Cdkn1c and/or Ndn in astrocyte survival and/or

apoptosis in normal and UPD cell states.

More generally, the analysis of UPD-associated cellular phe-

notypes can be extended in the future to any mouse organ or tis-

sue, provided that appropriate tissue- and/or cell-type-specific

Cre drivers are available. With the completion of a genome-

wide library of MADM mice, in which MADM cassettes have

been inserted on all mouse autosomes (Contreras et al., 2020),

MADM technology holds the potential to systematically probe

imprinting at the single-cell level using UPD in any cell type

and across the entire mouse genome.
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Antibodies

GFP - Chick Aves Labs Inc. Cat#GFP-1020; RRID:AB_10000240

RFP - Rabbit MBL Cat#PM005; RRID:AB_591279

tdTomato - Goat Sicgen Antibodies Cat#AB8181-200; RRID:AB_2722750

BLBP - Rabbit Millipore Cat#AB9558; RRID:AB_2314014

S100b – Mouse Sigma-Aldrich Cat#S2532; RRID:AB_477499

GFAP – Rabbit Dako Cat#Z0334; RRID:AB_10013382

Ki67 – Rabbit Abcam Cat#AB15580; RRID:AB_443209

Alexa Fluor 488 Anti-Chicken IgG Jackson ImmunoResearch Labs Cat#703-545-155; RRID:AB_2340375

Cy3 Anti-Rabbit IgG Jackson ImmunoResearch Labs Cat#711-165-152; RRID:AB_2307443

Cy3 Anti-Goat IgG Jackson ImmunoResearch Labs Cat#705-165-147; RRID:AB_2307351

Alexa Fluor 647 Anti-Rabbit IgG Jackson ImmunoResearch Labs Cat#711-605-152; RRID:AB_2340624

Alexa Fluor 647 Anti-Rabbit IgG Molecular Probes Cat#A31573; RRID:AB_2536183

Alexa Fluor 647 Anti-Mouse IgG Jackson ImmunoResearch Labs Cat#715-605-151; RRID:AB_2340863

Chemicals, Peptides, and Recombinant Proteins

Papain Vial Source Worthington Cat#PAP2

DNase Vial Source Worthington Cat#D2

Inhibitor Vial Source Worthington Cat#OI-BSA

Critical Commercial Assays

QuantSeq Library Prep Kit FWD Lexogen Cat#015.96

Illumina TruSeq Stranded Total RNA LT - (with

Ribo-Zero TM Gold)

Illumina Cat#RS-122-2301

Nextera XT library preparation kit Illumina Cat#FC-131-1096

SMARTer Stranded Total RNA Sample Prep

Kit – Low Input Mammalian

Clonetech Cat#634861

Agencourt RNAclean XP Beckman Coulter Cat#A66514

Click-iT Alexa Fluor 647 imaging kit Thermo Fisher Scientific Cat#C10340

FACS Blue LacZ beta Galactosidase detection kit Abcam Cat#ab189815

Deposited Data

RNA-Seq of B6/CAST crosses in major forebrain

cell types (bulk and single cell)

This study http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?

acc=GSE152716

RNA-Seq of MADM induced UPDs of Chr. 7, 11, 12

(QuantSeq)

This study http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?

acc=GSE152716

RNA-Seq of MADM induced UPD of Chr. 7

(SMARTer)

This study http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?

acc=GSE152716

Single cell RNA-Seq of Emx1 positive cells in

MADM induced UPD of Chr. 7

This study http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?

acc=GSE152716

RNA-Seq of enriched astrocytes with MADM

induced UPD of Chr. 7 (SMARTer)

This study http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?

acc=GSE152716

Experimental Models: Organisms/Strains

Mouse: MADM-7-GT The Jackson Laboratory RRID:IMSR_JAX:021457

Mouse: MADM-7-TG The Jackson Laboratory RRID:IMSR_JAX:021458

Mouse: MADM-11-GT The Jackson Laboratory RRID:IMSR_JAX:013749

Mouse: MADM-11-TG The Jackson Laboratory RRID:IMSR_JAX:013751

Mouse: MADM-12-GT The Jackson Laboratory RRID:IMSR_JAX:021460
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Mouse: MADM-12-TG The Jackson Laboratory RRID:IMSR_JAX:021461

Mouse: Emx1-Cre The Jackson Laboratory RRID:IMSR_JAX:005628

Mouse: Nkx2.1-Cre The Jackson Laboratory RRID:IMSR_JAX:008661

Mouse: Z/EG The Jackson Laboratory RRID:IMSR_JAX:004178

Mouse: Ai14 The Jackson Laboratory RRID:IMSR_JAX:007914

Mouse: FVB/NJ The Jackson Laboratory RRID:IMSR_JAX:001800

Mouse: CAST/EiJ The Jackson Laboratory RRID:IMSR_JAX:000928

Mouse: C57BL/6J The Jackson Laboratory RRID:IMSR_JAX:000664

Mouse: Igf2+/� (DeChiara et al., 1990) N/A

Mouse: Baxflox The Jackson Laboratory RRID: IMSR_JAX: 006329

Mouse: XGFAP-lacZ The Jackson Laboratory RRID: IMSR JAX: 003487

Software and Algorithms

ZEN Digital Imaging for Light Microscopy Zeiss https://www.zeiss.com/microscopy/us/products/

microscope-software/zen.html#introduction

FACS Diva BD Biosciences N/A

Graphpad Prism 7.0 Graphpad https://www.graphpad.com/scientific-

software/prism/

IMARIS 9.2.4 Bitplane https://imaris.oxinst.com/products/imaris-for-

neuroscientists

STAR v2.5.0c (Dobin et al., 2013) https://github.com/alexdobin/STAR

picard toolkit v.2.16.0 N/A https://broadinstitute.github.io/picard/

Bedtools v2.26.0 (Quinlan and Hall, 2010) https://github.com/arq5x/bedtools2

Samtools v1.3.1 (Li et al., 2009) https://github.com/samtools/samtools

Allelome.PRO (Andergassen et al., 2015) https://sourceforge.net/projects/allelomepro/

Allelome.PRO v0.2 This study https://sourceforge.net/projects/allelomepro/

Cufflinks v2.2.1 (Trapnell et al., 2010) http://cole-trapnell-lab.github.io/cufflinks/

R v3.4.4/3.6.1 N/A https://www.r-project.org/

DESeq2 v1.16.1/1.26.0 (Love et al., 2014) http://www.bioconductor.org/

Limma v3.32.2 (Ritchie et al., 2015) http://www.bioconductor.org/

Monocle v2.4.0 (Trapnell et al., 2014) http://www.bioconductor.org/

Dendextend v1.5.2 (Galili, 2015) https://cran.r-project.org/web/packages/

dendextend/index.html

Pvclust v2.0 N/A https://cran.r-project.org/web/packages/pvclust/

index.html

clusterProfiler v3.4.4/3.14.3 (Yu et al., 2012) http://www.bioconductor.org/

Seurat v3.1.4 (Stuart et al., 2019) http://www.bioconductor.org/

phenomeExpress (Soul et al., 2015) https://github.com/soulj/PhenomeExpress

igraph v1.2.4.2 (Csardi and Nepusz, 2006) https://igraph.org

Cytoscape 3.7.2 (Shannon et al., 2003) https://cytoscape.org

Other

FACS Aria III BD Biosciences N/A

LSM 800 Confocal Zeiss N/A

Cryostat Cryostar NX70 Thermo Fisher Scientific N/A

Bioanalyzer Agilent N/A

Qubit Fluorometer Thermo Fisher Scientific N/A

HiSeq 2500 Illumina N/A

HiSeq 3000/4000 Illumina N/A
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RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Simon

Hippenmeyer (simon.hippenmeyer@ist.ac.at).

Materials Availability
All published reagents and mousselines will be shared upon request within the limits of the respective material transfer agreements.

Data and Code Availability
The data discussed in this publication have been deposited in NCBI’s Gene Expression Omnibus (Edgar et al., 2002) and are acces-

sible through GEO Series accession number GSE152716 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE152716). The

analysis software modified for this paper (Allelome.PRO v0.2) is available at http://sourceforge.net/projects/allelomepro/.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mouse Lines
All mouse colonies were maintained in accordance with protocols approved by institutional animal care and use committee, institu-

tional ethics committee and the preclinical core facility (PCF) at IST Austria. Experiments were performed under a license approved

by the Austrian Federal Ministry of Science and Research in accordance with the Austrian and EU animal laws (license numbers:

BMWF-66.018/0007-II/3b/2012 and BMWFW-66.018/0006-WF/V/3b/2017).

Mice with specific pathogen free status according to FELASA recommendations (M€ahler Convenor et al., 2014) were bred and

maintained in experimental rodent facilities (room temperature 21 ± 1�C [mean ± SEM]; relative humidity 40%–55%; photoperiod

12L:12D). Food (V1126, Ssniff Spezialit€aten GmbH, Soest, Germany) and tap water were available ad libitum.

Mouse lines with MADM cassettes inserted on Chr. 7, Chr. 11, and Chr. 12 (Hippenmeyer et al., 2010, 2013) (MADM-7-GT JAX

stock # 021457, MADM-7-TG JAX stock # 021458, MADM-11-GT JAX stock # 013749, MADM-11-TG JAX stock # 013751,

MADM-12-GT JAX stock # 021460, MADM-12-TG JAX stock # 021461); Emx1-Cre (Gorski et al., 2002) (JAX stock # 005628);

Nkx2.1-Cre (Xu et al., 2008) (JAX stock # 008661); Z/EG (Novak et al., 2000) (JAX stock # 004178); Ai14 (Madisen et al., 2010)

(JAX stock # 007914); Igf2+/� (DeChiara et al., 1990) and Baxflox (Takeuchi et al., 2005) (JAX stock #006329); XGFAP-LacZ (Brenner

et al., 1994) (JAX stock #003487) have been described previously. FVB (JAX stock # 001800), CAST/EiJ (JAX stock # 000928) and

C57BL/6J (JAX stock # 000664) were purchased from commercial vendors. We have not observed any influence of sex on the results

in our study, and all experiments and analyses were thus carried out using animals of both sexes.

Analysis of F1 animals from intercrosses of mice in FVB (for whole tissue) or CAST/EiJ (for genetically defined Emx1+ and Nkx2.1+

cells-types) genetic background with C57BL/6J mice (in combination with Emx1-Cre;Z/EG or Nkx2.1-Cre;Ai14, respectively) for

quantitative allelic expression experiments, in bulk and at single cell level, were carried out at P0 and P42.

All MADM-induced UPD analyses in animals as described below were carried out in a mixed CD1-C57BL/6J genetic background.

Animals from forward (matUPD in red; patUPD in green) and/or reverse (matUPD in green and patUPD in red) crossing schemeswere

used for analysis and data acquisition. For initial sequencing experiments, animals with MADM-induced UPD of Chr. 7, Chr. 11 and

Chr. 12 (in combination with Emx1-Cre and Nkx2.1-Cre) were analyzed at P0. For sequencing of small amounts (Chr. 7 UPD in com-

bination withEmx1-Cre andNkx2.1-Cre) using SMARTer technology,MADManimals were analyzed at P0. For single-cell sequencing

experiments, MADM animals with Chr. 7 UPD in combination with Emx1-Cre were analyzed at E15, P0, P7, P14 and P42. Phenotypic

analysis in vivowas performed at P0 (MADM-7, 11, and 12, each in combination with Emx1-Cre andNkx2.1-Cre). Detailed phenotypic

time course analysis of MADM-7 in combination with Emx1-Cre was performed at P0, P7, P14, P21 and 3months. Isolation and anal-

ysis of astrocytes from animals with MADM-induced UPD of Chr. 7, LacZ-labeled using XGFAP-LacZ, was performed at P0 and P14.

Genetic epistasis experiments of MADM-induced Chr. 7 UPD in combination with Emx1-Cre and with Igf2 or Bax were all performed

at P21.

METHOD DETAILS

Isolation of Tissue and Immunohistochemistry
Mice were deeply anesthetized through injection of a ketamine/xylazine/acepromazine solution (65 mg, 13 mg and 2 mg/kg body

weight, respectively) and unresponsiveness was confirmed through pinching in the paw. The diaphragm of the mouse was opened

from the abdominal side to expose the heart. Cardiac perfusion was performed with ice-cold PBS followed immediately by 4% PFA

prepared in PB buffer (Sigma-Aldrich). Brains were removed and further fixed in 4%PFA o/n to ensure complete fixation. Brains were

cryopreserved with 30% sucrose (Sigma-Aldrich) solution in PBS for approximately 48 hours. Brains were then embedded in Tissue-

Tek O.C.T. (Sakura). For adult time points, 45mm coronal sections were collected in 24 multi-well dishes (Greiner Bio-one) and

stored at�20�C in antifreeze solution (30% v/v ethyleneglycol, 30% v/v glycerol, 10% v/v 0.244M PO4 buffer) until used. Adult brain

sections were mounted onto Superfrost glass-slides (Thermo Fisher Scientific), followed by 3 wash steps (5min) with PBS. Tissue
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sections were blocked for 30minutes in a buffer solution containing 5%normal donkey serum (Thermo Fisher Scientific), 0.3%Trition

X-100 in PBS. Primary antibodies were in blocking buffer and incubated o/n at 4�C. Sections were washed 3 times for 5minutes each

with PBT (0.3% Triton X-100 in PBS) and incubated with corresponding secondary antibody diluted in PBT for 1 hour. Sections were

washed 2 times with PBT and once with PBS. Nuclear staining was done using 10min incubation with PBS containing 2.5% DAPI

(Thermo Fisher Scientific). Sections were embedded in mounting medium containing 1,4-diazabicyclooctane (DABCO; Roth) and

Mowiol 4-88 (Roth) and stored at 4�C. Tissue from postnatal day zero (P0) was directly transferred into ice-cold 4% PFA and kept

o/n at 4�C. Cryopreservation and embedding was done as described for adult brains. Early postnatal brains were sectioned with

30mm and directly mounted onto Superfrost glass-slides (Thermo Fisher Scientific) and immunohistochemistry was performed as

described above for adult brains.

EdU Labeling Experiments
Proliferation of astrocytes was assessed by EdU incorporation. Experiments were based on the use of the Click-iT Alexa Fluor 647

imaging kit (Thermo Fisher). Reagents were reconstituted according to the user manual. Intraperitoneal EdU injections were per-

formed at P4 and P6 (1mg/ml EdU stock solution; 30-40ml per mouse). Tissue collection was done at P21, followed by imunohisto-

chemistry as described abovewith one exception. The Click-iT imaging kit was used (according to the instructionmanual) to visualize

the EdU signal before the DAPI staining was performed.

Preparation of Single Cell Suspension and FACS
Experimental animals were sacrificed and brain areas of interest (neocortex, hippocampus and olfactory bulb) were dissected. Single

cell suspensions were prepared by using Papain containing L-cysteine and EDTA (vial 2, Worthington), DNase I (vial 3, Worthington),

Ovomucoid protease inhibitor (vial 4, Worthington), EBSS (Thermo Fisher Scientific), DMEM/F12 (Thermo Fisher Scientific), FBS

(Thermo Fisher Scientific) and HS (Thermo Fisher Scientific). All vials from Worthington kit were reconstituted according to the manu-

facturer’s instructions using EBSS. The dissected brain areas were directly placed into Papain-DNase solution (20units/ml papain

and1000unitsDNase). Enzymatic digestionwasperformed for 30minat 37�C ina shakingwater bath.Next, solution2 (EBSScontaining

0.67mgOvomucoidprotease inhibitor and166.7U/mlDNase I)wasadded, thewholesuspensionwas thoroughlymixedandcentrifuged

for 5min at 1000rpm at RT. Supernatant was removed and cell pellet was resuspended in solution 2. Trituration with p1000 pipette was

performed to mechanically dissolve any remaining tissue parts. DMEM/F12 was added to the cell suspension as a washing solution,

followed by a centrifugation step of 5min with 1500rpm at RT. Cells were resuspended in media (DMEM/F12 containing 10% FBS

and 10%HS) and kept on ice until sorted. Right before sorting, cell suspension was filtered using a 40mm cell strainer. FACS was per-

formed on a BD FACS Aria III using 100 nozzle and keeping sample and collection devices (1.5ml tubes or 96-well plate) at 4�C. Duplet
exclusionwas performed to ensure sorting of true single cells. For bulk cell analysis, cells were sorted directly into either Isolation Buffer

(IB; Lexogen) if more than 2000 sorted cells/per color were expected or if samples yielded fewer labeled cells into custom made lysis

buffer (30nM TRIS pH 8, 10nM EDTA pH 8, 1% SDS and 200 mg/mL Proteinase K). For bulk MADM samples, GFP+, tdT+, and GFP+/

tdT+ cells were collected. For quantitative allelic expression experiments Emx1-Cre+/GFP+ and Nkx2.1-Cre+/tdT+ cells were isolated.

For single cell analysis individual GFP+, tdT+ or GFP+/tdT+ cells were used.

RNA Extraction and cDNA Library Preparation of MADM Samples for RNA Sequencing
Data for Figures 3C–3E. Samples containing more than 2000 sorted cells were processed using the SPLIT kit (Lexogen) following the

manufacturer’s instructions. Samples containing fewer cells were sorted into custom made lysis buffer (described above). Directly

after sorting, samples were incubated for 30min at 37�C. Total volume was filled to 250ml using RNase-free H2O (Thermo Fisher Sci-

entific) followed by addition of 750ml Trizol LS (Thermo Fisher Scientific). Samples were mixed by 5 times inverting. After a 5min in-

cubation step at RT, the entire solution was transferred into aMaXtract tube (QIAGEN). 200ml chloroform (Sigma-Aldrich) was added,

followed by 3 times 5sec vortexing and 2min incubation at RT. Samples were centrifuged for 2min with 12000rpm at 18�C. Super-
natant was transferred to a new tube and isopropanol (Sigma-Aldrich) was added in a 1:1 ratio. For better visibility of the RNA pellet

1ml GlycoBlue (Thermo Fisher Scientific) was added and entire solution was mixed by vortexing (3x 5sec). Samples were left for pre-

cipitation o/n at�20�C. After precipitation samples were centrifuged for 20min with 14000rpm at 4�C. Supernatant was removed and

RNA pellet was washed with 70% ethanol, followed by a 5min centrifugation step (14000rpm at 4�C). RNA pellet was resuspended in

12,5ml RNase-free H2O. RNA quality was analyzed using Bioanalyzer RNA 6000 Nano (Agilent) and RNA 6000 Pico kit (Agilent)

following the manufacturer’s instructions. RNA samples were stored at �80�C until further use. cDNA libraries were prepared using

QuantSeq 30mRNA library preparation kit (Lexogen) following the manufacturer’s instructions. To amplify libraries correctly RT-PCR

was performed as indicated in the protocol using PCR Add-on kit (Lexogen). cDNA library size distribution was analyzed using Bio-

analyzer DNA High Sensitivity kit (Agilent) according to the manufacturer’s instructions. cDNA library concentration was measured

usingQubit. Libraries were pooled according to library length and concentration. RNA sequencingwas performed by VBCFGmbHon

Illumina platforms.

Preparation of Single Cell Suspension and FACS of Astrocytes
Single cell suspension was prepared using the same reagents and the same concentrations as described above. However volumes

of reagents were decreased since cortices of single P0 and P14 animals were processed as individual replicates and centrifugation
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steps were increased to 8min. Except for the last step (resuspension of cells in media) the protocol for preparing the single cell sus-

pension was performed as outlined above. The LacZ staining was performed using FACSBlue LacZ betaGalactosidase Detection Kit

(Abcam). LacZ substrate stock solution was prepared according to the instruction manual. To generate the staining solution LacZ

substrate was diluted 1:50 with DMEM/F12 (Thermo Fisher Scientific). Cell pellet was resuspended with 100ml of LacZ staining so-

lution and incubated for 25min at 37�C on a thermoshaker. Staining reaction was stopped by adding 100ml of media (DMEM/F12

containing 10% FBS and 10% HS) followed by a centrifugation step (1500rpm for 8min). Supernatant was removed and cells

were resuspended in media. Samples were kept in the dark at room temperature until sorting was started. Before sorting, cell sus-

pension was filtered using a 40mm cell strainer. As outlined above FACS was performed on a BD FACS Aria III using 100 nozzle. To

ensure specificity of LacZ staining, a negative sample was always processed and sorting gates were adjusted accordingly.

RNA Extraction and cDNA Library Preparation of Allelome Samples for RNA Sequencing
For ‘whole tissue’ analysis cortex, hippocampus and olfactory bulb were dissected from newborn P0 mice from FVB/CAST crosses

(see Table S1A for details). RNA extraction was performed with Trizol LS (Thermo Fisher Scientific) as described above. After each

purification step, RNA quality and quantity was measured using Agilent Bioanalyzer. 500ng of total RNA were treated with DNase1

(Applied Biosystems) and purified using Ampure RNAClean XP beads. 200ng of the purified RNA was used for library preparation

using the Illumina TruSeq Stranded Total RNA LT - (with Ribo-Zero TM Gold) - according to the manufacturer’s protocol. For cell

type specific allelome analysis, B6/CAST crosses were used (see Table S1A for details). 7-40ng of total RNA from FACS sorted cells

were used for library preparation with the Clonetech SMARTer Stranded Total RNA Sample Prep Kit – Low Input Mammalian (with

Ribogone), according to themanufacturer’s protocol with 19 cycles of library amplification. If the concentration of the total RNA sam-

ple was too low, RNA was immobilized on Agencourt RNAclean XP beads according to the manufacturer’s protocol. After washing

and drying of the beads the RNAwas eluted in 5 mLwater and the whole volume (including beads) was used in the RiboGone reaction.

All samples were sequenced by VBCF GmbH on Illumina platforms. FVB/CAST samples were sequenced as 125bp paired end

(NOTE: only the reverse read was used for analysis). All B6/CAST samples were sequenced 50bp single end.

cDNA Library Preparation and Sequencing of Low Cell Numbers or Single Cells
RNA sequencing was performed as described (Picelli et al., 2014). In brief, either purified RNA (data in Figures 3F–3K), up to 400 cells

(data in Figure 6) or single cells (Figures 1G and 1H, 2F–2H, and 4) were used as input. Cells were processed as single cell suspension

(described above) and sorted directly into 96 well plates (Bio-Rad) at 4�C (single cell) or up to 400 cells were collected at 4�C and

transferred into 96 well plates (Bio-Rad). Cells were sorted in 4ml lysis buffer (0.2% Triton X-100, 2U/ml RNase Inhibitor [Clonetech]).

Plates for single cell sequencingwere sealedwith AlumaSeal, (SIGMA) and quick-frozen on dry ice. All plates were kept at�80�Cuntil

further processing. Double stranded full-length cDNAwas prepared using Smart-seq2. For P0 cells with MADM-induced UPD of Chr.

7 (sample_id startingwith ‘S’ in Table S1E), efficiency of cDNAproduction was tested by qPCR for fluorescent protein expression (not

shown) and 96 cells from each color were chosen to be converted to RNA-seq libraries using the Nextera XT DNA Library Prep Kit

(Illumina). All other libraries were prepared using custom reagents (VBCF GmbH) and libraries from a 96 well plate were pooled,

diluted and sequenced on Illumina platforms at the Biomedical Sequencing Facility (BSF) at CeMM (sample_id starting with ‘S’ in

Table S1E) or at the VBCF NGS Unit (https://www.viennabiocenter.org/facilities/).

QUANTIFICATION AND STATISTICAL ANALYSIS

Analysis of MADM-Labeled Brains
Sections were imaged using an inverted LSM800 confocal microscope (Zeiss) and processed using Zeiss Zen Blue software.

Confocal images were imported into Photoshop software (Adobe) andMADM-labeled cells weremanually counted based on respec-

tive marker expression as described previously (Beattie et al., 2017). Statistical analysis was performed in Graphpad Prism 7.0. All

data used for quantification of MADM-labeled tissue is compiled in Table S7.

Astrocyte Morphology Analysis
Detailed analysis of astrocyte morphology was done as described previously (Beattie et al., 2017) with some modifications. Lower

layer astrocytes that expressed tdT+ or GFP+ were imaged with a 63x oil objective. Sholl analysis was performed to measure astro-

cyte branching complexity. 3D reconstruction and analysis was done using the Filament tracer algorithm of the IMARIS software.

Total cell volume of astrocytes was assessed from the 3D structure.

Processing and Analysis of Bulk RNA-seq Data
For all analyses mouse genome sequence (GRCm38.p5), gene annotation conversion tables and Gencode M16 annotation in gtf

format were downloaded from https://www.gencodegenes.org on 21 Feb 2018. For optimal representation of the long non-coding

RNA Meg3 the spliced ENSMUST00000143836.7 transcript was modified to represent a single exon transcript. STAR (Dobin et al.,

2013) (version 2.5.0c) index was prepared with ‘‘–genomeSAsparseD 2’’ and ‘‘–sjdbOverhang 37’’ parameters and the modified

Gencode M16 gtf file (using the ‘‘–sjdbGTFfile’’ parameter). Only chromosomes 1-19, X, Y and M were used for the index building

(all other sequences were removed). Raw reads were delivered as BAM files and converted to fastq format using ‘‘bamToFastq’’
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from the bedtools suite (Quinlan and Hall, 2010) for all alignment steps. All downstream analyses were performed in R v3.4.4 (Figures

1, 2, and 3) and R v3.6.1 (Figures 4 and 6). Markers for projection neurons were selected from Greig et al. (2013) and Molyneaux et al.

(2007), andmarkers for interneurons were selected from Taniguchi (2014). DESeq2 (Love et al., 2014) package was v1.16.1 (Figure 3)

or v1.26.0 (Figure 6), limma (Ritchie et al., 2015) package was v3.32.2.

Bulk RNA-seq analyses in Figures 1 and 2 are based on sorted neuronal populations from B6/CAST crosses, unless indicated

otherwise. Details on direction of crosses and replicates are listed in Table S1A. Figures 1C, S1A, and S1B: Twenty million reads

(counting from the start of each BAM file) were aligned with STAR using the following parameters:–clip5pNbases 3,–outFilterMulti-

mapNmax 1,–runThreadN 2,–outSAMtype BAM, SortedByCoordinate,–limitBAMsortRAM 3000000000,–quantMode GeneCounts.

For Figures S1A and S1B, as well as differential expression analysis, count tables obtained by STAR were used for the analysis

(3rd column, *.ReadsPerGene.out.tab files). Principal component analysis was performed on variance stabilized counts (DESeq2)

using the ‘‘prcomp’’ function (package stats v3.4.3) on the top 500 most variable genes. For marker heatmap the median expression

of biological replicates was determined from normalized counts as determined by the function ‘‘counts’’ (DESeq2). The heatmap was

prepared using ‘‘pheatmap’’ with cluster_rows = T, cluster_cols = F, scale = ’’row’’ parameters. To produce the allelic expression

heatmap in Figure 1C BAM files were separated by strand using the ‘‘separate_BAM_strand.pl’’ from the Allelome.PRO package

(Andergassen et al., 2015) using the ‘++,–‘ strand rule. The resulting BAM files were analyzed using Allelome.PRO with

standard parameters (allelic ratio cutoff: 0.7, FDR: 1%). SNP data was obtained from ftp://ftp-mouse.sanger.ac.uk

(mgp.v3.snps.rsIDdbSNPv137.vcf.bz2). As an annotation two bed6 files (for the genes on ‘‘+’’ and ‘‘-’’ strand) were prepared using

the ‘‘gene’’ annotations from the Gencode M16 gtf file. We identified 25 genes that were found to show imprinted expression in the

brain (Andergassen et al., 2017) and plotted their allelic expression bias derived from Allelome.PRO’s *locus_full.txt files. Heatmaps

were produced using ‘‘geom_tile’’ from ggplot2 package and colors reflect allelic expression (red: maternal, blue: paternal, biallelic:

green, gray: any other tag). In cases where a gene showed an ‘‘imprinting score’’ of either > 1 or < �1 in all replicates of one sample

(indicating biased expression toward thematernal or paternal allele) but the allelic ratio was below the cutoff of 0.7, we added aMAT/

PAT tag to indicate this consistent bias. For comparison we also included bulk tissue from FVB/CAST crosses in this

analysis (‘‘whole_tissue,’’ see Table S1A for details). For Figures 1D and 1E we extracted the ‘‘I_ratio’’ values from Allelome.PRO’s

*locus_full.txt files for all single cell type datasets and classified genes as ‘biased imprinted expression’ when the respective I_ratio

was < 0.95 (for a maternally expressed gene) or > 0.05 (for a paternally expressed gene) in one or more tissues. Conversely, a gene

was classified as ‘canonical imprinted expression’ when all tissues showed an I_ratio of > = 0.95 (for a maternally expressed gene) or

% 0.05 (for a paternally expressed gene). Figure 1E shows individual I_ratio values for 3 genes with biased imprinted expression

(Ago2, Impact, Inpp5f) and 4 genes with canonical imprinted expression (Sgce, Snrpn, Rian, Meg3).

For Figure 2B normalized counts (DESeq2) were used to prepare the median expression value for each gene in every cell type. The

heatmap was plotted using ggplot2 package using relative expression values, normalized to the highest expressing cell type. In Fig-

ure 2C normalized counts obtained by ‘‘counts’’ (DESeq2), are plotted for selected genes. For Figure 2D differential expression was

calculated with DESeq2 for all possible pairwise comparisons of the 5 cell types used in this analysis using contrasts (see Table S1A

for details on replicates and genotype). The number of pairwise comparisons where individual imprinted genes showed significant

differential expression (adjusted p value < 0.01) was used as the ‘‘specificity score.’’

Figures 3C–3E: To limit batch effects that could be introduced by optimization of the QuantSeq KIT by the Lexogen company as

well as by optimizing sequencing parameters for technical replicates, reads aligning to genes were counted in a 2 step process. In the

first step reads were aligned to transcriptome space using STAR with ‘–clip5pNbases 12–outFilterMultimapNmax 1–outSAMmode

BAM–quantMode TranscriptomeSAMGeneCounts’ parameters. The resulting BAM file was sorted by read name, using samtools (Li

et al., 2009) v1.3.1 and the number of unique reads was counted using a custom script. This number was used to calculate the num-

ber of raw reads that is necessary to obtain 10 million reads aligning to the transcriptome (#total.reads.used reads in Table S1C). In

the second step the number of reads was extracted randomly from the pool of raw reads using DownsampleSam from the picard

toolkit (v.2.16.0) and ‘S =Chained R = 2401’ parameters. Note that this random read retrieval was necessary due to varying alignment

efficiencies for technical sequencing replicates. Reads aligning to Gencode M16 genes were counted using STAR with ‘‘–outFilter-

MultimapNmax 1–outSAMtype None–outSAMmode None–quantMode GeneCounts–clip5pNbases 12’’ parameters. Two sets of

samples (MADM-12; Nkx2.1-Cre HC and MADM-12; Emx1-Cre OB) consistently gave low % uniquely aligned reads and were

removed from the subsequent analysis (samples marked: ‘‘used_in_analysis = FALSE’’ in Table S1C). To further reduce noise, genes

with a mean expression of < 20 reads over all used samples (‘‘used in analysis = TRUE’’ in Table S1C), were removed. For Figure 3C

differential gene expression was analyzed using DESeq2. Count tables obtained by STAR were used for the analysis (3rd column,

*.ReadsPerGene.out.tab files). For each MADM/Cell/Tissue set (maternal UPD, paternal UPD, control), a DESeqDataSet was

created using the ‘‘DESeqDataSetFromMatrix’’ function and ’design = �group_id + UPD‘ (Table S1C). ‘‘DESeq’’ function was

called with fitType = ’’local’’ and parallel = T parameters. Results for matUPD / patUPD comparisons were obtained using contrasts

and ’altHypothesis = ’’greaterAbs,’’ ‘‘alpha =0.1’’ and ’’ lfcThreshold = 0’’’ parameters. Fold changes and p values (* for adjusted

p values < 0.01) for selected genes were plotted. Figure 3D: Batch correction was performed on variance stabilized count data

(‘‘varianceStabilizingTransformation,’’ DESeq2, parameters: ‘‘blind=T’’) using ‘‘removeBatchEffect’’ (limma package) with ‘batch =

‘‘group_id,’’ model.matrix(�tissue * cre * UPD)’ parameters. Note that all sample details are given in Table S1C. For marker heatmaps

(Figures 3D and S3M) the mean expression of variance stabilized, batch corrected counts from all biological replicates of matUPD,

patUPD and control in one cell type (MADM/tissue/cell) was calculated for each gene and normalized to the highest expressing cell
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type. The heatmap was prepared using the ‘‘pheatmap’’ package (v1.0.9) with ‘scale = ’’none,’’ cluster_rows = T, cluster_cols = F’

parameters. Figure 3E: For hierarchical clustering all pairwise correlations of batch corrected variance stabilized counts were

calculated (R function ‘‘cor,’’ parameter: method = ’’spearman’’) and converted to a distance matrix by subtracting the values

from 1. Clustering was performed using R function ‘‘hclust’’ using ‘method = ’’ward.D2’’’ parameter. The branches of the resulting

tree were ordered using the ‘‘rotate’’ function (package dendextend v1.5.2) (Galili, 2015) to group samples with similar origin and

the dendrogram was plotted using the package dendextend. Bootstrap probabilities of hierarchical clustering were calculated

with a modified version of the R package ‘‘pvclust’’ to allow the usage of function ‘‘cor’’ with parameter: ‘method = ’’spearman’’’

(pvclust v2.0).

For Figures 3F–3K, we sequenced 88 samples consisting of 5 different cell types with different UPD states for Chr. 7 (matUPD/pa-

tUPD/control, details on samples see Table S1D). We removed samples based on the following criteria: less than 900000 sequenced

reads, correlation to the other biological replicates < 0.9 (using ‘‘cor’’ function with standard parameters), distance and position to

other biological replicates in PCA plot. This resulted in 64 samples where each cell type/UPD state had 3-5 biological replicates.

Count tables obtained by STAR were used for the analysis (2rd column, *.ReadsPerGene.out.tab files, note that the SMARTer v2 pro-

tocol, used here, does not preserve the strandedness of the mRNA). PCA analysis in Figure 3F was done as described above (Fig-

ure 1C) using batch corrected variance stabilized counts. All genes with a mean expression > 0 across all samples were used for

analysis. Batch correction was performed as described above (Figure 3D). For Figure 3G normalized counts as determined by the

function ‘‘counts’’ (from DESeq2 package) were centered to the median of the control samples for each cell type to correct for

cell type specific expression differences. Note that for display, values above 3 were removed: Cdkn1c: 21.1, 7.3 (Emx1 OBmatUPD),

5.0 (Emx1 OB patUPD).

Figures 3H–3K and S4A: Genes with mean expression > 10 across all samples were used in subsequent analyses. Differential

expression between all possible pairwise comparisons of UPD states in all cell types was calculated using DESeq2 using contrasts,

similar to the analysis described above for Figure 3 but without using ‘‘altHypothesis/alpha/lfcThreshold’’ parameters. Figure S4A:

Differential expression results of matUPD/patUPD samples in each cell type are shown for selected known imprinted genes on

Chr. 7. Heatmap was prepared using ggplot2 with adjusted p value < 0.1 as intense color and marked with an asterisk and intense

color only marking adjusted p values > 0.1 (not significant). Colors were based on log2 fold changes where value < 0 are indicated as

blue (higher in patUPD samples) and values > 0 are indicated as red (higher in matUPD samples). Figure 3H: Number of DEGs with an

adjusted p value < 0.05 in thematUPD/wt and patUPD/wt comparisons for each cell type. Figure 3J: Using the same dataset of DEGs

as in Figure 4D, the proportion of chromosomes in the respective dataset was plotted. The relative number of genes on Chr. 7 is indi-

cated in black. To test an over-representation of any chromosome in any of these datasets we performed a hypergeometric test using

clusterProfiler’s ‘enricher’ function (Yu et al., 2012) with a custom gene set (pvalueCutoff = 0.01, qvalueCutoff = 0.1). Figure 3I: DEGs

(adjusted p value < 0.05) from pairwise comparisons matUPD/control and patUPD/control states were used in this analysis. The po-

sition of DEGs on Chr. 7 was plotted as their midpoint (start + (end-start)/2). To indicate hypothetical imprinted domains we used

differentially methylated regions identified in the brain (Xie et al., 2012) and extended them by 7Mbp in each direction, because

this represents the largest distance of a known imprinted gene to its imprint control element (Andergassen et al., 2017). These regions

were plotted as gray shades. To identify whether DEGs were enriched within these hypothetical imprinted domains we performed a

hypergeometric test using clusterProfiler’s ‘enricher’ function (Yu et al., 2012) with a custom gene set (pvalueCutoff = 0.01, qvalue-

Cutoff = 0.1). Figure 3K: All genes with an adjusted p value of < 0.05 in at least one cell type in the matUPD/wt and patUPD/wt com-

parisons were used in this analysis. Note that only genes with a unique gene symbol annotation were used here. For each gene in

each comparison a significance score was calculated as the log10 of the uncorrected p value. This score was corrected to be positive

for genes with a log2 fold change > 0 (higher in the respective UPD sample) or negative for genes with a log2 fold change < 0 (higher in

the wt sample). Scores were cut at a level of 5/-5 for better visibility in the resulting heatmap. This score matrix was used to prepare a

hierarchical clustering of genes using the pheatmap package with ‘clustering_method = ‘‘ward.D2’’’. The resulting tree was used to

define 10 gene clusters using ‘‘cutree’’ with ‘k = 10’. These clusters were manually ordered (preserving the clustered order of genes

within each cluster) and plotted using ‘‘pheatmap.’’ Genes in each cluster are given in tab ‘‘genes in clusters’’ in Table S3.

To identify gene ontology term enrichment in each of the 10 gene clusters identified above we used the ‘‘clusterProfiler’’ package

(v3.4.4). Gene Symbol annotation were converted to Entrez Gene IDs using ‘‘bitr’’ and the GO term enrichment was calculated using

‘enrichGO’ with parameters: ‘OrgDb = org.Mm.eg.db (v3.4.1), keytype = ‘‘ENTREZID,’’ ont = ’’ALL,’’ pool = T, readable = T, pvalue-

Cutoff = 0.05, qvalueCutoff = 0.2, maxGSSize = 500’. As a gene ‘‘universe’’ we used all genes that were used in differential expression

analysis. Top enriched GO terms (by adjusted p value) are indicated. Note that a full list of GO terms found to be significantly enriched

in this analysis is given in Table S3. Figure S4B: We first identified genes that are significantly deregulated in matUPD/control or pa-

tUPD/control in each cell type with adjusted p value < 0.05. Next, we identified genes that are deregulated in only one UPD of a single

cell type (red: matUPD, blue: patUPD), that are shared between thematUPD/control and patUPD/control comparisons of a single cell

type (black) or that are shared in any other combination (white). Figure S4C: The score matrix described above (Figure 3K) was used

to calculate the significance of clustering of the effect of the different UPDs in the different cell types (i.e., the matUPD/control

and patUPD/control comparisons in each cell type) using ‘‘pvclust’’ with ‘method.dist = ’’euclidean,’’ method.hclust = ’’ward.D2,’’

nboot = 10000, parallel = T’. The resulting dendrogram is shown with AU (Approximately Unbiased, red) p value and BP (Bootstrap

Probability, green) values.
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Processing and Analysis of scRNA-seq Data
Reads from scRNA-seq were aligned using STARwith the same index as used for bulk sequencing but with the following parameters

to create aligned BAM files:–outFilterMultimapNmax 1–outSAMstrandField intronMotif–outFilterIntronMotifs RemoveNoncanonical–

outSAMtype BAM SortedByCoordinate–quantMode GeneCounts. Figure 1: Samples with less than 1M total reads were removed

from further analysis. These BAM files were used to prepare gene expression matrices (for the same annotation used for bulk

RNA-seq analysis) using cuffquant and cuffnorm from the cufflinks suite (v2.2.1) (Trapnell et al., 2010). A final expression matrix

was prepared from ‘‘genes.fpkm_table’’ files in R. Small RNAs (gene symbols ‘‘Mir’’ and ‘‘Snord’’) as well as transcripts of unknown

annotation quality (gene symbols ‘‘Gm) were removed to reduce noise. Single cell analyses for Figures 1 and 2 were done using the

Monocle package (v2.4.0) (Trapnell et al., 2014) for cell type identification or a modified version of Allelome.PRO (Andergassen et al.,

2015) for allelic expression (see below). 744 single cells from crosses between C57/Bl6 and CAST were sequenced for this analysis

(see Table S1B for details). The ‘‘CellDataSet’’ was prepared using the ‘‘newCellDataSet’’ function with parameters: lowerDetection-

Limit = 0.1, expressionFamily = tobit(Lower = 0.1). Absolute transcript counts were determined using the ‘‘relative2abs’’ function with

parameter: method = ’’num_genes.’’ The final ‘‘CellDataSet’’ from absolute transcript counts was prepared with parameters: lower-

DetectionLimit = 0.5, expressionFamily = negbinomial.size(). We removed cells with < 10000 or > 30000 total mRNAs reported, which

left 404 cells with a median of 1735775 uniquely aligned reads and a median of 2597.5 expressed genes (min_expr = 0.1) that were

used for all downstream analyses. We identified 1000 genes by t-SNE based clustering and differential expression analysis

(Monocle2, genes ranked by adjusted p-value). We performed hierarchical clustering based on these 1000 genes using the ‘‘pheat-

map’’ function with standard parameters and log2 size normalized expression values (Note: we added a pseudo-count of 1 before

log2 transforming the expression data). The resulting dendrogram was used to identify 7 groups using the ‘‘cutree’’ function. Based

on marker gene expression we combined these 7 groups into 5 cell types. These groups and the expression pattern (plotted using

‘‘pheatmap’’ as above) for a set of marker genes is shown in Figure 1G. Figure 1H: Allelic expression analysis in single cells. BAM files

were analyzed using a modified version of the Allelome.PRO pipeline (Andergassen et al., 2015), (http://sourceforge.net/projects/

allelomepro/). In brief the Allelome.PRO pipeline was modified to allow faster processing of large datasets by allowing the use of

pre-prepared annotation files (initial version of Allelome.PRO prepares these files each run of the pipeline and cause the majority

of the run-time with many datasets). Additional modifications included the removal of hard coded cutoffs and the termination of

the analysis at the reporting stage (i.e., before the calculation of FDR and report of gene lists, which are restricted to the use of 4

samples). For gene specific allelic expression analysis we inspected the ‘‘sample_locus_full.txt’’ files and focused our analysis on

the same 25 known imprinted genes as in Figure 1C. For each cell we performed the following analysis: Only genes that were covered

by more than 10 reads were kept (‘‘total_reads’’ columns). Gene expression in each cell was classified into maternal (MAT)/paternal

(PAT)/biallelic (BAE) according to the following criteria: MAT: I_score > = 1.3 AND I_ratio > = 0.7, PAT: I_score > = 1.3 AND I_ratio%

0.3, BAE: either I_score < 1.3 or (I_score > = 1.3 AND I_ratio < 0.7 AND I_ratio > 0.3). The relative amount of cells in each allelic expres-

sion groupwas then plotted for each cell type (as determined in Figure 1G). Figure 1H shows 6 selected genes and results for all genes

are shown in Table S2.

Figure 2F: Heatmap showing expression levels of known imprinted genes. The same list of genes as presented in Figure 2B was

investigated, however Peg10, Zim1, Magel2, Kcnq1ot1, Mirg, Airnwere removed because they were detectable in less than 10 cells.

Expression was calculated as for the heatmap in Figure 1G and plotted using ggplot2. Coloring indicates the parental direction of

expression as determined in Figure 1. Figure 2G: Expression values (log2 of size normalized expression values +1) of selected genes

are shown for all cells of a given cell type. Figure 2H: The specificity of a gene to be expressed in a given cell type was calculated by

first averaging the expression of each gene for all cells within each cell type (cell type expression). A relative expression value

was calculated for each gene by dividing each cell type expression value by the sum of all cell type expression values of the respec-

tive gene. The maximum relative expression was plotted in the figure. Note that the closer the value gets to 1 the more

exclusive a gene is expressed in a single cell type. Differential expression was calculated with differentialGeneTest function using

fullModelFormulaStr = ‘�label’ (see Table S1B on details on cell labels).

Figure 4: We sequenced 1604 cells with different UPD states for Chr. 7 (matUPD/patUPD/control). Read alignment and gene set

used was similar as for Figure 1. Raw counts from STAR alignment were used to create a Seurat (v3.1.4) (Stuart et al., 2019) object

with parameters: min.cells = 3, min.features = 200. Percentage of mitochondrial reads was determined with PercentageFeatureSet

function with pattern = ‘‘^mt-’’ parameter. Cells were filtered by nFeature (> 2500 & < 7500, percent-mt (< 10) and & nCount_RNA (>

1e05, < 5e06). This filtering left 1153 cells with a median of 2030461 uniquely aligned reads and a median of 5191 expressed genes

(nFeature_RNA in Table S1E) that were used for all downstream analyses.

Figures 4B–4D and S5: We followed the procedure as suggested by the Seurat vignettes (v3.1). In brief, normalization was per-

formed with NormalizeData using normalization.method = ‘‘LogNormalize’’ and scale.factor = 10000 parameters. Dimensionality

reduction, cluster identification and UMAP: FindVariableFeatures with selection.method = ‘‘vst’’ and nfeatures = 2000 parameters;

ScaleData with features = all.genes parameter; RunPCA with features = VariableFeatures(object = [seurat object]) parameter; Find-

Neighbors dims = 1:10 parameter; FindClusters with resolution = 0.5 parameter; RunUMAP with dims = 1:10 parameter.

Heatmaps were prepared with DoHeatmap function on selected lists of cluster marker genes determined with FindAllMarkers using

only.pos = TRUE, min.pct = 0.25 and logfc.threshold = 0.25 parameters.

Figures 4E–4P: Cells from relevant clusters were extracted and re-analyzed with varying parameters for optimal separation of

expected cell types and developmental states. Note that we removed 2/1 E15 cells from oligodendrocytes/astrocytes as they are
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unlikely to originate from the Emx1 lineage. Cluster numbers for initial clustering are given as ‘orig_seurat_clusters’ in Table S1E. As-

trocytes (orig_seurat_clusters: 2, 3, 8): FindNeighbors with dims = 1:9 parameter; FindClusters with resolution = 0.5 parameter; Run-

UMAP with dims = 1:9 parameter. Oligodendrocytes (orig_seurat_clusters: 5, 9, 10): FindNeighbors with dims = 1:6 parameter;

FindClusters with resolution = 0.5 parameter; RunUMAP with dims = 1:6 parameter. Neuronal cells (orig_seurat_clusters: 0, 1, 4,

6, 7): FindNeighbors with dims = 1:10 parameter; FindClusters with resolution = 0.5 parameter; RunUMAP with dims = 1:10 param-

eter. To plot expression of imprinted genes we used VlnPlot with parameters: slot = ‘‘data,’’ split.by = ‘‘UPD,’’ log = FALSE. Final

cluster association is given as ‘cluster’ in Table S1E and abbreviations are OBNB: olfactory bulb neuroblast, RGP: radial glia progen-

itor, aIP: astrocyte intermediate progenitor, OPC: oligodendrocyte precursor cell. Colors of cells in Table S1E correspond to colors of

clusters in Figure 4. Differential expression between matUPD and patUPD cells was performed using FindMarkers with parameters:

test.use = ‘bimod’, min.pct = 0, logfc.threshold = 0.1. Results from differential gene expression for each cluster are given in Table S4.

GO term enrichment was performed on genes with padj < 0.2 using enrichGO (clusterProfiler package v3.14.3) with parameters: min-

GSSize = 100, maxGSSize = 300, OrgDb = org.Mm.eg.db (v3.10.0), ont = ‘‘BP,’’ readable = TRUE. All GO terms with p value < 0.01

were used for further analyses and are listed in Table S4. For Figures 4H, 4L, and 4P, GO terms in indicated groups were counted

based on the following keywords present in their description. Apoptosis: apop, death; growth/cell cycle: growth, cell cycle, mitosis;

synapse: synapse, synaptic.

RNA-seq Analysis of FACS Enriched Astrocytes
Figure 6: We sequenced 28 samples including 20 samples enriched for astrocyte and 8 samples enriched for neuronal cells with ma-

tUPD or patUPD (details see Table S1F). Reads were aligned as described for single cells above and raw read counts reported by the

STAR aligner were used. Samples were filtered based on clustering of biological replicates in PCA plot (mainly reflecting read

coverage, #uniquely.aligned in Table S1F) which left 12 astrocyte samples and 7 neuronal samples (used_for_analysis = ‘Y’ in Table

S1F). Figure 6B: Read counts are size factor normalized counts determined by function ‘counts’ with normalize = T parameter. For

differential gene expression analysis we used DESeq2 (v1.26.0) and genes with amean read count > 15 over all samples under inves-

tigation. Samples from P0 and P14 were analyzed separately using DESeqDataSetFromMatrix with design = �UPD parameter and

DESeqwith fitType = ’’local,’’ quiet = T, betaPrior = F and parallel = T parameters. Differential expression statistics were obtainedwith

‘results’ and contrast = c(‘UPD’, ‘mat’, ‘pat’) parameter. Heatmap in Figure 6C was prepared by extracting log2 fold-changes as well

as adjusted p value information from differential expression analysis. Genes with a fold-change > 0 (higher in matUPD) were colored

red and < 0 (higher in patUPD) blue. Asterisks indicate adjusted p value < 0.05. GO enrichment analysis for genes with an adjusted p

value < 0.1 was performed using enrichGO (clusterProfiler package v3.14.3) with OrgDb = org.Mm.eg.db (v3.10.0), ont = ‘BP’, min-

GSSize = 100, maxGSSize = 1000, pool = F and readable = T parameters. Counting significantly enriched GO terms in indicated

groups was performed as described for Figure 4 but with a cutoff of p value < 0.1 for GO terms. Results for differential expression

and GO enrichment are given in Table S5. For Figures 6F and 6G we obtained all relevant datasets and code examples from

https://github.com/soulj/PhenomeExpress. To identify relevant phenotype IDs we downloaded the uberpheno annotation from

http://compbio.charite.de/tl_files/HPO/uberpheno/ and selected all IDs where the description contained the term ’apoptosis’. Net-

works for the PhenomeExpress analysis were prepared following the PhenomeExpress examples using the differential expression

data from DESeq2 and uncorrected p values. Significant subnetworks were identified using runPhenomeExpress with parameters:

max_number = 30, sampleSize = 1000. Analysis was done separately for P0 and P14 and the top ranked PhenomeExpress networks

(including largest number of genes) for each analysis (p value = 0.001) were extracted and merged using the ‘union’ function from

igraph package (Csardi and Nepusz, 2006) with byname = T parameter. GO term enrichment for all genes present in the merged

network was determined using enrichGO (clusterProfiler package v3.14.3) with parameters: pvalueCutoff = 0.2, qvalueCutoff =

0.9, minGSSize = 10,maxGSSize = 1000, OrgDb = org.Mm.eg.db (v3.10.0), ont = ‘‘BP,’’ readable = TRUE). Top 15 enrichedGO terms

were used for network annotation. All GO terms with padj < 0.01 are given in Table S6. Node/Vertex annotation was added in R as

follows. Figure 6F: Color code indicates whether a gene was present in the PhenomeExpress network originating from P0 or P14

data. Node size indicates whether the respective gene showed differential expression (DEG) with padj < 0.1 at P0 and/or P14 as indi-

cated in the legend. Figure 6G: Coloring was performed based on the association of the respective gene with the following signifi-

cantly enriched GO terms. Apoptosis: positive regulation of cell death, positive regulation of apoptotic process, positive regulation of

programmed cell death, neuron death; cell cycle/growth: regulation of cell cycle, mitotic cell cycle process (Table S6). Sizewas deter-

mined as for Figure 6F. Final network figure was prepared using Cytoscape 3.7.2 (Shannon et al., 2003).
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Figure S1. Related to Figure 1. Isolation of Cell Type Specific Allelome using B6xCAST Hybrid 
Crosses. (A) Visualization of sample distribution - Emx1+ and Nkx2.1+ cell types in neocortex (CX), 
hippocampus (HC) and olfactory bulb (OB) in B6/CAST F1 hybrids - using principal component (PC) 
analysis. Data points reflect individual biological samples from B6xCAST and CASTxB6 crosses. Note that in 
the nomenclature the maternal strain is indicated first (i.e. MATxPAT). (B) The heat map shows scaled 
expression of a representative set of marker genes defining individual cell types. Note that cell types 
(columns) were ordered arbitrarily and genes (rows) were clustered in an unbiased way. Colored bar above 
the heat map indicate cell types from distinct tissues (CX, blue; HC, light green; and OB, dark green). (C) 
Left: Numbers of single cells isolated from Emx1+ lineage sorted from P0 (light color) and P42 (darker color) 
contributing to distinct cell types: astrocyte intermediate progenitors (aIPC), astrocytes (astro), 
oligodendrocytes (oligo), neurons I (NI) and neurons II (NII). Right: Numbers of single cells across distinct 
cell types from B6xCAST (BC, light color) and CASTxB6 (CB, darker color) crosses. 

 

 

  



 

Figure S2. Related to Figure 3. Experimental MADM Paradigm for Generating UPD with Single Cell 
Resolution. (A) MADM utilizes Cre/LoxP-mediated interchromosomal recombination to reconstitute two 
reciprocal chimeric marker genes (GT/TG). Recombination in postmitotic cells or in G1 phase during cell division 
cycle results in the reconstitution of both (i.e. tdT, red; GFP, green) marker genes in the same cell, thus labeling 
the cell in yellow color but without altering the genotype (not indicated, see Hippenmeyer et al., 2013 for details). 
Recombination in G2 phase of the cell cycle with segregation of both recombinant chromosomes (including fully 



reconstituted tdT and GFP marker genes) to the same daughter cell (Z-Segregation, lower branch) also does 
not alter the genotype and results in one yellow cell which serves as control. In contrast, recombination in G2 
followed by X-Segregation (the two recombinant chromosomes end up in distinct daughter cells, upper branch) 
leads to green (GFP+) and red (tdT+) labeled cells, respectively, with near complete uniparental chromosome 
disomy (UPD). If the TG MADM cassette is inherited from the father and the GT MADM cassette from the 
mother as indicated, cells labeled in red show unimaternal chromosome disomy (MM; matUPD) and green cells 
unipaternal chromosome disomy (PP, patUPD). (B) MADM paradigm to generate UPD using reverse crossing 
scheme. Here, the TG MADM cassette is inherited from the mother and the GT MADM cassette from the father. 
Thus, matUPD are labeled in green (GFP+) and patUPD are labeled in red (tdT+). Symbols are detailed in the 
key. 
 
 

  



 

Figure S3. Related to Figure 3. MADM-induced UPD in Distinct Cortical Cell Types does not Affect Cell 
Fate Specification. (A-L) MADM-induced UPD of Chr. 7 (A, B, G, H), Chr. 11 (C, D, I, J), and Chr. 12 (E, F, K, 
L) at P0 in Emx1+ (A-F) and Nkx2.1+ (G-L) lineage in neocortex (CX), hippocampus (HC) and olfactory bulb (OB; 
insets in A, C, E). MatUPD is labeled in red (tdT+), patUPD in green (GFP+), yellow cells are GFP+/tdT+ and 
serve as control. Nuclei were stained using DAPI (blue). Scale bar, 500µm (A, C, E, G, I, K), 60µm (B, D, F, H, 



J, L) and 600µm (OB insets in A, C, E). Cortical layers are indicated (roman numerals). (M) Heat map illustrating 
the relative expression of a representative set of marker genes defining individual cell types. Note that cell types 
(columns) were ordered arbitrarily and genes (rows) were clustered in an unbiased way. Colored bars above the 
heat map indicate genotype (G; matUPD in red, patUPD in blue, and control in light grey), MADM (M; MADM-7 
in black, MADM-11 in grey and MADM-12 in light grey), and tissue (T; CX in blue, HC in light green, and OB in 
dark green). 
 
 

  



 

Figure S4. Related to Figure 3. Transcriptional Changes in Genetically-defined Cell Types upon MADM-
induced UPD of Chr. 7. (A) Differential imprinted gene expression analysis in cells carrying MADM-induced 
matUPD and patUPD of Chr. 7. Heat map showing all expressed imprinted genes located on Chr. 7 in Emx1+ 
and Nkx2.1+ samples from neocortex (CX), hippocampus (HC), and olfactory bulb (OB). Genes with higher 
expression in matUPD cells (log2 fold-change >0) are marked in red and genes with higher expression in 
patUPD cells (log2 fold-change <0) in blue. Asterisks mark significant differential expression (padj<0.1) (B) 
Fraction of significantly DEGs (padj<0.05) unique for matUPD/control (red), unique for patUPD/control (blue) 
shared between matUPD/control and patUPD/control only within the same cell type (black) or shared in any 
other combination among analyzed samples (grey). (C) Cluster dendrogram based on score heat map shown in 



Figure 3K. Significance of clustering analysis is shown as Approximately Unbiased (AU) / Approximately 
Unbiased (BP) values calculated by the R package pvclust. Note that matUPD and patUPD from the same cell 
type rather than matUPD or patUPDs from different cell types cluster together. 

 

 

  



 

Figure S5. Related to Figure 4. Gene Expression in Single matUPD and patUPD Cells in Emx1+ Neuronal 
and Glial Cell Populations. (A) Uniform Manifold Approximation and Projection (UMAP) of Radial glia 
progenitors (RGPs) and neurons. Single cells (dots, n=717) are colored according to the collection time points 
(E15: light blue; P0: dark blue; P7: light green; P14: dark green; P42: pink). (B) Heat map of marker genes for 
the classification of individual cell types in (A). Colored bars above heat map indicate different cell types, as in 
Figure 4E. RGPs (cyan) are precursor for both olfactory bulb neuroblasts (OBNB, 2 developmental states: light 
and dark blue) and neurons (4 developmental states white to dark grey). (C) UMAP of oligodendrocytes. Single 
cells (dots, n=143) are colored according to collection time point (P0: dark blue; P7: light green; P14: dark 



green; P42: pink). (D) Heat map of marker genes for the classification of individual cell types in (C). Colored 
bars above heat map indicate different developmental states in the oligodendrocyte lineage, as in Figure 4I. 
Light orange to dark orange indicates development from oligodendrocyte precursor cell via two immature 
oligodendrocyte populations to mature myelinating oligodendrocytes. (E) UMAP of astrocytes. Single cells (dots, 
n=290) are colored according to collection time point (P0: dark blue; P7: light green; P14: dark green; P42: 
pink). (F) Heat map of marker genes for the classification of individual cell types in (E). Colored bars above heat 
map indicate different developmental states in the astrocyte lineage, as in Figure 4M. White, pink to purple 
indicates development from astrocyte intermediate progenitors (aIPCs) via two immature astrocyte populations 
to mature astrocytes. 
 

  



 

Figure S6. Related to Figure 5. Analysis of Marker Expression and Cellular Morphology in Mature 
Astrocytes with Chr. 7 UPD. (A-F) Expression of GFAP (white; A, a’’, B, b’’), S100β (white; C, c’’, D, d’’) and 
BLBP (white; E, e’’, F, f’’) in green GFP+ (patUPD) and red tdT+ (matUPD) MADM-labeled cortical astrocytes at 
P21. (G-J) Images of individual astrocytes (G, I) were processed using IMARIS software and Filament Trace 
was applied to assess astrocyte branching pattern (H, J). (K) Sholl analysis of matUPD and patUPD astrocytes 



[n=45 (matUPD n=21; patUPD n=24)]. Note no significant difference between matUPD and patUPD. (L) 
Quantification of total cell volume [µm3] of matUPD and patUPD astrocytes [N=49 (matUPD n=23; patUPD 
n=26)]. Note no significant difference between matUPD and patUPD. Scale bar: 10µm (A-J). 
 
 

  



 

Figure S7. Related to Figure 7. Breeding Schemes for the Generation of Igf2 and Bax Genetic Mosaic, 
Full-KO or cKO Mice with Chr. 7 UPD. (A) Breeding scheme for the generation of MADM-7 mice with Chr. 7 
UPD. (B) Breeding scheme for the generation of Igf2-MADM-7 mosaic mice (maternal and paternal deletion). 
(C) Breeding scheme for the generation of Bax-MADM-7 mosaic mice (maternal and paternal deletion). (D) 
Breeding scheme for the generation of full-KO-Igf2-MADM-7 mice. (E) Breeding scheme for the generation of 
cKO-Bax-MADM-7 mice. Note that Igf2 deletion (null allele) results in whole animal knock out, and Bax deletion 
(floxed allele) in conditional knockout. Emx1-Cre was used in all the breeding schemes. 
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