1 Estimation of π , δ and K

2 We describe the dynamics of all CD4⁺CD45RO⁺ cells *y* by

 $\dot{y} = \frac{p}{k+y}y - \mu y$

3

5

7

4 the dynamics of uninfected CD4⁺CD45RO⁺ cells *n* by

$$\dot{n} = \frac{p'}{k+y}n - \mu'n$$

6 and the dynamics of infected cells *x* by

$$\dot{x} = \frac{\pi}{k+y} x - \delta x$$

8 where *y* is the total number of CD4⁺CD45RO⁺ T cells, *x* is the number of infected 9 CD4⁺CD45RO⁺ T cells, *n* is the number of uninfected CD4⁺CD45RO⁺ T cells (y = x + n), *p/k* is the maximal proliferation rate of CD4⁺CD45RO⁺ cells (half maximal when *y* 11 = *k*), p'/k is the maximal proliferation of uninfected CD4⁺CD45RO⁺ cells, π/k is the 12 maximal proliferation rate of infected CD4⁺CD45RO⁺ cells and μ , μ ' and δ the death 13 rates of *y*, *n* and *x* respectively.

14

To estimate π and k we need estimates of the per capita proliferation rate $\pi / (k + y)$ at two values of y. We chose in a lymphocyte replete ($y = y_R$) and in a lymphocyte depleted host (y = 0)

18 y = y_R

19 We first estimate the per capita proliferation rate of infected CD4+CD45RO+ T cells

$$20 \qquad \pi^* = \frac{\pi}{k + y_R}$$

21 in a lymphocyte replete host.

22

The data provided in Supplementary Table 2A Asquith et al [16] gives the estimated proliferation rate of CD4⁺CD45RO⁺ T cells as a function of proviral load (measured as % of PBMC infected). If we convert proviral load to fraction of CD4⁺CD45RO⁺ T cells infected assuming that all proviral load is in CD4⁺CD45RO⁺ T cells and that CD4⁺CD45RO⁺ T cells make up approximately 15% of PBMC then we can plot the following relationship:

29

The measured proliferation rate in infected individuals is a combination of the proliferation rate of uninfected CD4⁺CD45RO⁺ cells $p^* / (k + y)$ at rate previously estimated to be approximately 2% per day [16-18] (consistent with the estimate of 40 2.18% per day above when f = 0 and the proliferation rate $\pi^* = \pi / (k + y)$ of infected 41 cells

42 proliferation of CD4+CD45RO+ cells =
$$2(1-f) + \pi * f$$

43 Comparing with the equation of a straight line above we can see that $\pi^* = 1.1559 + 2$ 44 = 3.16 d⁻¹

So in lymphocyte replete HTLV-1 infected host the average proliferation rate of infected cells is 3.16% per day. We can therefore conclude that at equilibrium δ = 3.16% per day.

48 *y* = 0

In a lymphocyte depleted host (y = 0) the proliferation rate will be maximal. We assume that this is 100% per day.

51

52 We estimate that the number of CD4⁺CD45RO⁺ T cells in a lymphocyte replete adult 53 is approximately 5.25×10^{11} (2×10^{12} lymphocytes, of which 75% are CD3⁺, of which 54 70% are CD4⁺, of which 50% are RO⁺). We thus have two equations:

55
$$3.16 = \frac{\pi}{k + 5.25 \times 10^{11}}$$
$$100 = \frac{\pi}{k}$$

then by solving these two equations simultaneously we find

57 $\pi = 1.7 \times 10^{12}$ cells per day

58 $k = 1.7 \times 10^{10}$ cells

If we assume that at equilibrium the number of uninfected cells (*n*) is constant, and let K = k + n, then we can write k + y = k + n + x = K + x. *K* is the density dependency parameter used in the hybrid model (Eq (1) in main text).

62

In a typical HTLV-1 infected individual proviral load is of the order of 1% PBMC. Using
the figures above (CD4+CD45RO+ T cells make up approximately 15% of PBMC,
number of CD4+CD45RO+ T cells in a lymphocyte replete adult is approximately 5.25
× 10¹¹) we can estimate the number of uninfected CD4+CD45RO+ T cells in the body
(*n*) as:

70 Number of CD4+CD45RO+ uninfected (*n*) = $0.933 \times 5.25 \times 10^{11} = 4.9 \times 10^{11}$

71 And so

72
$$K = k + n = 1.7 \times 10^{10} + 4.9 \times 10^{11} = 5 \times 10^{11}$$
 cells

73 So to summarise we estimate:

74 $\delta = 3.16\%$ per day

75 $\pi = 1.7 \times 10^{12}$ cells per day

76
$$K = 5.1 \times 10^{11}$$
 cells

These parameters are used in the hybrid model. We note that in the upper bound model we only use δ (i.e. our estimates are independent of values chose for π and K) and for the occupancy class model we do not use any of these parameters (i.e. our estimates are independent of δ , π and K).