
Stochastic Model of Within-Host HTLV-1 Dynamics  1 

The following is based on [1, 2]. Consider a system with a discrete number of 2 

individuals, where each individual belongs to exactly one species or type. Assume that 3 

there are S  species 1 2( , ,..., )S , and that species i  has a frequency 4 

0( ) {0}iX t  =   at time t. Assume further that all individuals of the same species 5 

are identical. Then the vector 
1 2 0( ) ( ( ), ( ),..., ( ))T S

SX t X t X t X t=   is a random variable 6 

that describes the population of the system at time t. In our case, the individuals are 7 

HTLV-1 infected cells, and species are HTLV-1 infected clones (populations of cells 8 

identically infected with HTLV-1 with a common site of proviral integration in the host 9 

genome).  10 

 11 

Suppose there are ρ1, …, ρC possible reactions in the system, where a reaction ρc12 

( {1,..., })c C  is a mapping given by  13 
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where IN OUT

0,ci ci    are the number of individuals of the ith species respectively 17 

required for and present after the cth reaction, and gc > 0 is the reaction constant, which 18 

represents the average probability that a particular combination of IN

1

S

ci i

i


=

  individuals 19 



will react according to reaction ρc in an infinitesimal time interval [3]. We define the 20 

stoichiometric vector c  as the difference to the state vector X(t) made by reaction c 21 

( )OUT IN OUT IN

1 1 ,...,
T

S

c c c cS cS    = − −       (S4) 22 

We consider three types of reaction (namely cell death, mitosis, or infectious spread 23 

from each clone). It is important to note that, within a particular clone, there is no 24 

source inflow from frequency 0 to frequency 1 in our birth-death process. That is, we 25 

do not have a reaction ρj such that  26 

:*j



 →          (S5) 27 

for some constant value λ, as a clone cannot proliferate once it has become extinct. 28 

 29 

The propensity function αc of reaction ρc is the reaction constant gc multiplied by the 30 

number of different combinations of individuals required for reaction ρc, and is given 31 

by  32 
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for a potential state of the system 
1 2 0( , ,..., )T S

Sx x x x=   (i.e. xi is the number of 34 

particles of species Si). The evolution of the state vector X(t) is given by  35 
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c c c

c
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X t y P X s ds 
=
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for initial
0 0

Sy  . Eq (S7) states that the population X(t) at time t  is equal to the initial 37 

population y0 plus the sum over all reactions of the change c  to the population 38 



induced by each reaction, multiplied by the (random) number of times the reaction has 39 

occurred. The number of times each reaction occurs is given by a Poisson distribution 40 

in the time interval [0, t] with expected value of 
0

( ( ))
t

c X s ds , i.e. a Poisson distribution 41 

( )0
( ( ))

t

c c X s ds .  42 

 43 

Master Equation: Mass-Action Rate Birth-Death Process 44 

The probability distribution associated to the random variable max

0( )
S

X t   in (S7) is 45 

given by 0( ; ) ( ( ) | (0) )X t X t y X y= = = , where max

0 0,
S

y y  . ( ; )X t  is a column vector 46 

where each entry is a probability associated to a potential state of the random variable. 47 

It can be shown [2, 4-6] that ( ; )X t  is the solution to the Chemical Master Equation 48 
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   (S8) 49 

We can interpret Eq (S8) as follows: the rate of change in the probability of the state 50 

taking value X(t) = y is the sum over all reactions of the probability of arriving at state 51 

X(t) = y via reaction ρc (having previously been in state X(t) = y - νc) minus the 52 

probability of leaving state X(t) = y via reaction ρc. 53 

 54 

Transition Matrix 55 

If there is no upper limit on the frequency a given clone may take, the state space is 56 

given by 0 =  (Fig 3A). If however a clone is bounded by a maximum frequency 57 

  , then the state space is given by {0,..., }  =  (Fig 3B). We refer to   as a 58 



“truncated state space". Using  , we can summarise Eq (S8) using multiple, simpler 59 

differential equations 60 

( ; )
( ; )i

i

d X t
A X t

dt
=   for i =  1, …, Smax   (S9) 61 

where A is a τ×τ transition matrix associated with the state space   [7, 8]. A is a 62 

tridiagonal sparse matrix with all entries equal to zero except:  63 

, ( * ), 0f fA f f  = − +    64 

, 1 ( 1) , 0 1f fA f f + = +   −      (S10) 65 

1, * 1 1f fA f f + =   −  66 

where we index from f = 0 as the first term in the state space, and where π* is the 67 

aggregate cell proliferation rate, which remains constant when HTLV-1 proviral load is 68 

at equilibrium. In our system, A does not have any time-dependent factors, and so Eq 69 

(S9) has solution  70 

0,( ; ) At

i iX t e=        (S11)  71 

where 
0, ( ; 0)i iX t= =  is the initial probability distribution and Ate  is the matrix 72 

exponential [9].  73 

 74 

Initial Probability Distribution 75 

The initial probability distribution 0, ( ; 0)i iX t = =   [9] can be used to enter a fixed 76 

initial value, in which case for initial value 
0,(0) {0, , }i iX y =   , {0,..., }iy  ,    we 77 

have 78 



0,0, ,i ii y y=          (S12) 79 

where 
0,,i iy y  [10] is the Kronecker delta such that  80 
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 82 

Matrix exponential  83 

Computing the matrix exponential eAt is straightforward in principle, but considerably 84 

more difficult in practice when the dimension of the matrix is large [11-14]. 85 

Compounding this problem, multiple probability distributions at multiple time points are 86 

often desired. Fortunately however, the probability distribution for a series of time 87 

points can be calculated recursively using a single matrix exponential. More precisely, 88 

if the reaction propensities are independent of time, we can compute the matrix 89 

exponential eAs for a given time step s, and then recursively calculate the probability 90 

distribution at any time that is a multiple of s. Therefore, for 0k , we have the 91 

following recurrence relation:  92 

0,( ; ) As

i iX t s e= =   93 

( ; ) ( ; ( 1) )As

i iX t ks e X t k s= = = −   94 

In long form, we have  95 

( )0, 0,( ; )
k

Aks As

i i iX t ks e e= = =  96 

This means the computationally expensive [11] matrix exponential eAs needs to be 97 

calculated once only, and then recursively multiplied k times, which incurs significantly 98 

less runtime than calculating the matrix exponential k times.  99 



 100 

It is important to note that there is no source inflow from frequency 0 to frequency 1 in 101 

our birth-death process. That is, we do not have a reaction ρj such that  102 

:*j



 →   103 

for some constant value λ, as a clone cannot proliferate once it has become extinct. 104 

 105 

Stochastic threshold frequency F and state space upper limit τ  106 

To allow the possibility that a given clone goes extinct, a stochastic model is 107 

necessary; a purely deterministic set of ODEs would not allow HTLV-1 clones to die 108 

out. Ideally, each clone would be modelled stochastically, however in practice this is 109 

not computationally tractable, and so some clones must be modelled deterministically. 110 

The dynamics of large clones can be better approximated than those of small clones 111 

by a deterministic process. Further the errors associated with considering a stochastic 112 

process deterministically will decrease with the size of the clone. It is also true that 113 

larger clones are less likely to die out, and therefore modelling their extinction 114 

probability is less important. We took an empirical approach to specifying a threshold 115 

frequency F above which clones are modelled deterministically and below which 116 

clones are modelled stochastically.  117 

 118 

We defined the threshold frequency F in terms of the extinction probability over an 119 

arbitrarily long duration. We chose a duration tDur = 3133 days, as this was the 120 

maximum time between a patient’s first and last blood samples. Clones with a low 121 

probability of extinction over this period can be modelled deterministically without 122 



adversely affecting the modelling of infectious spread. Whereas clones with more than 123 

a 1% chance of extinction over this period are modelled stochastically. Therefore F is 124 

given by  125 

 Durmin{ : ( ( ) 0 | (0) ) 0.01 }i iF f X t X f= = =      (S13) 126 

given the rates of cell death and mitotic spread, and density dependency (S3A Fig). 127 

The upper limit τ of clone frequency is chosen to be sufficiently large not to constrain 128 

the trajectory of a growing clone. If this upper limit is too small, then the growth of a 129 

clone may be artificially limited, because it may “bounce” off the upper limit, as this 130 

cannot be exceeded by a stochastically modelled clone (Fig 3B). S3B Fig shows that 131 

a clone given a starting frequency F = 460 has a negligible probability of reaching 132 

frequency τ = 1500 after 3133 days, and therefore we chose τ = 1500 as the upper 133 

limit on the clone state space.  134 

 135 

Hybrid model propagation: Strang splitting 136 

For clones above threshold frequency F, we assume the expected values from the 137 

deterministic ODEs provide an adequate description of their behaviour. We thus 138 

partition our system of the within-host dynamics of HTLV-1 infection into two 139 

constituent systems: a deterministic system D(t) modelled by a system of ODEs and 140 

a stochastic system σ(t) modelled by multiple master equations. We propagate these 141 

systems concurrently as a hybrid model, using the following procedure of “Strang 142 

splitting" [15] for a given time step tn of duration h (formulation below taken from [1]): 143 

1. Half time step in deterministic D(t): Solve deterministic process in time interval 144 

[tn, tn + h/2]; keep σ(t) constant. 145 



2. Full time step in stochastic σ(t): Solve stochastic process (i.e. clone-specific 146 

master equations) in time interval [tn, tn+1] and keep D(tn + h/2) constant. 147 

3. Next half time step in deterministic system D(t) : Solve deterministic process in 148 

time interval [tn + h/2, tn+1] and keep σ(t) constant. 149 

The error associated in not propagating both systems exactly simultaneously is a 150 

function of the length of the time step h [1]. Modelling the whole system for a single 151 

time step consists of steps 1 to 3 (Fig 2B).  152 

 153 

 154 
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