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S2 Text: Effects of shot noise on network response

In the main text, we have classified response nonlinearities in networks of spiking
neurons using mathematical relations (specifically, Eq. (3) of the main text) which have
been derived using the diffusion approximation of synaptic inputs. In this section, we
show that our results remain valid when the shot-noise structure of synaptic inputs is
taken into account.

The response dynamics of a LIF neuron driven by a shot-noise process has been
investigated by several authors [1, 2]. The model used in [2] is analogous to the one we
described in the method section of the main text, but features exponentially distributed
Jij (Eq. (2) of the main text). This modification, which is biologically plausible since
post-synaptic potential amplitudes in cortex are broadly distributed with CVs close to 1
(see e.g. Table 1 in [3]), allows to solve analytically the master equation of the
probability distribution of the membrane potential, without resorting to the diffusion
approximation. Richardson and Swarbrick [2] have shown that the response of a single
neuron driven by a shot-noise process is given by
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where JE and JI are the mean excitatory and inhibitory synaptic efficacy, RE and RI
are the total firing rate produced by the presynaptic excitatory and inhibitory neurons,
whilst

σ2 = 2(J2
ERE + J2

IRI) . (2)

In what follows we use Eq. (1) to study how shot-noise affects the network response.
We perform our analysis in the framework of model A, where

RE = K(νX + ν) , RI = γKν , JE = J , JI = gJ . (3)

Analogously to what happens with the diffusion approximation, the network
response is obtained solving self-consistently Eq. (1); example solutions are shown in
Fig. A. Over a wide range of parameters, these solutions follow those predicted using
the diffusion approximation, i.e. solving Eq. (3) of the main text, with quantitative
discrepancies limited to a few spk/s.
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Fig A. Effects of shot noise on network response. Response of networks of
spiking neurons computed using the mean field formalism with a full description of the
shot-noise statistics of synaptic input (Eq. (1), circles) as a function of input strength
for various network parameters. Over the explored range of parameters, responses are
similar to those obtained using the diffusion approximation of synaptic input
(continuous lines, Eq. (3) of the main text but, as discussed in the text, with σ given by
Eq. (2). Discrepancies between the two models are larger when the assumptions of the
diffusion approximation are more strongly violated, i.e. at low K or large J and g, but
are at most a few spk/s. In the figure, the first row shows a close up of the second in
the region of response-onset. Unless otherwise specified, parameters are: K = 103,
J = 0.5mV, and g = 5.
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The close similarity of network responses computed with and without the diffusion
approximation can be understood as follows. Expanding Eq. (1) and keeping all the
terms of order up to 1/

√
K, we get

1
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= τrp + τ

√
π
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ex
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I

σ3
[G(umax)−G(umin)] , (4)

with

F (x) =
√
πex

2

[erf (x) + 1] , G(x) =
2

3

[
(2x2 + 1)F (x) + 2x

]
. (5)

The first two terms on the right-hand side of Eq. (4) represent 1/ν computed, under the
diffusion approximation, for a neuron driven by a synaptic input as the one in Eq. (2) of
the main text but with exponentially distributed Jij . These two terms are analogous to
those in Eq. (3) of the main text, but with σ2 given by Eq. (2), i.e. multiplied by a
factor two with respect to the case of homogeneous Jij (Eq. (5) of the main text). This
difference comes from the fact that, for exponentially distributed Jij and under the
diffusion approximation, the noise component of the synaptic inputs is proportional to
〈J2
ij〉 = 2J2.
Eq. (4), with respect to Eq. (3) of the main text, has two additional terms

(proportional to J/σ and RJ3/σ3, respectively) which represent corrections produced by
the shot-noise statistics of the input. We now analyze the effect of these terms on
response nonlinearities at finite K following the approach of the main text, i.e.
investigating separately the different regimes of activity.

In the high input/high rate regime, umax � −1, F (x) ∼ 1/x and Eq. (4) reduces to

(1− τrpν) [νX − νth − (gγ − 1)ν] = εν(1−∆high(ν)) , ε =
θ − Vr
KJ

,

∆high(ν) =
J

θ − Vr
+

1

3

(νX − (g3γ − 1)ν) [νX − νth − (gγ − 1)ν]

[νX + (g2γ + 1)ν]2
,

(6)

which, when ∆high(ν) is negligible, is analogous to the equation obtained using the
diffusion approximation (Eq. (13) of the main text). To classify response nonlinearities,
we solve Eq. (6) with a perturbative expansion ν = ν0 + εν + . . . . As with the diffusion
approximation, there are two solutions at order ε = 0 (strong coupling limit) in Eq. (6):
the balanced-state solution ν0 = (νX − νth)/(γg − 1) and the saturated solution
ν0 = 1/τrp. Using the balanced-state solution in the ε expansion, we get

ν0 =
νX − νth
γg − 1

, ν1 = − ν0
(γg − 1) (1− τrpν0)

, (7)

which is exactly what we found with the diffusion approximation (Eq. (20) of the main
text). Deviations produced by the non-Gaussian input (terms proportional to ∆high)
appear at the second order in ε and hence do not affect the classification of
nonlinearities (supralinear vs sublinear solutions) done in the main text. To understand
if the non-Gaussian input influence the number of solutions at a given value of νX , we
computed first order correction to the saturated solution and found

ν0 =
1

τrp
, ν1 = − ν0 (1−∆high(ν0))

τrp (νX − νth)− (γg − 1)
. (8)

Therefore, unlike what happens for balanced-state solution, corrections due to
shot-noise appear at the first order in the ε expansion. However, these corrections do
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not modify the sign of ν1 and hence, as discussed in the main text, the number of
admissible solutions in the network response. In fact, in ∆high(ν0), the first term is
small (typical values are J ∈ [0.1− 1]mV, θ − Vr ∼10mV) and the maximum value of
the second term in ∆high(ν0) is 1/3.

In the low input/low rate regime, umax � 1, F (x) ∼ 2
√
π exp(x2) and Eq. (4)

reduces to

τν =
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π
e−u

2
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√
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(
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K

)3
2

2
3 τ(νX − (g3γ − 1)ν)

3{τ [νX + (g2γ + 1)ν]} 3
2

.

(9)

Hence, up to corrections of order umax/
√
K, which are important only for really small

rates (of order exp−K), the implicit equation defining response in the low input/low
rate regime is analogous to the equation obtained using the diffusion approximation
(Eq. (15) of the main text).

For the intermediate linear region, the argument discussed in the main text (Eq. (16)
of the main text) remains valid also in the case of shot-noise inputs. Therefore, for umax
of order one, the network response is expected to be linear up to corrections of order
1/
√
K.

Combining the above results, we find that, for all the regimes of activity the network
encounters as umax varies, the classification of nonlinearities done in the main text
remains valid also when the shot-noise structure of the inputs is taken into account.
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