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S3 Text: Constraints on the amplitude of response-onset
nonlinearities

In all the examples of response-onset nonlinearities we have shown in the main text,
deviations from linear response unravel over a limited range of network rates. This
observation contrasts with what is observed in the SSN [1], where nonlinearities emerge
at response onset and develop over tens/hundreds of spk/s. In this section, we explore
in more detail the differences between the SSN and networks of spiking neurons in this
regime, focusing on the monostable scenario in which either the s1 or the s2 solution is
the only solution of network activity. We show that neuronal refractoriness gives strong
constraints on parameters for which only a single solution exists, and that such
constraints, together with the shape of the f-µ curve at low input, strongly constrain the
range of firing rates for which onset nonlinearities are observed.

Constraints due to neuronal refractoriness

In spiking networks, neuronal refractoriness can generate the emergence of multiple
solutions; requiring a unique response creates constraints which are not present in
models, such as the SSN, that do not a include refractory period.

An example of the effect of refractoriness on response-onset nonlinearities is shown
in Fig. 8 second row, where connectivity creating only supersaturating (s2) solution in
the SSN, also produce s3 and s4 solutions in spiking networks. When s2 solutions are
present, they are the only solution in the coupling limit when gE > 1/γ, else they
coexist with s3 and s4 solutions. In supersaturating solutions, the net effect of recurrent
interactions is to suppress excitatory activity. This suppression is mediated in the model
by the parameter gE , which controls the ratio between recurrent excitatory and
recurrent inhibitory inputs in excitatory cells. Increasing gE , while fixing all other
parameters, produces stronger suppression of excitatory activity and results in a lower
peak of excitatory rate in supersaturating solutions. This effect is seen numerically in
spiking networks and analytically in the SSN (see Eq 5.14 in [1]).

Therefore, requiring a unique solution generates constraints in the parameter space
which are not present in models that do not a include refractory period and limits the
amplitude of response-onset nonlinearities in supersaturating solutions.
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Constraints due to the shape of the f-µ curve at low input

As shown in the main text, decreasing coupling strength generates larger response-onset
nonlinearities; here we show that, in spiking networks, the shape of the f − µ curve
generates constraints on this increase that are not present in the SSN. We perform our
analysis using the Ricciardi model, which can be more easily compared with the SSN,
since they both have a fixed f − µ curve. similar results were found in the LIF network.

10
1

10
2

μ (mV)

10
0

10
1

10
2

10
3

ν
E

,I
(s

p
k
/s

)

A
y ∝ x

y ∝ x2

0 20

νX (spk/s)

0

2

4

ν
E

,I
(s

p
k
/s

)

B
K=300

0 50

νX (spk/s)

0.0

2.5

5.0

7.5

K=200

0 50 100

νX (spk/s)

0

20

40

60

K=100

100 200 300

K

0

5

10

p
e
a
k
 ν

E
(s

p
k
/s

)C

0 100

νX (spk/s)

−1

0

−
α

E

d
f I

/d
μ
(m

V
s
/s

p
k
)D

0 100

νX (spk/s)

0 100

νX (spk/s)

−1

0

−1

0

Fig B. Disappearance of supersaturation as the coupling strength decreases
(A) f − µ curve of Ricciardi model (black line); it starts supralinearly and becomes
linear for large currents. Linear (dash-dotted line) and quadratic (SSN, dotted line)
scalings are shown as references. (B) Response of excitatory (red) and inhibitory (blue)
neurons in Ricciardi model for three different coupling strength (values of
KEE = KIE = K indicated on top of the plots). (C) Peak response of excitatory
neurons in supersaturating solutions as a function of K. Supersaturation disappears for
K . 160. (D) Values of −αE/(dfI/dµ) (continuous lines) and ΩE/WEX (dashed lines)
as a function of νX and K. As predicted by Eq. (4), supersaturation emerges only for
ΩE/WEX < −αE/(dfI/dµ); decreasing coupling strength increases the value of ΩE and
prevents supersaturation. Simulation parameters: gE=4.0;gI=2.7;
JEE = JIE = J = 0.2mV; αE = αI = 1, WEX = WIX = JKτ , τ = 20ms. To simplify
comparison with SSN, we assumed τrp = 0.

Both in the SSN and in the Ricciardi model, firing rates are obtained solving a
stationary condition of the form (see methods for details)

νA = f(µA) , µA =
∑
B

WABνB +WAXαAνX . (1)

In the SSN, f is supralinear (specifically, a power-law with exponent∼ 2) for any value
of µ leading to non-zero firing rates. In the Ricciardi model, f features an expansive
nonlinearity, with an exponent larger than two, at low µ, but then becomes linear as µ
increases (Fig. B). This difference can affect strongly how the effective coupling between
cells changes with the network activity level. In the SSN model, the effective weight
from population B to population A is given by

dνA
dνB

= nk
1
n [νA]

n−1
n WAB . (2)

Therefore, as νX increases, no matter how small the W s are, there is always a critical
value at which the effective coupling becomes strong enough that recurrent inputs are
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comparable to feedforward inputs. For νX below the critical value, the network response
is supralinear, as it is determined solely by the single neuron f − µ curve; for νX above
the critical value, depending on the structure of the connectivity, the network response
can increase linearly or show supersaturation. Decreasing the W s increases the range of
νX over which effective coupling is weak and the amplitude of the supralinear response.
In the Ricciardi model, applying Eq. (2) locally, around a given value of µ, shows that
the effective coupling strength increases with activity only up to the linear region of the
f − µ curves, and saturates in that linear region 1. Therefore, only a limited decrease in
the W s can augment the range of supralinear response; larger increases produce linear
response. This argument shows that, both in regular and supersaturating solutions, the
Ricciardi model has an intrinsic limit on how large the region of supralinear response
can be. While the supralinear response at low inputs is the only nonlinearity in regular
solutions (we are neglecting refractoriness in this section), supersaturating solutions also
feature a region of sublinear response which emerges around the point at which
recurrent inputs are comparable to feedforward inputs. In what follows, we show that,
in the Ricciardi model, also the amplitude of this nonlinearity (specifically, the
maximum excitatory rate that can be generated while preserving supersaturation) is
limited by the shape of the f − µ curve. As shown in [1], conditions for supersaturation
can be obtained by taking the derivative with respect to νX in Eq. (1) and solving for
dνA/dνX ; this gives

dνE
dνX

=
(WEXαE + ΩE dfI/dµ) dfE/dµ

detW
, ΩE = WIIWEXαE −WEIWIXαI ,

WAB = δAB −WAB dfA/dµ , dfA/dµ = df/dµ
∣∣
µA
.

(3)

The excitatory rate νE decreases with νX , i.e. supersaturation emerges, any time that
the r.h.s. of Eq. (3) is negative. In the SSN, dynamical stability of the model requires
detW > 0 [1]. In the Ricciardi model, WAB = τAKABJAB , and

detW = 1 + dfI/dµ dfE/dµτEτIK
2J2βγ(gE − gI) +KJ (τIβγgIdfI/dµ− τEdfE/dµ) .

Since, in supersaturating solutions, gE > gI (Eq. (29) of the main text) and
dfI/dµ > dfE/dµ, detW is expected to be greater than zero for a broad parameter
range also in the Ricciardi model. Therefore, both in the SSN and in the Ricciardi
model, supersaturation emerges if

ΩE < −WEXαE
dfI/dµ

. (4)

In regular and supersaturating solutions, the inhibitory rate νI and µI increase
monotonically with νX . In the SSN, because of the supralinearity of the f − µ curve,
dfI/dµ increases with νX and, if ΩE < 0, there is always a value of νX at which Eq. (4)
is satisfied, no matter how small the W s are. In the Ricciardi model, dfI/dµ increases
with µI only up to the linear region of the f − µ curve and Eq. (4) can be satisfied only
if the W s are large enough to give ΩE < −WEXαE/max{dfI/dµ}. Solving numerically
Eq. (1) in the Ricciardi model (Fig. B), we find, in agreement with the above argument,
that νE decreases with νX only when Eq. (4) is satisfied. Furthermore, a moderate
reduction in coupling strength increases the value of νX at which supersaturation
emerges and increases the peak excitatory rate. Supersaturation eventually disappears
as coupling strength decreases.

1Note that in this figure we use τrp = 0. In the presence of a refractory period τrp > 0, the
effective coupling strength reaches a maximum and then gradually decreases as the neuron gets closer
to saturation.
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To summarize, in the Ricciardi model, the range of rates over which response-onset
nonlinearities unravel increases for a moderate decrease in coupling strength, and linear
response emerges for more significant reductions. This property limits the amplitude of
nonlinearities generated at response-onset.

References

1. Ahmadian Y, Rubin DB, Miller KD. Analysis of the stabilized supralinear
network. Neural Computation. 2013;25(8):1994–2037. doi:10.1162/NECO.

PLOS 4/4


