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Supplementary Note 1

While the contraction step1 is summarized in the Methods section, we wish to enlarge here
on how the contraction wavefunctions are determined. As the ALMO-EDA scheme is based
on a series of variationally optimized wavefunctions beginning from separated fragments,
the variational constraints used to define those intermediate wavefunctions are given by the
portion of Hilbert space made available to the molecule in which to find the variationally
optimal energy. We therefore must define a set of virtual orbitals that augment the Hilbert
space already occupied by the occupied orbitals and these virtuals must allow for contraction
(and nothing else). We base the selection of these virtuals on fragment electric response
functions (FERFs).2 That is, we seek those virtual orbitals that exactly define the response
of the density to a particular pertubation. In the case of polarization functions, these are
electric fields. In the case of contraction, the perturbation is an infinitessimal change in the
nuclear charge, as increasing the nuclear charge would cause the density to uniformly contract
toward the nucleus. With superscripts as derivatives, ∆ is an orbital perturbation, Z is a
nuclear charge perturbation, VNE is the nuclear-electron attraction, and P is the density,
then the monopole FERFs may be solved by the coupled perturbed-SCF linear equation:

E∆∆ ·∆Z = −E∆Z = −V Z
NE · P∆

The result is precisely one virtual orbital per occupied orbital which describes that occupied
orbitals response to such a perturbation and therefore describe contraction. By defining the
contraction in this way, we obtain the desired effect with a well-defined basis set limit (in-
creasing the size of the basis does not increase the number of virtual response orbitals, merely
improves the description of the response). Moreover, these contraction orbitals are solely a
property of the fragment of interest, regardless of that fragment’s chemical environment.

1



Supplementary Note 2

A comparison of the orbital contraction definition employed here and those of other au-
thors may prove enlightening. Hiberty and co-workers3,4 define contraction by comparing
the squares of orbital coefficients of specifically selected atomic orbitals (which are more
or less diffuse) between the free atom and the atoms in the final wave function. Our ap-
proach,1 on the other hand, determines a set of orbitals within the full span of the virtual
space, one for each occupied orbital, which exactly describes the response of the occupied
orbitals to a perturbation of the nuclear charge (or equivalently, placing a point charge at
the nucleus). Critically, while Hiberty et al. compare the coefficients of orbitals with dif-
ferent spatial extent in order to measure contraction in real-space, our method interrogates
contraction in energy-space. That is, we make no assertion about changes to the real-space
size of orbitals due to contraction (although such an analysis could be done by comparing
the real-space density before and after the variational contraction step), only the energetic
stabilization attained by allowing contraction to take place. We weigh the importance of
contraction only inasmuch as it lowers the total energy, not by how it changes the physical
shape of orbitals. Moreover, the essential purpose of determining the response orbitals is to
search out the “best” (in an energetic sense) description of a contracting orbital from the
entire virtual span, while Hiberty and co-workers manually assign a specific atomic orbital
to that purpose. In our approach, a well-defined basis set limit is achieved in which a larger
and larger basis set will produce a better and better representation of the contraction vir-
tual orbitals. While the orbitals chosen by Hiberty and co-workers are certainly excellent,
physically reasonable guesses for contraction orbitals, they may contain contributions from
other physical processes, such as polarization, which may explain why there are some spe-
cific examples where the two methods do not agree on the degree of contraction present.
On the whole, however, the methods concur that the contraction phenomenon is not uni-
versal in bond formation. Ruedenberg and co-workers5 appears to define contraction with
respect to quasi-atoms, which are constructed from the final molecular wave function, and
free atoms. Specifically, after the quasi-atoms are determined, the orthogonal complement of
the original orbital span within the quasi-atom basis is found and described as “intra-atomic
deformation”, which includes radial contraction. The energy of this deformation can then
be computed. We believe differences between our findings and Ruedenberg’s with respect
to contraction are due to how these different reference states (in Ruedenberg’s case the
quasi-atoms, in ours, the response orbitals) are defined.

Supplementary Note 3

There are a variety of conceivable definitions to employ for the covalent step in our approach.
We will see that all reasonable choices are qualitatively similar to the results discussed in
the text. We begin by defining a few states:

(A) Isolated fragments: the fragments of the bond in their geometrically and electronically
relaxed forms.
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(B) Geometrically prepared fragments: the fragments of the bond distorted to adopt their
geometry in the bond

(C) Prepared fragments: the fragments of the bond distorted to the geometry in the bond
and electronically prepared (that is, the alpha density is unchanged and the beta hole
has been optimized within this span, i.e. “rehybridized”)

(D) Heitler-London with geometrically prepared fragments: the two-configurational, in-
teracting bonded system employing identical orbitals to the geometrically prepared
fragments

(E) Heitler-London with prepared fragments: the two-configurational, interacting bonded
system employing identical orbitals to the prepared fragments

In this (and previous6) work, we term the preparation step to be the difference between
states (A) and (C) and the covalent step to be between states (C) and (E). We opt for the
state (C), as described above, because the geometric preparation can induce some orbital
rehybridization changes in some systems but not others. For example, a planar methyl radical
is sp2 hybridized while pyramidal methyl is sp3 hybridized. Hence the geometry change
induces an electronic change. In contrast, the amide radical enjoys no such hybridization
change during its geometric deformation, making these systems difficult to compare. Once
we have chosen the orbitals, they must be identical with those of the Heitler-London wave
function, and so (E) is the correct choice.

An alternative is to ignore this rehybridization and use precisely the orbitals of the geo-
metrically prepared fragments (B) to form the TCSCF wave function (D). One might also
consider defining the covalent step as the difference between steps (A) and (D) or (A) and
(E) and having no preparation step at all. We give the results for several of these differences
below in the example of butane (see Supplementary Figure 1). The crucial point is that all
4 possible definitions of the covalent step show an increase in the KE of butane at equilib-
rium (∼ 1.55Å): (C)→(E) as used in the main manuscript, and the alternatives (B)→(D),
(A)→(D), and (A)→(E).

(A)→(B) and (A)→(C) are both reasonable definitions of preparation and produce qualita-
tively similar curves. Along the same lines, (B)→(D) and (C)→(E) are both reasonable and
essentially similar definitions for a post-preparation covalent step. Less convincingly, one
can also skip the preparation step and consider (A)→(D) and (A)→(E) for an aggregated
covalent bond formation step, but even these choices are again qualitatively similar in Sup-
plementary Figure 1 to our preferred choice of (C)→(E) for the covalent step. We conclude
that kinetic energy increases for covalent bond formation at equilibrium in butane for all
possible definitions.

Nonetheless, we do not advocate including the geometric changes in the same term as the
covalent changes as it necessarily contaminates the physics at play. This is easily seen
when considering these states in the butane radical cation (see Supplementary Figure 2).
The geometric changes (A)→(B) alone account for the substantially negative total kinetic
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energy changes, (A)→(E), observed at equilibrium (∼ 2.0Å) for the butane radical cation.
Including these geometry-driven changes in the covalent step swamps the kinetic energy
increasing covalent changes. By contrast, when these geometric changes are not included,
that is for (B)→(D) and (C)→(E) we again see a similar effect of the covalent step to slightly
increase the kinetic energy associated with covalent bond formation in butane radical cation
near equilibrium.

Supplementary Note 4

An investigation with heavier-than-hydrogen groups7 was confounded by the fact that mul-
tiple, rather than single bonds were investigated. As was pointed out in the 1970’s, first row
π-bonds are expected to behave much like hydrogen σ-bonds due to the absence of inner
electrons or radial nodes and in these strongly bound systems will obscure the fact that
the σ bond in these systems are fundamentally different than the H2 σ-bond.8,9 The only
single-bonded species in that study was F2 which showed qualitatively identical results to
what was obtained here (kinetic energy increased significantly on bringing together two F
atoms to equilibrium, see Figure 12 of Schmidt et. al7); no comment on this fact was made
in that study, as these authors favored a quasi-atomic reference state derived by a procedure
from the molecular density, as opposed to atomic fragments as we advocate here. Another
study corroborated these qualitative data with other examples, but did not connect those
results to the conclusions presented here.10
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Supplementary Figures

Supplementary Figure 1. Butane kinetic energy decomposition (energy in kcal/mol,
bond length in Å) with alternative state definitions.

Supplementary Figure 2. Butane radical cation kinetic energy decomposition (energy
in kcal/mol, bond length in Å) with alternative state definitions.
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EDA/TDA Dissociation Curves

Supplementary Figure 3. H−F total energy decomposition (energy in kcal/mol, bond
length in Å).

Supplementary Figure 4. H−F kinetic energy decomposition (energy in kcal/mol, bond
length in Å).
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Supplementary Figure 5. [Li−Li]+ total energy decomposition (energy in kcal/mol, bond
length in Å).

Supplementary Figure 6. [Li−Li]+ kinetic energy decomposition (energy in kcal/mol,
bond length in Å).
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Supplementary Figure 7. Li−Li total energy decomposition (energy in kcal/mol, bond
length in Å).

Supplementary Figure 8. Li−Li kinetic energy decomposition (energy in kcal/mol, bond
length in Å).
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Supplementary Figure 9. F−F total energy decomposition (energy in kcal/mol, bond
length in Å).

Supplementary Figure 10. F−F kinetic energy decomposition (energy in kcal/mol, bond
length in Å).

Our energy decomposition analysis, which focuses on determining the physical origin of
lowering the total energy, indicates that quantum mechanical wavefunction interference of
frozen, ground-state fragments (i.e. ∆ECov) is the origin of normal covalent bonding,11 but
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that total energy stabilization need not be accompanied by a corresponding lowering of
kinetic energy, particularly in bonds between groups containing core electrons. This lack of
correlation can be seen in Figure 11

Supplementary Figure 11. Scatter plot of kinetic energy changes ∆T vs. total energy
changes ∆E for each component in the EDA. Prep total energies are guaranteed to lie in the
right half plane. ∆ECon and ∆EPCT are guaranteed in the left half plane. Critically, there
is no correlation between total energy changes and kinetic energy changes at the covalent
stage (blue diamond data points).
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Supplementary Tables

Equilibrium data

∆TPrep ∆TCov ∆TCon ∆TPCT ∆EPrep ∆ECov ∆ECon ∆EPCT

H +
2 -71.4 98.3 34.7 -33.7 -16.6 -14.0
H2 -97.9 175.6 16.8 -67.6 -19.3 -8.4
HF -21.6 -132.4 78.5 209.7 30.4 10.2 -43.0 -111.9
Li +

2 -7.6 -1.6 1.9 38.8 0.0 -8.4 0.0 -21.1
Li2 0.1 21.7 0.0 -10.9 0.0 -5.5 0.0 -6.3
F2 -3.1 327.2 -15.3 -293.2 3.9 38.1 -2.3 -56.4

H5C2−C2H5 -87.1 163.1 5.7 19.4 30.3 -63.7 -0.6 -43.7
H3C−CH3 -99.5 113.4 -0.7 74.0 29.4 -64.9 -0.5 -44.4
H3C−OH -54.9 169.9 -3.3 -2.5 52.3 -18.0 -1.2 -110.6
H3C−SiH3 -64.4 122.3 -1.6 39.0 18.1 -55.6 -0.3 -40.0
F−SiF3 17.6 247.8 -10.6 -124.3 69.8 4.5 -1.2 -215.5

Supplementary Table 1. EDA and TDA data (kcal/mol) for various molecule at equilib-
rium using HF determinants.

∆TPrep ∆TCov ∆TCon ∆TPCT ∆EPrep ∆ECov ∆ECon ∆EPCT

H2 0.0 -100.0 175.2 28.3 0.0 -76.0 -19.6 -16.4
HF -21.5 -137.4 99.4 198.0 30.0 -4.5 -34.6 -141.6
F2 -8.0 472.7 -1.7 -395.4 10.1 54.6 -3.4 -111.2

H3C−CH3 -84.5 104.7 3.2 74.6 35.3 -82.7 -0.6 -64.1

Supplementary Table 2. EDA and TDA data (kcal/mol) for various molecule at equilib-
rium using DFT (ωB97X-D) determinants.
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Einitial Tinitial Efinal Tfinal ∆E ∆T E/Tinitial E/Tfinal

H +
2 -0.499821176 0.499305885 -0.602000073 0.585833414 -64.3 61.7 -1.0010 -1.0078
H2 -0.999642352 0.998611758 -1.151602179 1.1491063 -95.4 94.4 -1.0010 -1.0022
Li +

2 -14.66905178 14.6569843 -14.71610882 14.71924412 -29.5 39.1 -1.0008 -0.9998
Li2 -14.86536469 14.86559353 -14.88410614 14.88275612 -11.8 10.8 -1.0000 -1.0001
HF -99.90200593 99.88675188 -100.0843127 100.1006191 -114.4 134.2 -1.0002 -0.9998
F2 -198.8043695 198.774892 -198.8309094 198.7998317 -16.7 15.6 -1.0001 -1.0002

H3C−CH3 -79.14750419 79.12627196 -79.27576728 79.2652207 -80.5 87.2 -1.0003 -1.0001
H5C2−C2H5 -157.249217 157.2121512 -157.3730023 157.372004 -77.7 100.3 -1.0002 -1.0000
CH3OH -114.9909369 114.9673127 -115.114417 115.1414251 -77.5 109.3 -1.0002 -0.9998

H3C−SiH3 -330.214808 330.1827407 -330.3388087 330.3347773 -77.8 95.4 -1.0001 -1.0000
F−SiF4 -686.9589599 686.8206356 -687.1859641 687.0284965 -142.4 130.4 -1.0002 -1.0002

Supplementary Table 3. Total energies and total kinetic energies satisfy the Virial theo-
rem at equilibrium
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