
1 
 

[11C]mHED PET follows a two-tissue compartment model in mouse 

myocardium with norepinephrine-transporter (NET) dependent 

uptake while [18F]LMI1195 uptake is NET-independent 

 

Linjing Mu1,2*, Stefanie D. Krämer2*, Geoffrey I. Warnock1,3, Achi Haider1,3, Susan Bengs1,3, 

Giovanni Cartolano2, Dominic S. Bräm2, Claudia Keller2, Roger Schibli2, Simon M. Ametamey2, 

Philipp A. Kaufmann1, Catherine Gebhard1,3 

 

1Department of Nuclear Medicine, University Hospital Zurich, 8091 Zurich, Switzerland 
2Radiopharmaceutical Sciences, Institute of Pharmaceutical Sciences, Department of 
Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog Weg 4, 8093 Zurich, 

Switzerland 
3Center for Molecular Cardiology, University of Zurich, 8952 Schlieren, Switzerland 

 
*: L. Mu and S.D. Krämer contributed equally to this manuscript 

Corresponding author: Catherine Gebhard; Email: Catherine.Gebhard@usz.ch 

 

SUPPORTING INFORMATION 

 

MATERIALS AND METHODS 

All chemicals, unless otherwise stated, were purchased from Sigma-Aldrich (Buchs, 

Switzerland), Acros Organics (Reinach, Switzerland) or Merck (Darmstadt, Germany), and 

used without further purification. Nuclear magnetic resonance spectra were recorded on a 

Bruker 400 MHz and a Bruker 500 MHz spectrometer with the corresponding deuterated 

solvent signals as internal standards. Chemical shifts are reported in parts per million (ppm) 

relative to tetramethylsilane (0.00 ppm). Values of the coupling constant (J) are given in hertz 

(Hz); the following abbreviations are used in this section for the description of the 1H-NMR: 

singlet (s), doublet (d), triplet (t), quartet (q), multiplet (m), doublet of doublets (dd), and bs 

(broad signal). The chemical shifts of complex multiplets are given as the range of their 

occurrence. High-resolution mass spectra (HR-MS) were recorded with a Bruker FTMS 4.7 T 

BioAPEXII (ESI). 

For radiolabelling product quality control, radio-HPLC chromatography was performed using 

an Agilent 1100 system with Gina software, equipped with UV multi-wavelength and Raytest 

Gabi Star detectors. Semi-preparative HPLC system was used for product purification. It is a 

Merck-Hitachi L6200A system equipped with Knauer variable wavelength detector and 

Eberline radiation detector. For the ex vivo stability studies, an ultra-performance liquid 
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chromatography (UPLC™) system from Waters and an attached Berthold co-incidence 

detector (FlowStar LB513) were used. 

LMI1195 precursor and reference compounds synthesis  

Synthesis of 3-bromo-4-((tert-butyldimethylsilyl)oxy)benzaldehyde 

 

3-Bromo-4-hydroxybenzaldehyde 1 (1.5 g, 7.47 mmol) was dissolved in dry dichlomethane 

(DCM, 60 ml) and 1H-imidazole (1.35 g, 19.86 mmol) and TBDMS-Cl (1.50 g, 9.92 mmol) were 

added. The reaction mixture was stirred at room temperature for 110 min and extracted with 

DCM (4×25 ml). The organic fractions were combined, dried over MgSO4 and concentrated 

under vacuum to yield a yellowish oil. The crude product was purified by column 

chromatography (3 → 5% EtOAc in hexane) to afford 3-bromo-4-(tert-butyl-

dimethylsilanyloxy)-hydroxybenzaldehyde 2 (2.1 g, 89%) as a colorless oil. 

1H-NMR (400 MHz, CDCl3) δ 9.84 (s, 1H), 8.07 (d, J = 2.0 Hz, 1H), 7.72 (dd, J = 8.4, 2.0 Hz, 

1H), 6.97 (d, J = 8.4 Hz, 1H), 1.05 (s, 9H), 0.30 (s, 6H). 

 

To a solution of 3-bromo-4-(tert-butyl-dimethylsilanyloxy)-hydroxybenzaldehyde 2 (3.39 g, 

10.8 mmol) in dry MeOH (17 ml), NaBH4 (203 mg, 5.38 mmol) was added portion wise. The 

reaction mixture was stirred at room temperature for 40 min. After completion, the reaction was 

quenched slowly with water. MeOH was removed under vacuum and extraction with DCM 

(3×15 ml) was carried out. The combined organic fractions were dried over MgSO4 and 

concentrated under vacuum to yield a clear oil. The obtained crude product was purified by 

column chromatography (85:15 hexane:EtOAc) to afford (3-bromo-4-((tert-

butyldimethylsilyl)oxy)phenyl)methanol 3 (2.50 g, 73%) as a clear oil. 

1H-NMR (400 MHz, CDCl3) δ 7.54 (d, J = 2.2 Hz, 1H), 7.16 (dd, J = 8.4, 2.2 Hz, 1H), 6.85 (d, 

J = 8.4 Hz, 1H), 4.59 (s, 2H), 1.04 (s, 9H), 0.24 (s, 6H). 
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To a solution of (3-bromo-4-((tert-butyldimethylsilyl)oxy)phenyl)methanol 3 (993 mg, 3.15 

mmol) in dry tetrahydrofuran (THF, 32 ml), 1,3-bis(tert-butoxy-carbonyl)-guanidine (1.23 g, 

4.73 mmol), triphenylphosphine (PPh3, 23 g, 4.73 mmol) and Diisopropyl azodicarboxylate 

(DIAD, 931 µl, 4.73 mmol) were added. The reaction mixture was stirred for 100 min at room 

temperature. Reaction control via thin-layer chromatography (TLC) showed still starting 

material 3, therefore 0.5 eq. of each 1,3-bis(tert-butoxy-carbonyl)-guanidine (635 mg, 2.25 

mmol), PPh3 (613 mg, 2.34 mmol) and DIAD (445 µl, 2.26 mmol) were added. After another 

60 min, the reaction was completed and concentrated under vacuum. The crude oil was 

purified by flash chromatography (95:5 hexane:EtOAc) to afford 1,3-bis(tert-butoxy-carbonyl)-

(3-bromo-4-(tert-butyl-dimethyl-sylanoxy)-benzyl)-guanidine 4 (1.58 g, 90%) as a clear oil. 

1H-NMR (400 MHz, CDCl3) δ 9.54 (bs, 2H), 7.46 (d, J = 2.2 Hz, 1H), 7.24 – 7.16 (m, 1H),  

6.81 (d, J = 8.4 Hz, 1H), 5.17 (s, 2H), 1.51 (s, 9H), 1.42 (s, 9H), 1.03 (s, 9H), 0.23 (s, 6H). 

 

1,3-bis(tert-butoxy-carbonyl)-(3-bromo-4-(tert-butyl-dimethyl-sylanoxy)-benzyl)-guanidine 4 

(2.05 g, 3.71 mmol) was dissolved in dry THF (48 ml). Tetrabutylammoniumfluoride (TBAF,  

1 M in THF, 7.41 ml, 7.41 mmol) was added dropwise. The reaction mixture was stirred at 

room temperature for 20 min. Removing solvents under vacuum formed brownish viscous oil 

that was further purified using flash chromatography (25 → 50% EtOAc in hexane) resulting in 

1,3-bis(tert-butoxy-carbonyl)-(3-bromo-4-hydroxy-benzyl)-guanidine 5 (1291 mg, 78%) as a 

white solid. 

1H-NMR (400 MHz, CDCl3) δ 9.44 (bs, 2H), 7.41 (d, J = 2.0 Hz, 1H), 7.11 (dd, J = 8.4, 2.0 Hz, 

1H), 6.89 (d, J = 8.4 Hz, 1H), 5.89 (bs, 1H), 5.06 (s, 2H), 1.50 (s, 9H), 1.40 (s, 9H). 
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To a solution of 1,3-Bis(tert-butoxy-carbonyl)-(3-bromo-4-hydroxy-benzyl)-guanidine 5  

(807 mg, 1.80 mmol) in dry DMF (20 ml), 3-bromopropan-1-ol (205 µl, 2.34 mmol) and K2CO3 

(448 mg, 2.70 mmol) were added. The reaction mixture was heated to 60°C and stirred for  

4.5 h. The reaction was quenched with the addition of H2O (30 ml). Extraction with EtOAc 

(4×60 ml) was performed and the combined organic fractions were dried over MgSO4 and 

concentrated under vacuum. The residue was purified by flash chromatography. After 

evaporation of the organic solvents of the product fractions, 1,3-bis(tert-butoxy-carbonyl)-(3-

bromo-4-(3-hydroxo-propoxy)-benzyl)-guanidine 6 was obtained as a clear oil (634 mg, 70%). 

1H-NMR (400 MHz, CDCl3) δ 9.48 (bs, 1H), 7.52 (d, J = 2.0 Hz, 1H), 7.31 (dd, J = 8.4 Hz,  

2.0 Hz, 1H), 6.85 (d, J = 8.4 Hz, 1H), 5.13 (bs, 2H), 4.18 (t, J = 5.8 Hz, 2H), 3.91 (t, J = 5.8 Hz, 

1H), 2.13 – 2.07 (p, J = 5.8 Hz, 2H), 1.51 (s, 9H), 1.43 (s, 9H). 

 

1,3-bis(tert-butoxy-carbonyl)-(3-bromo-4-(3-hydroxo-propoxy)-benzyl)-guanidine 6  

(634 mg, 1.26 mmol) was dissolved in pyridine (2 ml) and cooled to 0°C. Tosylchloride (385 

mg, 2.02 mmol) was added and the reaction mixture was allowed to warm up to room 

temperature. Reaction control was performed with TLC and no starting material was observed 

after 3 h. The reaction was stopped by the addition of H2O and extraction with EtOAc (4× 

60 ml) was performed. The combined organic fractions were combined and dried over MgSO4 

and concentrated under vacuum to afford 3-(4-((1,2-bis(tertbutoxycarbonyl)guanidino)methyl)-

2-bromophenoxy)propyl-4-methylbenzenesulfonate 7 (623 mg, 75%) as a white solid.  

1H-NMR (500 MHz, CDCl3) δ 9.42 (bs, 1H), 9.25 (bs, 1H), 7.72 (d, J = 8.2 Hz, 2H), 7.48 (d,  

J = 2.1 Hz, 1H), 7.19 (d, J = 8.2 Hz, 3H), 6.68 (d, J = 8.4 Hz, 1H), 5.06 (bs, 2H), 4.28 (t,  

J = 5.8 Hz, 2H), 3.95 (t, J = 5.8 Hz, 2H), 2.34 (s, 3H), 2.14 (p, J = 5.8 Hz, 2H), 1.49 (s, 9H), 

1.41 (s, 9H). 
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Intermediate 7 (102 mg, 0.16 mmol) was dissolved in dry THF (500 µl) and TBAF (1 M in THF, 

310 µl, 0.31 mmol) was added. The reaction mixture was heated to 50°C and completion of 

the reaction could be observed after 5 h. Extraction with EtOAc (4×60 ml) was performed and 

the combined organic fractions were dried over MgSO4 and concentrated en vacuo to yield a 

crude yellow oil. The crude product was purified by flash chromatography to afford 1-(3-bromo-

4-(3-fluoropropoxy)benzyl)1,3-bis(tertbutoxycarbonyl)guanidine 8 (49 mg, 63%) as a yellowish 

oil. 

1H-NMR (400 MHz, CDCl3) δ 9.63 (s, 1H), 7.59 (d, J = 2.2 Hz, 1H), 7.49 (d, 1H), 7.41 – 7.36 

(m, 1H), 7.30 (dd, J = 8.4, 2.2 Hz, 1H), 6.86 (d, J = 8.4 Hz, 1H), 5.30 (bs, 2H), 4.76 (t, J = 5.8 

Hz, 1H), 4.64 (t, 1H), 2.25 (p, J = 5.8 Hz, 1H), 2.20 – 2.15 (m, 1H), 1.52 (s, 9H), 1.48 (bs, 9H). 

 

1-(3-bromo-4-(3-fluoropropoxy)benzyl)1,3-bis(tertbutoxycarbonyl)guanidine 8 (48 mg,  

0.07 mmol) was dissolved in 1,4-dioxane (100 µl) and 4 M HCl (400 µl) was added. The 

reaction solution was heated to 50°C. After 30 min, the reaction was completed and the 

solution was neutralized to pH 4 using 4 M NaOH. Product 9 was purified by semi preparative 

HPLC using water (solvent A) and acetonitrile (solvent B) as solvent system and applying the 

following method: initial 100% A, 0% C, 0–20 min 80% A and 20% C, 20–25 min 80% A and 

20% C, 25–26 min 100% A and 0% C, 26–30 min 100% A and 0% C. The flow was 4 ml/min 

and absorption measured at a wavelength of 254 nm. After lyophilization of the product 

fractions, reference compounds 9 was obtained as a white solid (22 mg, 59%).  

1H-NMR (400 MHz, MeOD) δ 7.54 (d, J = 2.2 Hz, 1H), 7.29 (dd, J = 8.4, 2.2 Hz, 1H), 7.07 (d, 

J = 8.4 Hz, 1H), 4.73 (t, J = 6.0 Hz, 1H), 4.67 (d, J = 47.2 Hz, 2H), 4.61 (t, 1H), 4.33 (s, 2H), 

4.17 (t, J = 6.0 Hz, 2H), 2.22 (p, J = 6.0 Hz, 1H), 2.16 (p, J = 6.0 Hz, 1H).  
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13C-NMR (101 MHz, MeOD) δ 156.39 (s), 133.35 (s), 131.40 (s), 128.99 (s), 114.64 (s), 113.23 

(s), 82.30 (s), 80.68 (s), 66.03 (d, J = 6.6 Hz), 44.88 (s), 31.40 (d, J = 20.6 Hz). 

HR-MS (ESI: M+H): calculated for C11H16BrFN3O: 304.0455, m/z found was 304.0455. 

Synthesis of [18F]LMl1195 

[18F]fluoride (18F-) was produced via the 18O(p,n)18F nuclear reaction by bombardment of 98% 

enriched [18O]water using a Cyclone 18/9 cyclotron (18-MeV; IBA, Belgium). Aqueous 18F was 

trapped on a hydrophilic anion exchange cartridge (Waters SepPak Accell QMA cartridge 

carbonate) and eluted with a 2 ml acetonitrile/water (6:4) solution containing 10 mg kryptofix 

(K222) and 1.2 mg K2CO3 into a reaction vessel. The solvents were evaporated at 90°C under 

reduced pressure with a gentle inflow of nitrogen gas. After addition of acetonitrile (MeCN,  

1 ml), azeotropic drying was carried out. This procedure was repeated twice to afford dry  

K222-K[18F]F complex. A solution of precursor compound 7 (2 mg) in dry MeCN (0.5 ml) was 

added and the reaction mixture was stirred at 50°C for 30 min. The solvent was evaporated, 

and the reaction vessel was cooled down to 50°C, then HCI (1 ml, 4 M) was added for N-Boc 

deprotection and the reaction mixture was stirred for 10 min. After neutralization (0.8 ml NaOH, 

4M) and dilution with 1.2 ml water, the crude product was purified by semi-preparative HPLC 

system by using an ACE column (250 x 10 mm). The collected product fraction was diluted 

with water (10 ml), trapped on a C18 light cartridge (Waters, preconditioned with 5 ml EtOH 

and 10 ml water), washed with water (5 ml) and eluted with acidified EtOH (0.5 ml, 1 µM HCI 

in EtOH) through a sterile filter (0.2 µm). The volume of EtOH was decreased under reduced 

pressure until ca. 0.1 ml and sodium phosphate buffer (0.15 M, pH 7.4, 2 ml) was added to 

give a final EtOH concentration of 5%. For quality control, an aliquot of the formulated solution 

was analysed using the analytical HPLC system. The identity of the 18F-labeled product was 

confirmed by comparison with the HPLC retention time of its non-radioactive reference 

compound LMI1195 and by co-injection. The molar radioactivity of the product was calculated 

by comparison of UV peak intensity with a calibration curve of the non-radioactive reference 

compound. 

Synthesis of [11C]mHED 

[11C]CO2 was produced in a Cyclone 18/19 cyclotron (18-MeV; IBA Belgium) via the 14N(p,α)11C 

nuclear reaction and subsequently reduced by heterogeneous nickel catalysis as previously 

reported [1]. The resulting [11C]methane was converted to [11C]iodomethane by gas phase 

iodination and further reacted with silver triflate to afford the methylating agent [11C]methyl 

triflate [2, 3]. The latter was bubbled into a solution containing 1 mg metaraminol in 0.4 ml of 

MeCN/H2O (20:1) and the reaction mixture was stirred for 3 min at ambient temperature [4]. 

The mixture was diluted with 1.8 ml of aqueous NaH2PO4 (0.2 M) and purified by semi-
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preparative HPLC (Luna C18 250 × 10.0 mm, 5 μm column) with the following conditions:  

0.2 M NaH2PO4 in H2O (solvent A), EtOH (solvent B); 0.0–1.9 min, 100% A; 2.0–2.1 min,  

100–93% A; 2.2–14.9 min, 93% A; 15.0–15.1 min, 93–100% A; 15.2–25.0 min, 100% A. The 

flow rate was 5 ml/min and the UV signal was detected at 230 nm. The product was collected 

(retention time: 8.9 min) in a sterile vial and the pH of the final formulation was adjusted to 6.5 

by the addition of sodium phosphate buffer (0.15 M, pH 7.4). Quality control was performed by 

HPLC using an ACE 3 C18 column (50 x 4.6 mm id) with the separation conditions: 0.1% TFA 

in H2O (solvent A), MeCN (solvent B); 0.0–6.0 min, 2–5% B; 6.1–7.0 min, 5–2% B;  

7.1–10.0 min, 2% B at a flow rate of 1 ml/min and UV signal detection at 280 nm (retention 

time: 5.6 min). Molar activities were calculated by comparison of UV intensity with a calibration 

curve of the corresponding non-radioactive standard.  

Arteriovenous shunt and blood coincidence counting 

For the arteriovenous shunt surgery, the mice were anesthetized with ~2.5% isoflurane in 

oxygen/air (50%/50%). Body temperature was maintained at 37°C with a heating pad. 

Polyethylene catheters (PE10 with an internal diameter of 0.28 mm; Smiths Medical, Adliswil, 

Switzerland) filled with heparinized (20 IU/ml) saline were inserted into the right femoral artery 

and vein with the help of a stereomicroscope and securely fastened with ligatures (6/0 suture 

thread, Fine Science Tools, Heidelberg, Germany). Additionally, catheters were held in place 

with tape. The animals were kept under anaesthesia for all subsequent procedures.  

The arterial and venous catheters were connected and run through a coincidence counter 

(Twilite; Swisstrace GmbH, Zurich, Switzerland) positioned next to the scanner bed. The 

volume inside the blood counter was approximately 6 µl (10 cm of PE10). A constant flow of 

120 µl/min was maintained by a peristaltic pump (Ismatec, Wertheim-Mondfeld, Germany). 

The tracer was injected into the arteriovenous shunt. The total volume of the tube system was 

approximately 60 µl. Blood counter data were recorded with the acquisition tool of the imaging 

software PMOD. The background counts of the blood counter were determined before tracer 

injection and were subtracted from the measured blood counts. The remaining counts were 

corrected for radioactivity decay with reference to the time point of tracer injection.
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SUPPLEMENTARY TABLES AND FIGURES 

Supplementary Table S1 Lower and upper limits of fit parameters 

 K1 

(ml/min/cm3) 

k2 (1/min) k3 (1/min) or 

K3 (ml/min/cm3) 

k4 (1/min) vb 

Lower limit 0.006 0 0.006 0 0.1 

Upper limit 2 

(6 for initial 

evaluation) 

2 

(6 for initial 

evaluation) 

2 

(6 for initial 

evaluation) 

1 0.9 

 

 

 

 

 

 

Supplementary Figure S1. SUV1-31min of the neck region was independent of NET inhibition 

by mHED, metaraminol or desipramine (combined dose on x axis).  
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Supplementary Figure S2. Radio-UPLC profiles of heart and urine extracts at 5 and 60 min 

post injection of [11C]mHED in FVN/B mouse. The top panel represents the formulated intact 

compound [11C]mHED. 
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Supplementary Figure S3. TACs under partial or full NET saturation, fit based on a surrogate 

input function with the TCM2v. a) The injected combined mass of [11C]mHED and metaraminol 

was 61.6 nmol/kg where partial NET saturation is expected. b) Scan with 66 µmol/kg 

desipramine i.p. pre-injection. Concentrations in nM (a) and µM (b) were calculated from the 

injected mass (mHED, metaraminol and desipramine) and measured radioactivity. Black 

circles, PET data (converted to concentrations); red lines, fitted TACs; black lines, surrogate 

input function; grey lines, corresponding whole blood radioactivity; blue and green lines, 

simulated concentrations in the individual tissue compartments of the TCM2v (see insert in 

Figure 6d). 
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Supplementary Figure S4. Dose-dependence of fit parameters. Fit parameters of the four 

analyzed models (TCM1, TCM2p, TCM2s, and TCM2v) were compared to the total dose of 

combined mHED, metaraminol and desipramine. Symbols on the right dose scale (66 µmol/kg) 

are those with pre-administered desipramine (20 mg/kg as desipramine HCl). Red symbols, 

parameters from scans with an input function. 



12 
 

 

Supplementary Figure S5. Comparisons of clearance and mass transfer rate constants 

resulting from the fits to TCM1, TCM2p, TCM2s (y-axes), and TCM2v (x-axes). Doses of 

combined mHED, metaraminol and desipramine between 1.5 nmol/kg and 66 µmol/kg. Both 

K1 and k2 were equal for TCM2s and TCM2v. K1 and K3 in ml/min/cm3; k2, k3, k4 in 1/min. Top 

left plot as in Figure 7b. Red symbols, parameters from scans with an input function. 
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Supplementary Figure S6. Comparison of fit parameters K1 to k4 with model- and input-

function independent SUV1-61min. K1 and K3 in ml/min/cm3; k2, k3, k4 in 1/min. In the two-tissue 

compartment models, the correlation was significant for K1, independent of whether 

desipramine scans were included or not (p<0.001 vs p=0.017; see Figure 7c for SUV1-31min). It 

should be noted that 11 of the 14 scans were analyzed with a surrogate input function. Red 

symbols, parameters from scans with an input function. 



14 
 

 

Supplementary Figure S7. Correlation between SUV1-31min and SUV1-61min. r2 and p as 

indicated. Line, linear regression. Red symbols, parameters from scans with an input function. 
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