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Strain table 
 

Strain/Plasmid 
Name Parent Operation Genotype 

E. coli lab stock strains 
MG1655 n/a Obtained from CGSC (7740) rph-1 λ- 
TB10 W3110 Gift of Dr. Dirk Landgraf rph-1 λ- nadA::Tn10 λcI857 Δ(cro-bioA)  

 
PMB14 MG1655 Originally obtained from Dr. 

Thomas Silhavy 
rph-1 λ-attP::Z2(lacIq  tetR )-specR 
 

JP371 MC4100 Gift of Dr. Dirk Landgraf MC4100 rpoS::Tn10 sprE-3xFLAG  
ΔclpPX::FRT-Kan 

E. coli base strains 
NDL39 MG1655 Transformed with pKD46 rph-1 λ-, pKD46 
NDL54 NDL39 λ-red integration of ΔmotA allele rph-1 λ- ΔmotA::FRT-kanR 

 
NDL56 NDL54 P1 transduction of kanR marker into 

MG1655 
rph-1 λ- ΔmotA::FRT-kanR 

 
NDL93 NDL56 FLP removal of kanR marker with 

pCP20 
rph-1 λ- ΔmotA 

NDL156 TB10 λ-red integration of PRna1-
mCherry/mKate2-FRT-kanR 
(henceforth PRNA1-RFP) from 
pNDL-194 

rph-1 λ- nadA::Tn10 λcI857 Δ(cro-bioA) 
glmS::PRNA1-RFP-FRT-kanR 
 

NDL159 NDL93 P1 transduction of kanR marker from 
NDL-156 into NDL93 

rph-1 λ- ΔmotA glmS::PRNA1-RFP-FRT-
kanR 

NDL162 NDL159 FLP removal of kanR marker with 
pCP20 

rph-1 λ- ΔmotA glms::PRNA1-RFP  

E. coli spontaneous pulsing reporters 
NDL339 TB10 λ-red integration of PRv1-GFPmut2-

FRT-kanR 
rph-1 λ- nadA::Tn10 λcI857 Δ(cro-bioA) 
phoA:: PRv1-GFPmut2-FRT-kanR 

NDL348 NDL162 P1 transduction of NDL339 KanR 
marker into NDL162 

rph-1 λ- ΔmotA glmS::PRNA1-RFP phoA:: 
PRv1-GFPmut2-FRT-kanR 

NDL368 NDL348 FLP removal of kanR marker with 
pCP20 

rph-1 λ- ΔmotA glmS::PRNA1-RFP phoA:: 
PRv1-GFPmut2  

NDL374 NDL368 P1 transduction of specR marker 
from PMB14 into NDL368 

rph-1 λ- ΔmotA glmS::PRNA1-RFP phoA:: 
PRv1-GFPmut2 attP::Z2(lacIq  tetR)-
specR 

TMN1221 NDL374 Tn7-mediated integration of pNDL-
316 PrpsOmut-SinR-Plac-SinI 

rph-1 λ- ΔmotA glmS::PRNA1-RFP phoA:: 
PRv1-GFPmut2 attP::Z2(lacIq  tetR)-
specR attTn7:: PrpsOmut-sinR-Plac-sinI 

NDL423 TMN1221 P1 transduction of ΔclpPX allele 
from JP-371 into TMN1221  

rph-1 λ- ΔmotA glmS::PRNA1-RFP phoA:: 
PRv1-GFPmut2 attP::Z2(lacIq  tetR)-
specR attTn7:: PrpsOmut-SinR-Plac-SinI 
ΔclpPX::FRT-Kan 

NDL406 TB10 λ-red integration of pNDL-305 PRV1-
slr-ssrA-camR 

rph-1 λ- nadA::Tn10 λcI857 Δ(cro-bioA)  
intC:: PRV1-slr-camR 

NDL411 TMN1221 P1 transduction of slr allele from 
NDL-406 into TMN1221 

rph-1 λ- ΔmotA glmS::PRNA1-RFP phoA:: 
PRv1-GFPmut2 attP::Z2(lacIq  tetR)-
specR attTn7:: PrpsOmut-SinR-Plac-SinI 
intC:: PRV1-slr-camR 

NDL419 NDL411 P1 transduction of ΔclpPX allele 
from JP-371 into NDL411 

rph-1 λ- ΔmotA glmS::PRNA1-RFP phoA:: 
PRv1-GFPmut2 attP::Z2(lacIq  tetR)-
specR attTn7:: PrpsOmut-SinR-Plac-SinI 
intC:: PRV1-slr-camR ΔclpPX::FRT-Kan 
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NDL425 NDL162 P1 transduction of ΔclpPX allele 
from JP-371, SpecR marker from 
PMB14 and integration of a Tn7 
construct containing an IPTG-
inducible GFP into NDL-162 

rph-1 λ- ΔmotA glmS::PRNA1-RFP 
attP::Z2(lacIq  tetR)-specR attTn7:: PLac-
GFP-intC:: PRV1-slr-camR 
ΔclpPX::FRT-Kan 
 

B. subtilis lab stock strains 
3610 n/a n/a Wild B. subtilis isolate NCIB3610 

PY79 n/a n/a Prototrophic lab strain PY79 
RL4553 3610 n/a slr::tet 
RL4928 PY79 n/a ylnF/yloA::Tn917::amyE::cat 
RL4930 PY79 n/a ywrK::Tn917::amyE::cat 
 B. subtilis base strains 
TMN1114 PY79 From (9) PtapA-cfp (Cm) 

TMN690 3610 From (9) amyE:: Phag-gfp (Cm) sacA::PtapA-
mKate2L (Kan) hagA233V (Phleo) 

TMN694 3610 From (9) amyE:: Phag-gfp (Cm) sacA::PtapA-
mKate2L (Kan) hagA233V (Phleo) 
slr::mls 

 B. subtilis HALO reporter strains  
TMN1033 PY79 Transformed with pTMN1231 and 

selected for integration at alternative 
amyE locus integrated between ylnF 
and yloA. 

ylnf/yloA::PsinI -sinI-HALO(spc) 

TMN1107 PY79 Transformed with pTMN1232 and 
selected for integration at alternative 
amyE locus integrated between ylnF 
and yloA. 

ywrK::PsinR -sinR-HALO(spc) 

TMN1075 3610 Markerless deletion of sinI (see 
below for details) 

ΔsinI 

TMN1041 TMN1075 sinI-HALO allele transduced from 
TMN-1033 into TMN1075 

ΔsinI  ylnF/yloA::PsinI -sinI-HALO (spc) 

TMN1050 3610 Long flanking homology deletion 
(see below) 

sinR::mls 

TMN1123 TMN1041 tapA reporter transduced from TMN-
1114 into TMN1041 

ΔsinI  ylnF/yloA::PsinI-sinI-HALO (spc) 
PtapA-cfp(Cm) 

TMN1125 TMN1050 sinR-HALO allele transduced from 
TMN-1107 to TMN1050 

sinR::mls ywrK::PsinR-sinR-HALO (spc)  

TMN1126 TMN1125 tapA reporter transduced from TMN-
1114 to TMN1125 

sinR::mls ywrK::PsinR -sinR-HALO (spc) 
PtapA-cfp(Cm) 

TMN1227 TMN1123 Transduced slr::tet allele from 
RL4553 into TMN1123 

ΔsinI  ylnF/yloA::PsinI-sinI-HALO (spc) 
PtapA-cfp(Cm) slr::tet 

TMN1229 TMN1126 Transduced slr::tet allele from 
RL4553 into TMN1126 

sinR::mls ywrK::PsinR -sinR-HALO (spc) 
PtapA-cfp(Cm) slr::tet 

B. subtilis spontaneous pulsing reporter strains  
TMN1170 TMN690 ΔsinR markerless deletion 

transduced into TMN690 
amyE:: Phag-gfp (Cm) sacA:: PtapA-
mKate2L (Kan) 
hagA233V (Phleo) ΔsinR 

TMN1153 PY79 Transformed with plasmid 
pTMN1231 and selected for 
integration at alternative amyE locus 
integrated at ywrK 

ywrK::Pspank-sinR(Spc) 

TMN1178 TMN1170 Inducible sinR allele transduced 
from TMN1153 into TMN1170 

amyE:: Phag-gfp (Cm) sacA:: PtapA-
mKate2L (Kan) hagA233V (Phleo) ΔsinR 
ywrK::Pspank-sinR(Spc) 

TMN1182 TMN1178 slr::mls  allele transduced from 
TMN694 into TMN1178 

amyE:: Phag-gfp (Cm) sacA:: PtapA-
mKate2L (Kan) hagA233V (Phleo) ΔsinR 
ywrK::Pspank-sinR(Spc) Δslr 
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TMN1142 TMN690 ΔsinI markerless deletion transduced 
into TMN690 

amyE:: Phag-gfp (Cm) sacA:: PtapA-
mKate2L (Kan) hagA233V (Phleo) ΔsinI 

TMN1147 PY79 Transformed with plasmid 
pTMN1229 and selected for 
integration at alternative amyE locus 
integrated at ywrK 

ylnF::Pspank-sinI (Spc) 

TMN1150 TMN1142 slr::mls allele transduced from 
TMN694 into TMN1142 

amyE:: Phag-gfp (Cm) sacA:: PtapA-
mKate2L (Kan) hagA233V (Phleo) ΔsinI 
slr::mls 

TMN1159 TMN1150 TMN1150 transduced with inducible 
sinI allele from TMN1147. 

amyE:: Phag-gfp (Cm) sacA:: PtapA-
mKate2L (Kan) hagA233V (Phleo) ΔsinI 
slr::mls ylnF::Pspank-sinI (Spc) 

NDL-88 TMN1142 TMN1142 transduced with inducible 
sinI allele from TMN1147.  

amyE:: Phag-gfp (Cm) sacA:: PtapA-
mKate2L (Kan) hagA233V (Phleo) ΔsinI 
ylnF::Pspank-sinI (Spc) 

E. coli plasmids 
pNDL-194 n/a Described below.  Modified ColE1 RNA1 promoter driving 

constitutive expression of mCherry-
mKate2 segmentation marker 

pNDL-271 n/a Described below.  SinR-repressible λ PL-based synthetic 
promoter (PsynthR1) driving GFP 
expression 

pTMN1215 n/a Described below. Constitutive sinR driven by PrpsO, IPTG-
inducible expression construct. Set up for 
attTn7 chromosomal integration. 

pNDL-316 n/a Described below.  Constitutive sinR driven by randomly 
mutagenized PrpsO promoter, IPTG-
inducible sinI expression construct. Set 
up for attTn7 chromosomal integration. 

pNDL-302 n/a Described below.  PsynthR1-slr-GFPmut2 expression 
construct. Mutagenized to tune slr 
expression level. 

pNDL-305 n/a Described below.  Mutated PsynthR1 driving expression of slr-
ssrA cassette  

B. subtilis plasmids 
pTMN1229 n/a Described below.  IPTG-inducible sinI (Pspank-sinI) 
pTMN1231 n/a Described below.  IPTG-inducible sinR (Pspank-sinR) 
pTMN1231 
 

n/a Described below.  C-terminal fusion of HaloTag to SinI 
under native regulation (PsinI-sinI-HALO) 

pTMN1232 n/a Described below.  C-terminal fusion of HaloTag to SinR 
under native regulation (PsinR-sinI-
HALO) 

 

Plasmid and strain construction 
 
pNDL-194 

pNDL-194 links a constitutive RFP expression construct to an FRT-flanked kanamycin resistance 
maker. This construct encodes the constitutive segmentation marker used in all described E. coli 
strains. The RFP gene encodes an mCherry/mKate2 hybrid protein with the first 11 amino acids 
of mCherry fused to the full mKate2 ORF (appended sequence: 5’ atg gtt agt aaa gga gaa gaa aat 
aac atg gca 3’). In our hands, this leader appreciably boosts the observed RFP signal in E. coli. 
Expression is driven by a modified constitutive RNA1 promoter from the plasmid colE1 (PRNA1).  
To generate pNDL-194, the mKate2 ORF was PCR amplified from pDHL503 (gift of Dr. Dirk 
Landgraf) with NL-110 and NL-111. Primer NL-110 appends the mCherry leader to mKate2. Both 
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primers contained 40 bp of homology to pNDL-52, a plasmid that allows cloning of an insert 
between the PRNA1 promoter and an FRT-kanR allele. The pNDL-52 backbone was PCR amplified 
with NL-105 and NL-106, and joined with the amplified mKate2 expression cassette by isothermal 
assembly (ITA) to yield pNDL-194.   
 
pNDL-271  

In order to visualize the state of the reconstituted SinI/SinR circuit, we needed a promoter that 
responded to SinR expression level. However, as SinR does not exist in E. coli, we needed to 
design this promoter from scratch. Taking inspiration from IPTG-inducible variants of the λ PL 
promoter, we placed consensus SinR binding sites between the -10 and -35 elements and 
immediately upstream of the –35 element of the λ PL promoter (see diagram below). Notably, this 
orientation preserves the natural spacing of SinR binding sites in the B. subtilis epsA-O operon 
promoter. This synthetic promoter was synthesized as a gBlock (PsynthR1 in primer table, IDT) with 
homology to pNDL-263 (a vector carrying GFPmut2 linked to an FRT-flanked kanamycin 
resistance marker). Backbone of pNDL-263 was amplified by PCR, and joined with the gBlock by 
isothermal assembly.  
 

 
 

pNDL-302 

pNDL-302 encodes the slr gene under the control of the synthetic SinR-repressible promoter. We 
fine-tuned the strength of this promoter by generating a library of pNDL-302 clones with 
mutated—but still SinR-repressible—promoter sequences. See below for details on the screen 
design and selection criteria. To generate pNDL-302, a gBlock encoding a PsynthR1-slr-ssrA 
expression construct (PsythR1-slr-ssrA  in primer table) was ordered (IDT), and PCR-amplified with 
NL-284 and NL-287. Both primers appended homology to pUA66 (a vector encoding a 
promoterless RBS-GFP cassette (43)) to targeting insertion upstream of the GFP ORF, and NL-
284 contained a series of randomized bases over the -35 element of the promoter. A library of 
PsythR1 variants was generated by fusing the PCR-amplified gBlock to the pUA66 backbone by 
ITA. Note that the plasmid product was transformed into MC1061, a common strain that (1) has 
functional clpP-mediated proteolysis to ensure that Slr levels were kept low through active 
proteolysis, and (2) has no sinR gene, ensuring that the cassette was expressed to its maximal level.   
 

pNDL-305  

pNDL-305 encodes the finalized PsynthR1mut-slr-ssrA construct linked to a chloramphenicol 
resistance cassette. To generate pNDL-305, the backbone of pNDL-280 (a pUC-based cloning 
vector with an MCS upstream of a chloramphenicol resistance gene) was PCR amplified and the 
PsynthR1mut-slr-ssrA cassette was amplified from the desired pNDL-302 clone. Both fragments were 
purified and joined by ITA.   
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pTMN1215 

pTMN1215 is a Tn7 integration vector for a cassette containing a constitutively-expressed sinR 
gene under the constitutive PrpsO promoter and an IPTG-inducible sinI gene. This plasmid serves 
as the template for the creation of the pNDL-316 mutagenesis library described below. 
To construct pTMN1215, we first synthesized a cassette containing a promoterless sinR allele and 
a synthetic terminator. This construct was then amplified using primer pair PTMN255P1F/R. In 
separate work, a Ptet-sinR-T1 terminator-Plac-sinI-T1 terminator cassette was synthesized and 
integrated into the plasmid pNDL-281. We amplified the Plac-sinI-T1 terminator portion of this 
cassette from pNDL-281 using primer pair PTMN255P2F/R. The two products were then ligated 
by ITA into pUC19. 
The product above lacks a promoter for sinR. This was purposefully avoided because we had noted 
toxicity when sinR was expressed from high copy vectors. Using the Alon fluorescent plasmid 
library (43), we identified three candidate constitutive promoters: PrpsO, PrpsU, and PoppA. Because 
the Alon plasmid library vectors share a common backbone, we could amplify each of these 
candidate promoters using the primer pair PTMN256P1F/R. We separately amplified the sinR-
synthetic terminator-Plac-sinI-T1 terminator cassette created above using the primer pair 
PTMN256P2F/R. The products were then ligated by ITA into the low copy vector Tn7 integration 
vector pGRG36 cut with AscI/PacI, producing pTMN1215. The promise of the candidate plasmids 
was then tested by transforming them into NDL-374, which contains the synthetic SinR-repressible 
fluorescent reporter. Based either on the identification of errors during sequencing or lack of 
repression seen in this assay, it was ultimately decided to proceed with PrpsO as the basis for further 
mutagenesis.   
 

pNDL-316  

pNDL-316 is the Tn7 integration vector for a cassette containing a constitutively-expressed sinR 
gene and an IPTG-inducible sinI gene. It was derived from pTMN1215 by random mutagenesis of 
the rpsO promoter. This mutagenesis was performed in order to find an expression regime in which 
SinI and SinR were produced at comparable levels Several independent pNDL-316 clones were 
generated and screened to identify variants with matched sinI-sinR expression levels. See below 
for a description of the screen design and selection criteria.  
To construct pNDL-316, the PrpsO-sinR-Plac cassette was amplified from pTMN1215 by PCR with 
NL-294 and NL-295. Primer NL-294 contains four randomized bases covering part of the -35 
sequences of the rpsO promoter, meaning that the products will comprise a library of promoter 
variants. We then PCR amplified the remainder of the pTMN1215 backbone using NL-296 and 
NL-297, and joined the two products by ITA.  
 

TMN1050 

A disruption of the sinR locus with an erythromycin resistance cassette was performed using the 
long flanking homology technique and primers PTMN106P1-P4. Briefly, the flanks of the gene 
were first amplified using pairs P1/P2 and P3/P4. The interior primers P2/P3 introduce 
homologous tails that allow the amplified flanks to serve as `mega-primers’ for the amplification 
of an antibiotic resistance cassette. The resulting linear product was transformed directly into 
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PY79, and resistant transformants were screened for loss of sinR. The marked deletion was then 
carried into 3610 by phage transduction. 
 

pTMN1229/1231 

These are the IPTG-inducible Pspank-sinI/Pspank-sinR plasmids. (The Pspank promoter is a single 
nucleotide mutation of the Phyperspank inducible promoter that has substantially lowered expression 
and tight repression by the Lac repressor.) The genes for sinI  or sinR  were amplified using primers 
PTMN237F/R and PTMN236F/R, respectively, and ligated by ITA into pDR110 cut with HindIII 
and SphI.  
 

Markerless sinI deletions 

These were performed as described previously (9) using phage produced from a strain transformed 
with pTMN994. Since there is an internal sinR promoter within the sinI ORF, this deletion removes 
only the ribosome binding site and the first 57 nucleotides. 
 

pTMN1231/1232 

These plasmids contain the translational fusions of the HaloTag to sinI and sinR under their native 
regulation, which we denote as PsinI-sinI-HALO and PsinR-sinR-HALO. 
To generate pTMN1231, a large upstream fragment upstream was amplified alongside sinI using 
the primer pair PTMN207F/P2-I. This fragment includes a putative upstream promoter within the 
yqhG ORF identified by the B. subtilis Expression Data Browser. The HaloTag was then amplified 
from a plasmid provided by Dirk Landgraf using PTMN207P3-I/R. The two fragments were then 
joined in a 3-part ITA reaction into the plasmid backbone pDG1730 cut with BamHI and EcoRI. 
There is an internal sinR promoter within the sinI gene that we wanted to preserve while avoiding 
introducing an additional copy of sinI. Thus to produce pTMN1232 we amplified a large upstream 
fragment (again containing the putative upstream promoter within yqhG) that ran to the end of the 
sinI ORF using primer pair PTMN207F/P2-R, but we used genomic DNA from strain TMN1075 
as a template. This strain contains the markerless deletion of sinI described above that only the 5’ 
end of the ORF and leaves the sinR promoter intact. Like in pTMN1231, the HaloTag was then 
amplified using PTMN207P3-R/R and the two fragments were ligated into pDG1730. 
 
Screening for PsynthR1 variants in pNDL-302 
The Slr protein induces substantial toxicity in E. coli when expressed to even moderate levels. 
When cloned without a synthetic degradation tag, we routinely recovered alleles with nonsense 
mutations. In an effort to reduce this toxicity, we targeted Slr protein for clpP-mediated 
degradation by appending an ssrA tag to the C-terminus. To further tune the expression level, we 
generated a library of PsythR1 promoter variants by randomly mutagenizing the -35 element (see 
details on construction of pNDL-302 above).    
When designing the screen, we were concerned that most of the clones we recovered would simply 
have no promoter activity. To screen out such variants, we appended an RBS-GFPmut2 cassette 
to the end of the slr-ssrA gene, thereby creating a synthetic operon. By selecting only fluorescent 
colonies, we could identify clones with appreciable mRNA production. We picked several 
independent clones with a range of colony GFP intensities and sequenced the slr gene in each 
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clone. The clone used for subsequent slr manipulations carried two substitutions in the promoter’s 
-35 site (TTGACAà TGTACA). We refer to this promoter as PsynthR1mut from this point on.  
 
Screening of PrpsO variants in pNDL-316 
The central tasks in reconstituting the SinI-SinR system in E. coli were to identify synthetic 
promoters that allowed (1) sinR to be expressed constitutively, (2) sinI to be expressed inducibly 
(but stably in time), and (3) for both proteins to be expressed at similar levels. For inducible sinI 
expression we tried both IPTG and aTc-inducible promoters. In our hands, aTc rapidly degraded 
in mother machine experiments, making it impossible to achieve stationary switching statistics. 
IPTG, on the other hand, appeared stable over several days at 37 C as evidenced by the fact that 
mean GFP expression remained stable over this period. We thus chose to use PLac to control sinI 
expression. For sinR, we therefore had to find or generate a constitutive promoter with output 
comparable to the strength of our IPTG-inducible promoter at ‘mid-saturation’ levels of inducer.  
 
We chose to generate and screen a small library of variants of the promoter for the ribosomal gene 
rpsO. See cloning above for details of the construction of the library (pNDL-316). Each variant in 
the library differed in its -35 promoter element. To identify clones of interest, we transformed the 
library into NDL-374, which contains both a lacIq allele, a SinR-repressible PsynthR1-GFP reporter 
gene, and an IPTG-inducible sinI gene, and replica-plated a small library of clones on IPTG+ and 
IPTG- (1 mM IPTG and 0 mM IPTG, respectively) medium. We then isolated clones that, as 
judged on the fluorescent macroscope, yielded colonies that were GFP positive in the presence of 
IPTG (when sinI was maximally expressed) and GFP negative in the absence of IPTG (when sinI 
expression was repressed by LacI). This selection criterion guarantees that the range of available 
sinI expression levels covers the full range of stochastic competition behaviors: from complete 
dominance by SinR to complete dominance by SinI. The clone used to generate TMN-1221 
contained both a point mutation and an insertion TGCG-ATAA à TGAGTATAA. 
 
Rationale behind strain background of E. coli reconstitution 
The strain background used for reconstituting the SinIR system in E. coli has several conspicuous 
features.  
 
(1) Deletion of the motA gene. Motile E. coli readily swim out of the mother machine channels, 
making long-term imaging nearly impossible in many wild type strains. To paralyze our 
background strain, we knock out one component of the flagellar motor, motA. In motA null strains, 
fully functional flagella are still constructed, however they cannot generate force, leaving the cells 
largely immobile.  
 
(2) Inclusion of a constitutive RFP expression cassette. Transmitted light images in the mother 
machine are of exceedingly low quality, and are therefore difficult to use for automated cell 
segmentation. To facilitate image analysis, we express a bright, constitutive RFP reporter in all 
strains.  
 
(3) Deletion of the clpP and clpX genes. This manipulation removes the ClpXP protease, which is 
responsible for degradation of ssrA-tagged substrates. As described above, we actually ssrA-tag 
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the slr gene to reduce its expression. When we first monitored the pulsing of a strain bearing a 
chromosomally-integrated slr-ssrA gene in addition to the reconstituted SinI-SinR circuit, we saw 
no difference in pulsing behavior relative to the SinI-SinR circuit alone (data not shown). We 
interpreted this result as meaning that we had driven the slr expression level down too far to see 
an effect on pulsing. To increase slr levels, we then transduced a clpPX null allele into both the 
SinI-SinR and the SinI-SinR-SlR circuit. These two strains are compared in Figure 3 of the main 
text. We note that pulsing does occur in a clpPX-positive background (Movie S4): we chose this 
approach because it facilitates integration of slr at single copy without passing through a high-
expression intermediate, and therefore reduces the risk of nonsense mutations. All cloning of the 
slr-ssrA cassettes was done in strains with functional ClpXP protease—which kept slr levels low 
enough to avoid toxicity—and deletion of clpX and clpP allowed us to dial up expression again 
once the gene was present only at single copy.  
  



Materials	and	Methods	
	

11	

Primer table 
Name Sequence 
PTMN106P1 AAGGCTTAGGCTATATGACAGTGCAGC 
PTMN106P2 caattcgccctatagtgagtcgt GATATTATAGCACATTCAGAAAGGATTTACGG 
PTMN106P3 ccagcttttgttccctttagtgag AAAAATGGAGAAAATCCCAAAAAGAGG 
PTMN106P4 CAGCGCCATTAGAGAAATTGAAAGAAAG 

PTMN236F 
TGTGTGGAATTGTGAGCGGATAACAATTA AGCTT 
AAGGAAGGTGATGACATTGATTGGC 

PTMN236R 
TGATGACCTCGTTTCCACCGAATTAGCTTG 
GCTCAGGCACTACTCCTCTTTTTGGG 

PTMN237F 
TGTGTGGAATTGTGAGCGGATAACAATTA AGCTT 
AGGAGGAGAAACTGCATGAAGAATG 

PTMN237R 
ATGACCTCGTTTCCACCGAATTAGCTTG 
GATATTATAGCACATTCAGAAAGGATTTACGG 

PTMN255P1-F acgttgtaaaacgacggccagtg ttgattggccagcgtattaaac 
PTMN255P1-R GTTATCCGCTCACAATTCTCGAG GGAGCGGATACATATTTGAATGCC 
PTMN255P2-F GGCATTCAAATATGTATCCGCTC CCTCGAGAATTGTGAGCGGATAAC 
PTMN255P2-R gctatgaccatgattacgccaagct GCTGCGTTCGGTCAAGGTTCTG 
PTMN256P1-F TATCGGATCCTAGTAAGCCACGTTTTA GCGTATCACGAGGCCCTTTC 
PTMN256P1 GTTTAATACGCTGGCCAATCAA ATGTATATCTCCTTCTTAAATCTAGAGGATCC 

PTMN256P2-F 
GGATCCTCTAGATTTAAGAAGGAGATATACAT 
TTGATTGGCCAGCGTATTAAAC 

PTMN256P2-R TCGACGCGGCCGTGG GCTGCGTTCGGTCAAGGTTCTG 
PTMN207F AAACACACAAATTAAAAACTGGTCTGATCG GCGCCAAAAGACCTAGATGGTGA 
PTMN207P2-I TACTGCCACCGCCACCGCT GAAAGGATTTACGGTATGACTTCTGGC 
PTMN207P2-R TACTGCCACCGCCACCGCT CTCCTCTTTTTGGGATTTTCTCCATT 
PTMN207P3-I GCCAGAAGTCATACCGTAAATCCTTTCAGCGGTGGCGGTGGCAGTA 
PTMN207P3-R AATGGAGAAAATCCCAAAAAGAGGAG AGCGGTGGCGGTGGCAGTA 
PTMN207R ATTCGCCAGGGCTGCAGG TTAACCGGAAATCTCCAGAGTAGACAGC 
NL-105 GGA TCC ATC TCC TTC TTA AAT GAA TTC AAA TAC 
NL-106 GCT TAA TTA GCT GAG TCT AGA GGC ATC 

NL-110 

AAG GAC AGT ATT TGA ATT CAT TTA AGA AGG AGA TGG ATC CAT GGT TAG 
TAA AGG AGA AGA AAA TAA CAT GGC ACT GAT TAA GGA GAA CAT GCA CAT 
GAA GC 

NL-111 
TTT CGT TTT ATT TGA TGC CTC TAG ACT CAG CTA ATT AAG CTT ATC TGT 
GCC CCA GTT TGC 

NL-284 
GAG GCC CTT TCG TCT TCA CCT CGA GGT TCT TTA AAG AGA ACT NNN NAG 
TTC TTT AAA GAG AAC AGA TAC TGA GC 

NL-287 
ATC TCC TTC TTA AAT CTA GAG GAT CTC AAG CTG CTA AAG CGT AGT TTT 
CGT CGT TTG CTG CTC TTC CCT TTG TTT TTA AAA AGG 

NL-294 AAT ACC CGG CGT AAT GTT AAC CGT CTN NNN ATA ACA GGT CGC TAC G 
NL-295 CTT GTT TAA ATA AGC TCG CCA TAT CCA CTA TTA CCC C 
NL-296 ACG GTT AAC ATT ACG CCG GGT ATT CAA CC 
NL-297 GGG GTA ATA GTG GAT ATG GCG AGC TTA TTT AAA CAA G 
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Mother Machine Imaging Protocol 
 
Chip preparation 

PDMS devices were prepared as previously described (9). Briefly, Sylgard 184 monomer was 
mixed in a 5:1 ratio with curing agent (Dow Corning), poured onto the appropriate silicon master, 
degassed under vacuum, and baked at 65 C for at least 1 hour. Individual devices were cut from 
the wafer, inlets and outlets were inserted using biopsy punches, and the device was bonded to a 
dry, KOH-cleaned No. 1.5 coverglass by treatment with oxygen plasma (30 second treatment at 
50 W with 170 mTorr O2 pressure). Bonded devices were cured for an additional hour at 65 C.  
 

Cell growth conditions and device loading 

For B. subtilis experiments, cells were prepared and loaded into microfluidic devices as described 
in (9). For E. coli experiments, strains were revived from glycerol stocks by streaking and growing 
overnight at 37 C on LB plates containing appropriate antibiotics. The next day, 5-mL LB cultures 
were started and shaken overnight. In the morning, overnight cultures were diluted 1:300-1:500, 
shaken to OD600=0.3-0.6, and injected into the feeding channel of a microfluidic device. The chip 
was then mounted on a custom-machined adapter that allowed it to be mounted into a benchtop 
microcentrifuge and spun at > 5000 g for 10 minutes. Medium flow was driven using 60-mL 
syringes mounted on syringe pumps (set to 5-7 uL/minute, New Era Pump Systems). Syringes 
were connected to each feeding channel through narrow gauge Tygon tubing (VWR). In E. coli 
experiments, we supplemented all LB medium with Pluronic F108 (Sigma-Aldrich) to a 
concentration of 0.65 g/L. This surfactant dramatically reduced cell adhesion to the walls of the 
feeding channel, thereby extending possible duration of experiments. In experiments requiring it, 
IPTG was first introduced to the cells after loading by including it in the growth medium. We note 
that the exceptionally-long time traces afforded by the mother machine devices allow us to directly 
observe the period of adjustment to new conditions (the device environment and presence of IPTG, 
typically lasting 5-10 generations), and remove this transient from the dataset. 
 

Live cell microscopy 

Image acquisition was performed as previously described (9). Briefly, microscopy was carried out 
using a Nikon Eclipse Ti invertied microsope with a 1.4 NA 60X Plan Apo oil immersion objective 
(Nikon), automated stage (Ludl), custom-built incubator (temperatures were maintained at 37 C), 
LED illumination system (Lumencor SOLA Light Engine), and an Orca R2 CCD camera 
(Hamamatsu). All acquisitions were carried out using custom-made MATLAB scripts executed 
through µManager RW.ERROR - Unable to find reference:269.  Filter sets used for imaging were: Semrock GFP-
1828A, Semrock mCherry-B, Semrock CFP-2432C, Semrock YFP-2427B, and Semrock Cy3-
4040C (for TMR). In E. coli experiments, segmentation images (RFP channel) were taken without 
binning, and all other images were 2x2-binned to reduce exposure times. For B. subtilis 
experiments, all images were taken with 2x2 binning. Focus was maintained over long-term 
experiments using a custom autofocus algorithm (operating on a dedicated imaging position that 
was not used for data analysis) and a Nikon PerfectFocus system. All images were saved as 16 bit 
TIFFs. After loading, cells were allowed to equilibrate to the device conditions for several hours 
before imaging began. For both organisms, images were collected every 8-10 minutes, yielding 2-
3 images per cell generation. 
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Microfluidic Master Fabrication 
 
Fabrication of templates for all microfluidic devices were carried out using conventional UV 
photolithography in a clean room environment. The device was designed using AutoCad, and 
quartz-chrome photomasks were ordered from Toppan Inc. and The Center for Nanoscale Systems 
at Harvard University. The B. subtilis ‘two-tiered’ design was previously described (9), and details 
of its construction are contained in the supplementary methods of that paper. The E. coli device 
was fabricated in a very similar fashion, and the steps are included below. AutoCad files for our 
E. coli device are similar to those described by Wang et al. (25), but are available on request.  
As in our previous paper, we note that the process parameters described below should be regarded 
as starting points as the tolerances on the cell channels appear to be close to the achievable 
resolution of UV photolithography. We therefore recommend that, when following our protocol, 
that several variant masters are made in parallel, all with slightly different fabrication details. This 
ensures that, in the end, at least one useful device template is obtained. Note: all spin steps below 
use the shorthand notation speed (rpm)/acceleration (rpm/sec)/time (seconds).  
 

First Layer: Su8 Base Coat 

In our hands, the key problem in fabricating this device is in achieving high adhesion of the very 
small cell channels. Su8 adhesion to silicon is good but not perfect, and we found that these 
channels frequently distorted or delaminated during development. To combat this, we first spin 
and cure a thin, unpatterned layer of Su8 onto the wafer to serve as an ‘adhesive’.  

1) Place a new 3” Si wafer (we used 380 um TEST grade wafers from University Wafer) in a dish of 
fresh acetone. Sonicate at high power for 5 minutes.  

2) Sequentially rinse the wafer with streams of methyl alcohol (MeOH), isopropyl alcohol (IPA) and 
H2O (~ 10 seconds per solvent).  

3) Place wafer on 2” spin chuck and spin seconds at 500 rpm.  
4) While spinning, sequentially rinse the wafer with streams of MeOH, IPA and H2O.  
5) Spin wafer 1 minute at 3000 rpm to dry.  
6) Dehydrate wafer 15 minutes on a hot plate set to 150°-200° C.  
7) Set spin program to: Step 1: 500/100/10, Step 2: 3000/300/60.  
8) Place the dehydrated wafer onto the spin coater chuck and dispense a small (cover ~2/3 of the wafer 

surface) amount of Su8 2000.5 photoresist (Microchem) with a pipette. Run the spin program. This 
should result in a coat of ~0.5 um.  

9) Soft bake wafer (in order) for 1 minute at 65° C, 1 minute at 95° C, 1 minute at 65 C.  
10) Expose wafer 5 seconds with no mask at 25 mW/cm2 (I-line).  
11) Post exposure bake the wafer (in order) 1 minute at 65° C, 1 minute at 95° C, 1 minute at 65° C.  
12) Do not develop or hard bake the wafer. Instead, proceed directly to the second layer protocol.  

Second Layer: Cell Channels  

This set of steps lays down the channels that house the cells in the final device. The tolerances for 
this layer are very stringent; the exposure dose and contact between mask and wafer must be 
optimized. We recommend trying a range of exposure parameters to ensure that a useful device is 
obtained. We also stress the importance of the very long post exposure bake time in the process 
below. In our hands, this greatly improves the retention of the cell channels during development.  

1) Set spin program to: Step1: 500/100/10, Step 2: 3500/300/60.  
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2) Place the wafer onto the spin coater chuck and dispense a small (cover ~2/3 of the wafer surface) 
amount of Su8 2002 photoresist with a pipette. Run the spin program. This should result in a coat 
of ~1.3 µm.  

3) Soft bake wafer (in order) 1 minute at 65° C, 3 minutes at 95° C, 1 minute at 65° C.  
4) Expose wafer 0.75 seconds (25 mW/cm2, I-line) through cell channel mask in vacuum contact 

mode.  
5) Bake wafer 1 minute at 65° C, 20 minutes at 95° C, 1 minute at 65° C.  
6) Develop wafer 30 seconds with very gentle agitation in Su8 developer.  
7) Rinse wafer 10 seconds with IPA.  
8) Check completeness of development process. If undeveloped Su8 remains on the wafer (other than 

the desired cell channels) repeat developer treatment for 10 seconds.  
9) Hard bake wafer 10 minutes at 150° C.  
10) Verify channel height using a profilometer. The expected height is 1.5 µm. If the channels 

dimensions lie outside of your expected tolerance bounds, the process must be repeated with 
modified spin coating parameters. 

Third Layer: Feeding Channels 

The final layer of the device forms the medium flow channels. The dimensions of these features 
are not critical: We have used feeding channels of widely varying dimension to similar effect. The 
alignment is sensitive to large errors, however. The alignment between feeding channels and cell 
channels must be accurate (down to a couple of microns) in order to ensure that the cell channels 
are of the desired final length.  

1) Set spin program to: Step 1: 500/100/10, Step 2: 5000/300/60.  
2) Place the wafer onto the spin coater chuck and dispense a small (cover ~2/3 of the wafer surface) 

amount of Su8 2025 photoresist with a pipette being careful not to introduce bubbles. Run the spin 
program. This should result in a coat of ~15 um. 

3) Soft bake the wafer (in order) 1 minute at 65° C, 4 minutes at 95° C, 1 minute at 65° C.  
4) With an Su8-developer-soaked swab, clean the newly-deposited photoresist off of the alignment 

marks to make them visible for the alignment process.  
5)  Soft bake the wafer (in order) 1 minute at 65° C, 4 minutes at 95° C, 1 minute at 65° C.  
6) Align feeding channel mask to the alignment marks on the wafer. Apply vacuum contact and check 

alignment again. If the vacuum application skewed the alignment, repeat the alignment process.  
7) Expose wafer 10 seconds (25 mW/cm2, I-line) through aligned feeding channel mask.  
8) Bake wafer 1 minute at 65° C, 4 minutes at 95° C, 1 minute at 65° C.  
9) Develop wafer 1.5 minutes in Su8 Developer with mild agitation.  
10) Rinse wafer 10 seconds in IPA. Check to ensure that the development is finished. If undesired 

photoresist remains, develop again for 20 seconds.  
11) Hard bake wafer 15 minutes at 150 C.   
12) Verify channel height using a profilometer. The expected height is 15 µm. If the channels 

dimensions lie outside of your expected tolerance bounds, the process must be repeated with 
modified spin coating parameters. 
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Image Analysis 
 
Cell segmentation  
Image segmentation was carried out using custom MATLAB-based scripts that were described 
previously (9). Briefly, E. coli movies were segmented using the signal from a constitutively-
expressed mKate2 construct. B. subtilis movies were segmented using the motility reporter signal. 
We note that, because slr was deleted in all B. subtilis experiments reporter reported here, firing 
of the SinI-SinR circuit did not result in repression of the motility regulon. As a result, we could 
safely rely on this signal to segment all cells. Fluorescence images were contrast-enhanced using 
an unsharp mask filter, and transformed into binary images using a standard edge finding algorithm 
(a ‘Laplacian of Gaussian’ filter). Merged cells were then split in two phases. First, the 
fluorescence intensity along the midline of each cell was searched for local minima. These sites 
marked nascent cell septa, and were cut after identification. Second, points of constriction in each 
object were identified and cut. Finally, the boundaries of all identified cells were refined by 
morphological opening and thickening. Spurious objects (i.e. objects with abnormal eccentricity, 
length or area) were removed from the segmentation.  
 
Fluorescence measurements  
Before recording pixel values within each cell, fluorescence background was removed from each 
raw image by subtracting the median pixel intensity. Fluorescence intensities for each identified 
cell were measured both by the mean pixel intensity of all object pixels and as the median of the 
brightest 10% of pixels within each object. Analysis on both of these quantities yields nearly 
identical results. We therefore report results only for the mean intensity measurements.  
 
Lineage compilation 
Lineage tracking was performed as previously described (9). In brief, we track only the ‘mother 
cell’ in each channel (i.e. the cell closest to the ‘dead end’ of each cell channel), as this is the only 
cell that remains in the device throughout the experiment. This practice is equivalent to following 
one particular branch of the lineage tree. Mother cells were matched between frames by simple 
centroid matching: as the mother cell remains essentially stationary in the x-coordinate throughout 
the movies, interframe matches can be inferred by matching cells with the closest x-coordinates 
(within a previously described acceptable range). Cell divisions were identified abrupt decreases 
in cell area between frames. All lineages were manually curated to remove spurious segmentation 
errors and dead cells that were connected into lineages.  
 
We note that, in both E. coli and B. subtilis, a transient adaptation period—due to adjustment to 
the device environment and presence of IPTG in the medium—of 5-10 generations was often 
observed. To deal with this issue, we leverage the exceptional length of lineage traces generated 
by the mother machine. We empirically identify the spans over which the cell growth and reporter 
output statistics are stationary (i.e. have a stable mean and variance in time), and use only this data. 
Because our traces are often more than 100 generations long, removal of the 5-10 generation 
transient at the beginning of the movies does not significantly reduce sampling.   



Materials	and	Methods	
	

16	

Flat field correction  
Uneven illumination poses a serious impediment to measurement of timescales with 
autocorrelations. While such effects are often small in magnitude (i.e. ~10% CV with LED 
illumination), they are static throughout each experiment, leading to autocorrelation curves with 
an ‘offset’ that never decays away. This offset disrupts the estimation of fluctuation timescales, 
and makes experimental data near impossible to compare with theoretical expectations. We 
therefore apply flat field corrections to the raw intensity data prior to calculation of autocorrelation 
functions.  
 
The constant position of each cell within the mother machine allows for effective correction 
without the need for an external standard. For each strain and condition, the intensity values for all 
segmented cells in the experiment are pooled and sorted by x centroid position. A sliding window 
average of cell intensity as a function of spatial position is then compiled. Because the average 
intensity at each position would be constant in the absence of uneven illumination, this curve 
estimates the local illumination intensity at each position. Each observation is then multiplicatively 
corrected using the appropriate entry of the correction curve. We note that this is a 1-dimensional 
correction, as the cells are grouped only by x-coordinate. The spatial patterning of cells in the 
mother machine justifies this assumption: mother cells therefore lie along a line (parallel to the x-
axis in our images), and the variation in illumination intensity perpendicular to this line is 
negligible because of the small size of each cell.  

Data Analysis 
 
Summary of mother machine dataset 
The table below summarizes the bulk statistics of mother machine data acquisition. We record the 
total number of independent lineages (i.e mother cells) observed, the total number of divisions of 
these mother cells, and the total number of SinR reporter ‘firing’ events observed. Summary 
statistics for the SinI-HALO and SinR-HALO dataset are also included at the bottom of the table.  

Circuit Strain Condition Figure 
Panels 

Recorded 
Lineages 

Mother 
Cell 

Division 

Switching 
Events 

E. coli 
Reconstitution 
(SinI + SinR) 

 

 
NDL-423 

90 µM Figure 2 
(panels H-K) 

Figure 3 
(panel A) 

135 13919 560 

E. coli 
Reconstitution 
(SinI + SinR) 

 

 
NDL-423 

100 µM Figure 2 
(panels H-K) 

Figure 3 
(panel A) 

257 25246 1434 

E. coli 
Reconstitution 
(SinI + SinR) 

 

 
NDL-423 

 

110 µM Figure 2 
(panels H-K) 

Figure 3 
(panel A) 

108 12213 1106 

B. subtils 
Reduced 

(inducible SinI) 

TMN-
1159 

7.5 µM Figure  2 
(panels D-E) 

89 16510 359 
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B. subtils 
Reduced 

(inducible SinI) 

TMN-
1159 

10 µM Figure  2 
(panels D-E) 

95 16474 898 

B. subtils 
Reduced 

(inducible SinI) 

TMN-
1159 

12.5 µM Figure  2 
(panels D-E) 

92 5816 498 

E. coli 
Feedback 

Reconstitution 
(SinI+SinR+SlrR) 

 

NDL-419 60 µM Figure 3 
(panels A-B) 

61 4387 239 

E. coli 
Feedback 

Reconstitution 
(SinI+SinR+SlrR) 

 

NDL-419 80 µM Figure 3 
(panels A-B) 

69 6049 467 

E. coli 
Feedback 

Reconstitution 
(SinI+SinR+SlrR) 

 

NDL-419 140 µM Figure 3 
(panels A-B) 

63 4085 265 

B. subtilis Native TMN-
1157 

LB only Figure 1 
(panels E-F) 

74 20792 470 

SinI-HALO TMN-
1227 

LB only Figure 1 
(panel B) 

5289 cells 
total 

n/a n/a 

SinR-HALO TMN-
1229 

LB only Figure 2 
(panel B) 

8736 cells 
total 

n/a n/a 

 
Peak finding  
We briefly summarize the computational procedure used to identify gene expression pulse 
boundaries. For a full description, please refer to (9).  
The rough peak locations were identified by searching for local maxima in the matrix reporter 
(PtapA-cfp, B. subtilis), or the synthetic SinR-repressible promoter (PsynthR1-gfp, E. coli) using 
‘peakfinder’, an open source MATLAB function (Nathanael C. Yoder, available at 
http://www.mathworks.com/matlabcentral/fileexchange/25500-peakfinder).  On either side of this 
point, fluorescence intensities decrease rapidly. We identify the boundaries of the peak by looking 
for the ends of this rapid descent, that is, where fluorescence intensities maintain essentially 
constant values. We then estimate and subtract the fluorescence baseline for each trace. Peak 
boundaries were then refined to reflect where the signal surpasses this background. That is, the 
beginning and end of each peak are set to be the times at which the fluorescence signal 
unambiguously surpasses and drops below (respectively) this background level. After this 
refinement, all peaks were manually curated and compared to the raw images to ensure that (1) 
each event represented a bona fide, distinct gene expression pulse, (2) overlapping peaks were split 
from one another and (3) remaining errors in segmentation were manually removed from the 
dataset.  
 
We illustrate this process with example data in Fig. S18, and demonstrate that the key statistical 
properties of the residence time in the ON state are insensitive to choice of background threshold 
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in Fig. S19. Additionally, we demonstrate that the sub-exponential distribution of pulse durations 
can be inferred without calling discrete events (see Fig. S20 and ‘Independent inference of pulse 
timing’ section, below), and that comparable switching statistics result from calling events based 
on cessation of expression of a motility reporter (Fig. S21).  
 
Definitions of key quantities 
We next define the various quantities measured in our microfluidic experiments. Procedures for 
simulating theoretical expectations are described in the section Simulations in Figures 1 and 2 of 
the main text.  
 
(1) Inter-peak time: This quantity measures the time elapsed between consecutive firings of the 
SinR-responsive reporters (PtapA in B. subtilis and PsynthR1-gfp in E. coli). If two adjacent peaks 
begin at times t1 and t2, then the subsequent initiation time for this pair is t2 – t1. We note that this 
quantity can be distinguished from the ‘motility duration’, which we defined in previous work as 
the time between the end of one pulse and the beginning of the next. Because of the exceptionally 
long duration of residence times in the OFF state, these statistics are nearly identical, and we report 
only the inter-peak times.  
 
(2) Peak duration: The peak duration measures the length of a gene expression event. As described 
above, the beginning and end of each gene expression peak are defined as the points at which it 
crosses a pre-defined threshold, chosen so as to mark the intensity at which a signal is 
unambiguously distinguishable from fluorescence background. If a peak’s leading and trailing 
edges cross this threshold at times t1 and t2, respectively, then the pulse period is defined as t2 – t1.  
 
(3) Fraction ON: In Figure 2, we measure the population fraction of cells in the ‘ON’ state. For 
the experimental figures, we simply report the fraction of time the reporter intensity lies above a 
threshold chosen to be conservatively above the average intensity of cells in medium without 
IPTG. We separately carried out experiments to ensure that the observed ultrasensitivity arose 
from the SinI-SinR interaction and not from the cooperativity of our IPTG-inducible promoter; see 
below. 
 
(4) GFP Concentration: We report gene expression levels as GFP concentrations throughout the 
text. These concentrations are operationally defined as the average pixel intensity within a given 
cell’s segmentation mask. Alternate measures of the concentration (for example, the mean of the 
brightest decile of pixels) lead to nearly identical results.  
 
(5) GFP production rate: We use derivatives in the GFP signal at two points in the paper. (a) To 
infer properties about the distributions of SinI dominance times. For this purpose, we define the 
GFP production rate as the total amount of GFP produced between two adjacent frames. For 
reasons explained below (‘Calculating of GFP production rates under saturating [IPTG]’), we only 
define this quantity on frames that do not span a cell division, and can therefore define it as the 
difference in total intensity (i.e. sum of all pixel values within the mask) between frames i +1 and 
i. (b) To infer the presence of pulse timing without calling discrete events (i.e. Fig. S20). In this 
case, we define GFP production rate as the difference in GFP concentration (i.e. average pixel 
intensity within a cell) between successive frames i+1 and i.  
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Calculation of reporter autocorrelations  
The autocorrelation is defined for a stationary signal !(#) with mean and variance  〈!〉 and '() as:  
 

*(+) = 	
〈(!(#) −	〈!〉)(!(# + +) −	 〈!〉)〉

'(
)

 

 
with angled brackets denoting averages. While calculating this quantity for a single, long time 
trace is straightforward—the meanings of the average brackets, mean, and variance are obvious in 
this case—several different estimators may be used when the data is broken up into multiple, 
independent time traces.  
For a collection of n independent time traces, where !0(#) denotes the value of ith trace at time t, 
we estimate the autocorrelation using the following expression:  
 

*(+) = 	
〈〈(!0(#) − 〈!0(#)〉0)(!0(# + +) − 〈!0(# + +)〉0)〉1〉0

'(
)

 

 
where 〈⋅〉0 denotes averaging over lineages, 〈⋅〉1 denotes averaging over time points, and '() denotes 
the steady state variance in x. We estimate '() as follows:  
 

'(
) = 	 〈〈(!0(#) −	〈!0(#)〉0)

)〉1〉0 
 
We note that, in practice, the population averages (〈!0(#)〉0) in the above expressions are calculated 
using a 20-frame sliding window. That is, 〈!0(#)〉0 is the average of all data collected between 
frames t - 10 and t + 10. This practice results in a more stable estimate of the population average 
for finite sampling.  
 
In both of these estimators, the chosen order of averaging (traces first, time second) means that we 
first estimate the quantity (autocovariance or variance) for each trace individually, then average 
these estimates together. We chose this approach because, in our hands, it leads to the most 
reproducible estimates for the segmentation reporters in both E. coli and B. subtilis. In this sense, 
we use the segmentation reporters as positive controls, and assume that they should yield the same 
autocorrelations in all tested conditions. 
 
In some time-lapse experiments, we found that the autocorrelations sometimes decayed to a non-
zero offset after ~10 generations. These offsets were generally small (i.e. ~0.1 after normalizing 
the functions). Such behavior can occur if flat-field correction is imperfect or if inducer 
concentrations decay slowly over the course of the several days needed for each experiment. In 
order to fairly compare the correlations of each dataset spanning ~10 generations, we estimated 
these small offsets, subtracted them and renormalized the autocorrelation functions.  
 
We derived error bars for the autocorrelation functions by bootstrapping (see e.g. Fig. S3). In each 
iteration of the bootstrap, lineages were sampled with replacement from the full dataset. For a 
dataset comprising n lineages, n samples were taken. The autocorrelation of the sampled dataset 
was then calculated according to the procedure above. After 1000 iterations, the error associated 
with each lag value was measured by calculating the standard deviation of all correlation 
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corresponding to this lag. For presentation, the autocorrelation for the full dataset (i.e. without 
sampling) is plotted with error bars denoting + 1 standard deviation around each point. 
 
Independent Inference of Pulse Timing 
We wished to verify that our observation of sub-exponential gene expression pulse timing in the 
WT B. subtilis, reduced B. subtilis and reconstituted E. coli systems was not due to a systematic 
error in our peak-calling pipeline (e.g. under-sampling of short events). We therefore identified a 
feature in the reporter expression autocorrelations that is present when pulses are timed, but not 
when they last for exponentially-distributed durations. Specifically, when gene expression pulses 
are timed, the reporter production rate is strongly positive at the onset of the pulse, and is highly 
likely—due to sub-exponential timing—a narrowly-distributed time later (i.e. on the trailing edge 
of the pulse). This tight succession of events leads to a pronounced dip below zero in the 
autocorrelation at a lag determined by the characteristic duration of pulses. This negative 
correlation is not evident if pulse durations are exponentially-distributed. In this case, pulse onset 
no longer determines when the pulse will end, making it so that the extreme values of the reporter 
derivative do not consistently ‘line up’ to generate the signature negative correlation.  
 
Calculating the autocorrelations for the WT, reduced and reconstituted systems—under all 
conditions tested—reveals precisely this signature of timing (Fig. S20). Notably, this signature is 
absent in the corresponding constitutive segmentation reporters in the same cells and conditions 
(Fig. S20, black curves). We note that this evidence of timing does not depend in any way on 
calling discrete events. The marked sub-exponential timing of the gene expression pulses produced 
by stochastic competition leads to a characteristic and unusual pattern in the temporal correlations 
of the reporter expression that is readily detectable.  
 
Measurement of Fraction ON 
In the main text we present the fraction of cells in the SinR target-positive state as a function of 
IPTG concentration. For the first measurement, we simply define a threshold above the average 
intensity of NDL-423 or TMN-1159 cells in the absence of IPTG, and identify ON and OFF cells 
as being above or below this threshold, respectively. 
 
We note, however, that this measurement may overestimate the sharpness of the transition from 
OFF to ON at the population level, as the IPTG-inducible promoters driving sinI expression may 
themselves respond to IPTG in a nonlinear fashion. To address this issue in the E. coli system, we 
measured the output of a PLac-GFP reporter construct at a range of IPTG concentrations. To this 
end, NDL-425 (ΔmotA glmS::PRNA1-RFP phoA::PLac-GFP attP::Z2(lacIq  tetR)-specR 
clpPX::FRT-Kan) and NDL-423 were diluted from overnight LB cultures > 1:105, grown at 37 C 
to OD600 < 0.1, spotted onto agarose pads and imaged for RFP and GFP expression. Several 
hundred cells were imaged for each condition. The resulting images were segmented using a 
modified MATLAB algorithm operating on the constitutive RFP signal, and GFP fluorescence 
intensities were extracted. The GFP intensity of NDL-425 at each IPTG concentration was used 
as a proxy for the SinI expression level in NDL-423. We then scattered these estimated SinI 
expression levels against the measured fraction of cells in the ON state in NDL-423 to generate 
the inset of Fig. 2R. This procedure revealed that, while correcting for the response characteristics 
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of the Lac promoter reduced the sharpness of the transition, the SinI-SinR system itself generates 
substantial ultrasensitivity.  
Calculating of GFP production rates under saturating [IPTG] 
In the mathematical derivations below (Mathematical Derivations section 9), we derive an upper 
bound on the variability of durations of SinI dominance over SinR that is inferred from reporter 
trace data. This calculation requires a measurement of the variability in GFP production rate for 
the maximally-induced PsynthR1-gfp reporter (i.e. the GFP production rate in NDL-423 under 
saturating IPTG conditions). To arrive at this measurement, we grew NDL-423 cells in the E. coli 
mother machine device in the presence of 500 uM or 1 mM IPTG. Image analysis and lineage 
tracking were performed as described above. Similar estimates of the variability in GFP production 
rate resulted from both experiments (CV500 uM = 0.50 and CV1 mM = 0.59). 
The GFP production rate were defined as the total amount of GFP produced between frames, that 
is:  

3456

3#
= 456781,0:; − 456781,0 

Where 456781,0 denotes the total amount of GFP in a cell in frame <. The values reported below 
were calculated from cells that (1) did not divide between frames < and < + 1, and (2) had a cell 
area of less than 300 pixels (〈*>?@〉 = 388 pixels). This conditioning ensured that the results 
underestimated the actual variability in production rate, as some rate variability is explained by 
cell size. This, in turn, meant that our estimates of the variability in duration of SinI dominance 
were larger than the true value. We chose these assumptions in order to arrive at an upper bound: 
see the Mathematical Derivations portion of the Supplemental Materials for more discussion. 
 
HaloTag experiments 
3 mL of cells were grown to the beginning of exponential phase (OD600 0.05 – 0.1) in LB medium. 
HaloTag TMR reagent (Promega) was then added to the medium, tubes were wrapped in foil to 
shield them from light, and cells were allowed to grow for a further 15 minutes to allow labeling 
to occur. Cells were then immediately applied to the top of a disposable 0.22 µm bottle filter, and 
200 mL of fresh medium was sucked through the filter to wash away unreacted dye molecules. 
Cells were then washed off the surface of the filter, concentrated by centrifugation, and applied to 
an agar pad. Phase images, chaining reporter expression, and TMR signal were then measured in 
populations of 5,000 – 10,000 cells by automated tiling microscopy. Cells in the images were 
initially identified using a simple phase-based segmentation algorithm, and masks were refined 
through a combination of automatic cell clipping and manual curation. All cells at the periphery 
of images, where overlap between adjacent frames might lead to bleaching, were eliminated. 
Average fluorescent intensities within each cell were then calculated and correlated between the 
two fluorescent channels. 
 
Calculation of average gene expression pulse profiles  
In Fig. S13, we report the average gene expression pulse profiles for events occurring under 
different levels of IPTG induction. For a detailed description of how these traces were calculated, 
see1. In brief, we first perform a simple average of all traces in a given dataset (i.e. frame j of the 
average is the average of the jth frame of all observed peaks). Next, we register each leading edge 
of each peak to the leading edge of this ‘reference’ average. Finally, we perform another simple 
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averaging of the registered peaks to yield the final composite peak. We note that outlying peaks 
(i.e. peaks that deviated from the reference trace by more than 2.5 standard deviations at any point) 
were discarded in calculating this average. This practice does not appreciably change the shape of 
the average profiles, as the outlying peaks are by definition rare, however it does noticeably change 
the calculated variability around this average. As we do not make any arguments from the amount 
of variation around this average trace, we continue the practice of discarding outlying peaks.   
 
Simulations in Figure 1 of the main text 
The figures were generated by simulating the system described by the equations in Fig. 2A using 
an implementation of the Gillespie algorithm in MATLAB (MathWorks). The lifetimes of all 
components (+ values) were all set to 1, so that time units correspond to simulated cell generations 
(assuming dilution through growth is the main degradation pathway). The parameter c was set to 
100, making complexing highly favored. 
 
To create Fig. 1B, CD was set to 50 and CE was swept from 0 to 100 in steps of 2. At each value of 
CE, dynamics were simulated through 20,000 or more simulated generations, allowing deep 
sampling of the average number of free SinI and SinR molecules. The traces in Fig. 1B represent 
small sections of these traces with CE = 30, 42 or 50. 
 
The ON Fraction in Fig. S2A was simulated similarly, and the ON state for production of Z was 
defined by the Heaviside function F(G). The three traces show the behavior when CD is fixed at 
50, 100, or 200, and CE is swept from 0 to 200% of CD. 
 
The inter-peak times and peak durations shown in Figs. 1C and D were generated using essentially 
the same computational pipeline applied to simulated reporter traces of the system defined in Fig. 
1B of the main text. However, because these traces offer perfect resolution, we purposefully 
remove any peaks called by peakfinder that are less than a generation apart (i.e. we replace two 
very close peaks with a single peak), as they would not be resolvable in the experimental systems. 
The autocorrelation functions shown in Fig. S3 were analytically derived for a process in which 
immature reporter is born in large bursts occurring with constant probability (rate C;) and matures 
with first-order kinetics (rate 	C)).	Both mature and immature species decay exponentially with the 
same average lifetime (set to 1 cell generation to capture dilution). The maturation rate for 
immature protein was chosen to fit the derived curves to experimental data. We used average 
maturation times (i.e. reciprocal of exponential rate constant) of 5.6 min for GFPmut2 in the E. 
coli reconstitution circuit, 34 min for mKate2 in the reduced B. subtilis circuit and 6.6 min for CFP 
in the WT B. subtilis reporter strain. Values for fluorescent protein maturation rates were taken 
from a recent systematic survey of fluorescent protein maturation in E. coli (28). We note that 
maturation times for mKate2 and CFP have not been measured in B. subtilis to our knowledge. 
We therefore regard fits to the B. subtilis data as approximate. 
 
In the derivation (see SM, Mathematical Derivations section 8), we derived the expected curve 
assuming large burst sizes so as to make random fluctuations in reporter maturation negligible. 
This effectively means that we follow only noise resulting from the coarse-grained stochastic 
competition between SinI and SinR. Analytical treatment and simulations with varying C; reveal 
that the shape of the normalized autocorrelation function is invariant with respect to the burst 



Materials	and	Methods	
	

23	

initiation rate. We therefore expect all data from the stochastic competition strains—irrespective 
of pulse firing frequency—to exhibit the same autocorrelation shape.  
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In this supplemental document we provide the mathematical derivations underlying some of the state-
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Contents

1 Outline 3

2 Modeling the SinI-SinR interaction 3

2.1 Simplified dynamics during a dominance period in the fast complexing limit . . . . . . . . . 4

3 In the absence of bursting, dominance periods of the minority species are short but show greater

than exponential variation 5

3.1 Deriving the backward equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 Defining the barrier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.3 A recurrence relation for the average first passage times

⌦
Ty0!0

↵
. . . . . . . . . . . . . . . . . 6

3.4 A recurrence relation for the second moments
D

T2
y0!0

E
. . . . . . . . . . . . . . . . . . . . . . 7

3.5 An exact inequality for the non-bursting case b = 1 . . . . . . . . . . . . . . . . . . . . . . . . 8
3.6 Numerical extension to the slower complexing regime . . . . . . . . . . . . . . . . . . . . . . . 9
3.7 In the absence of bursting, dominance periods of the minority species are short . . . . . . . . 9

4 Bursty production of the minority species can lead to short, narrowly distributed dominance pe-

riods 9

4.1 A reduced model for bursting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 Bursts of a fixed size in the rare bursting limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.3 Extension to distributed bursts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.4 Two routes to narrowly distributed dominance periods . . . . . . . . . . . . . . . . . . . . . . 14
4.5 Durations of dominance periods when the minority species is produced in bursts . . . . . . . 15

5 Switches into the minority-dominant state occur memorylessly when rare 15

5.1 Periods of dominance for the majority species are exponentially distributed when lX � lY . 16
5.2 Periods of majority dominance are long and highly sensitive to the ratio of production rates

lY/lX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.3 The connection to experimentally measured distributions . . . . . . . . . . . . . . . . . . . . . 18

6 SlrR can prolong dominance periods 19

6.1 A model with SlrR and a reporter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.2 Prolonged ON durations in the presence of SlrR . . . . . . . . . . . . . . . . . . . . . . . . . . 19

7 Detailed modeling of the SinI-SinR interaction on downstream targets yields no qualitative dif-

ferences in behavior 20

7.1 Deriving a matched, reduced model from the complete model . . . . . . . . . . . . . . . . . . 24

8 Expected autocorrelation in experimental reporters 25

1



Mathematical Derivations 2

9 Inferring properties of stochastic antagonism from reporter traces 26

9.1 A simple model for reporter burst size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
9.2 Inferring timing in the SinI dominance periods . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

10 Diffusion Approximations 28

10.1 Diffusion model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
10.2 Diffusion approximation for dominance periods of the minority species . . . . . . . . . . . . 29



Mathematical Derivations 3

1 Outline

We will start with a quick overview to highlight the key properties of the system. Throughout the doc-
ument, SinR is represented in equations by X and SinI by Y. Most of the mathematics below concerns
attempts to quantify periods of dominance of SinI — i.e. the duration and variability in the amount of time
that the SinI concentration exceeds that of SinR, so that SinR targets are derepressed.

• In Section 2, we describe how a stochastic model for the interaction of X and Y can be reduced to
a single variable model describing the difference Y � X when complexing occurs quickly (as in the
native system)

• In Section 3, we use the simplified model to show that it impossible to achieve narrowly distributed
(CV < 1) periods of SinI dominance without bursting in SinI, and that SinI dominance periods are
generally very short (shorter than one cell division)

• In Section 4, we consider bursty production of both species. We first show a transformation that
allows us to map a system with bursty production of both SinI and SinR onto a simplified model with
bursting only in SinI. We then show how bursting is expected to affect the distribution and duration
of the periods of SinI dominance.

• In Section 5, we show that initiation of SinI dominance periods is a memoryless process, and that the
rate of initiation is highly sensitive to the the ratio of the production rates of the two proteins lY/lX .

• The results of the previous sections show that the interaction between SinI and SinR is roughly gov-
erned by two parameters: (1) the ratio of the production rates of the two proteins lY/lX and (2) the
ratio of average burst sizes in production of the two proteins Nb/Na. The first roughly sets the aver-
age frequency SinI dominance periods, and the second controls how narrowly distributed those are.
However, the actual duration of those periods is fairly insensitive to both parameters, and they are
typically very short. This means that the SinI-SinR circuit alone functions largely as a “pulse genera-
tor.” We finally show in Section 6 that the addition of SlrR provides additional flexibility that can be
used to tune the duration of the dominance periods.

• Section 7 explores a more mechanistically complex model that incorporates more fine-grained steps
and reactions motivated by what is known about the biology and also the biochemical rate constants
that have been measured. We show the properties of this more complicated model can be replicated
using a matched reduced model, suggesting that the key properties and behaviors of the native circuit
can be understood by considering the simpler models considered in the previous sections.

• Direct experimental observation of the mechanism is made difficult by the fact that switching occurs
stochastically in single cells, is mediated by complexing of the two components (rather than, for ex-
ample, presence or absence of a control molecule), and the fast timescale of the SinI-dominant state. In
Sections 8 and 9 that examine how some of the expected properties can be inferred from experimental
data.

• Finally, as some readers may find diffusion approximations to be more intuitive than the discrete
point processes we focus on in most of this document, in Section 10 we briefly rederive some of the
main results within this framework.

2 Modeling the SinI-SinR interaction

A simple model of constitutive production, exponential dilution/degradation, and complexing of SinR
(below denoted X) and SinI (below denoted Y) follows the reactions

X lX�! X + 1 Y lY�! Y + b

X X/tX���! X � 1 Y
Y/tY���! Y � 1 (1)

(X, Y) cXY��! (X � 1, Y � 1)
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Y = a

Y = a − 1

Figure 1: First passage time calculation. The figure shows the trajectory of Y during several consecutive
switching events. Each period of Y dominance is defined by when Y first exceeds a particular threshold
a � 1 and then returns below it. The figure shows the case where Y is produced in steps of 1 (b = 1) so
that the first jump above the threshold is always to a level of a molecules. Example dominance periods are
shown with the green arrows. The duration of a particular dominance period is thus a random variable,
which we denote by Ta!a�1.

where lX and lY are the production rates, tX and tY are the half-lives, and c is the rate constant for complex
formation. Production of Y is allowed to occur in bursts: b can potentially be a positive random variable 1.
We assume both proteins are subject to the same degradation pathway and/or dilution through cell growth,
and thus have the same half-lives. For convenience we thus set tX = tY = 1. For stable proteins, time units
will then be in generations of growth. The relative magnitudes of lX and lY will then set whichever species
is in the majority on average.

As heterodimer formation is effectively irreversible, complexing becomes another elimination pathway
for X and Y: as soon as free X and Y molecules are produced, they will immediately pair up, exhausting
whichever species is less abundant. This creates states where one species dominates while the other one
vanishes. Most of the time the majority species X will dominate because of its higher average abundance,
but stochasticity in the reactions will occasionally lead to Y-dominant states. This spontaneous switching
underlies the stochastic antagonism mechanism for phenotype switching.

In what follows, we will examine the durations of these temporary periods of dominance. In some
parameter regimes, we will see that stochastic antagonism yields dominance periods that show greater-
than-exponential variance, in contrast to expectations from, e.g., standard bistable switching mechanisms.
We will also see that the addition of bursting in production can lead to markedly reduced variance in the
dominance periods, meaning that stochastic antagonism can effectively impart timing without the need for
feedback.

2.1 Simplified dynamics during a dominance period in the fast complexing limit

Assume that Y has temporarily become dominant. If complexing is efficient (c is very large), any X molecule
that is produced immediately removes a free Y molecule: complexing effectively becomes instantaneous.
In this limit, Y dynamics during the dominance period can be described by a reduced model:

Y lY�!Y + b (2)

Y lX+Y���!Y � 1 (3)

This is possible since whenever Y > 0 in the fast complexing limit, X = 0: the model above thus can also
be viewed as governing the dynamics of Y � X. A natural question to ask then is how long the period
of Y dominance then persists. To do this, we will explicitly calculate the statistics of a first passage time:
conditioned on starting at some point y0, we ask how long the trajectory of Y remains above a barrier at the
level a � 1. The distribution of these times over subsequent periods of dominance will be denoted Ty0!a�1.
Fig. (1) shows the definition of the involved quantities.

1Similar calculations can be done allowing both species to have bursty production, but we will here present the simpler results
when X is produced in steps of 1.
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In most cases it is safe to assume a = 1, so that we are asking how long it takes for the number of free
molecules to reach 0. However, the results hold true for arbitrary a > 1 as well, which may be important,
for example, when interpreting experimental data where other factors might effectively raise the threshold
(e.g. if some SinI molecules are bound to other interacting proteins). Similarly, when there is no bursting
in Y production (b = 1) we can take y0 to be 1, meaning we are looking at when Y levels first exceed those
of X. However, some calculations are done for arbitrary y0, as we will generalize to the case where b is a
random variable below.

3 In the absence of bursting, dominance periods of the minority species

are short but show greater than exponential variation

We first focus on the non-bursting case b = 1. Assuming the barrier a = 1, the relevant first passage time is
then T1!0. In this regime, we will show that the dominance periods are quite noisy, showing greater than
exponential variation. We do this by calculating the coefficient of variation of T1!0, meaning that we must
compute the mean hT1!0i and variance Var(T1!0).

3.1 Deriving the backward equation

First passage times are typically computed using the backward master equation for the system, which we
will here derive from first principles. We start from the Chapman-Kolmogorov equation [28, 29], with
P(y, t|y0, t0) denoting the probability of there being y molecules at time t under the initial condition of y0
molecules at t0:

P(y, t|y0, t0) = Â̂
y

P(y, t|ŷ, t0 + Dt)P(ŷ, t0 + Dt|y0, t0)

=P(y, t|y0 + 1, t0 + Dt)lYDt + P(y, t|y0 � 1, t0 + Dt)(y0 + lX)Dt
+ P(y, t|y0, t0 + Dt) [1 � lYDt � (y0 + lX)Dt] + o(Dt)

where, under the usual definition for probability transition rate [28, 29], we have from (2) and (3) that
limDt!0 P(y0 + 1, t0 + Dt|y0, t0)/Dt ⌘ lY and limDt!0 P(y0 � 1, t0 + Dt|y0, t0)/Dt ⌘ y0 + lX.

By moving the term P(y, t|y0, t0 + Dt) from right to left, dividing Dt on both sides, and letting Dt go to
zero, we have

lim
Dt!0

P(y, t|y0, t0)� P(y, t|y0, t0 + Dt)
Dt

= lim
Dt!0

{lY[P(y, t|y0 + 1, t0 + Dt)� P(y, t|y0, t0 + Dt)]

+(y0 + lX)[P(y, t|y0 � 1, t0 + Dt)� P(y, t|y0, t0 + Dt)] + O(Dt)}
) �∂t0 P(y, t|y0, t0) = lY[P(y, t|y0 + 1, t0)� P(y, t|y0, t0)]

+ (y0 + lX)[P(y, t|y0 � 1, t0)� P(y, t|y0, t0)] (4)

Since the process is time-homogeneous (the rates are not time-dependent), this expression can be sim-
plified by noting

P(y, t|y0, t0) = P(y, t � t0|y0, 0) . (5)

Similarly, by changing variables for the partial derivative,

∂t0 P(y, t|y0, t0) = ∂t0 P(y, t � t0|y0, 0) = �∂tP(y, t|y0, 0) . (6)

We may also suppress the time of the initial condtion by defining P(y, t|y0) ⌘ P(y, t|y0, 0), yielding a
simplified version of the dynamics:

∂tP(y, t|y0) = lY[P(y, t|y0 + 1)� P(y, t|y0)]

+ (y0 + lX)[P(y, t|y0 � 1)� P(y, t|y0)] (7)
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3.2 Defining the barrier

As noted above, we here consider an absorbing boundary at a � 1. The probability that the system starts at
y0 (at time 0) and remains in [a, •) until time t is then given by the sum

G(y0, t) ⌘
•

Â
y=a

P(y, t|y0, 0) = Prob{Ty0!a�1 � t} (8)

where Ty0!a�1 denotes the time spend of Y molecules goes from y0 to a� 1. Here we will focus without loss
of generality on the case a = 1, corresponding to setting the threshold at zero Y molecules. The calculation
for the general case is essentially identical.

By doing the same summation Â•
y0=1 on both sides and using symbol y instead of y0, Eq. (7) can be used

to derive an evolution equation for G(y0, t):

∂tG(y0, t) = lY[G(y0 + 1, t)� G(y0, t)] + (y0 + lX)[G(y0 � 1, t)� G(y0, t)] (9)

This relation can in turn be used to derive reccurence relations for the moments of the distributions of Ty0!0,
as we now describe.

3.3 A recurrence relation for the average first passage times
⌦

Ty0!0
↵

G(y0, t) is related to the first passage time through the relation Prob{Ty0!0 = t} = �∂tG(y0, t). The average
can thus be calculated by integrating

⌦
Ty0!0

↵
=
Z +•

t=0
tP{Ty0!0 = t}dt

=
Z +•

t=0
t[�∂tG(y0, t)]dt

= �tG(y0, t)|t=+•
t=0 +

Z +•

t=0
G(y0, t)dt

=
Z +•

t=0
G(y0, t)dt (10)

We next integrate both sides of Eq. (9) in order to generate relations in terms of
⌦

Ty0!0
↵
. The LHS is simplyR +•

t=0 ∂tG(y0, t)dt = G(y0, t)|t=+•
t=0 = 0 � 1, so the full equation becomes (for arbitrary y0):

lY[
⌦

Ty0+1!0
↵
�
⌦

Ty0!0
↵
] + (y0 + lX)[

⌦
Ty0�1!0

↵
�
⌦

Ty0!0
↵
] = �1 (11)

This result can be used to establish a recurrence relation for the first passage times with different possible
starting points. To reduce notation, we define an auxiliary function

f(y0) =
y0 + lX

lY
· (y0 � 1) + lX

lY
· · · 1 + lX

lY
(12)

and f(0) = 1. (11) can then be restated as

lYf(y0)

"⌦
Ty0+1!0

↵
�
⌦

Ty0!0
↵

f(y0)
�
⌦

Ty0!0
↵
�
⌦

Ty0�1!0
↵

f(y0 � 1)

#
= �1 (13)
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The absorbing boundary condition can be written as hT0!0i = 0. We then have an infinite set of equations
relating different starting heights (with z > 0 below an arbitrary height)

hT0!0i = 0
· · ·

hTz+1!0i � hTz!0i
f(b)

� hTz!0i � hTz�1!0i
f(b � 1)

= � 1
lYf(b)

hTz!0i � hTz�1!0i
f(z � 1)

� hTz�1!0i � hTz�2!0i
f(z � 2)

= � 1
lYf(z � 1)

· · · (14)
hT3!0i � hT2!0i

f(2)
� hT2!0i � hT1!0i

f(1)
= � 1

lYf(2)
hT2!0i � hT1!0i

f(1)
� hT1!0i � hT0!0i

f(0)
= � 1

lYf(1)

3.4 A recurrence relation for the second moments

D
T2

y0!0

E

The calculation for the second moment is similar:
D

T2
y0!0

E
=
Z +•

t=0
t2[�∂tG(y0, t)]dt = �t2G(y0, t)|t=+•

t=0 +
Z +•

t=0
2tG(y0, t)dt

=
Z +•

t=0
2tG(y0, t)dt (15)

By multiplying 2t and then integrating t from 0 to • on the left side of Eq. (9), we obtain (for y0 inside
(0, •)) Z +•

t=0
2t∂tG(y0, t)dt =

Z +•

t=0
G(y0, t) =

⌦
Ty0!0

↵

and thus the relationship

lY

hD
T2

y0+1!0

E
�
D

T2
y0!0

Ei
+ (y0 + lX)

hD
T2

y0�1!0

E
�
D

T2
y0!0

Ei
= �2

⌦
Ty0!0

↵
(16)

Again the boundary condition for the second order moment follows
⌦

T2
0!0

↵
= 0. Following the same

procedure with an identical definition of f

D
T2

0!0

E
= 0

· · ·
⌦

T2
z+1!0

↵
�
⌦

T2
z!0

↵

f(b)
�
⌦

T2
z!0

↵
�
⌦

T2
z�1!0

↵

f(b � 1)
= �2 hTz!0i

lYf(b)
⌦

T2
z!0

↵
�
⌦

T2
z�1!0

↵

f(z � 1)
�
⌦

T2
z�1!0

↵
�
⌦

T2
z�2!0

↵

f(z � 2)
= � 2 hTz�1!0i

lYf(z � 1)
· · · (17)

⌦
T2

3!0
↵
�
⌦

T2
2!0

↵

f(2)
�
⌦

T2
2!0

↵
�
⌦

T2
1!0

↵

f(1)
= �2 hT2!0i

lYf(2)
⌦

T2
2!0

↵
�
⌦

T2
1!0

↵

f(1)
�
⌦

T2
1!0

↵
�
⌦

T2
0!0

↵

f(0)
= �2 hT1!0i

lYf(1)
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3.5 An exact inequality for the non-bursting case b = 1
The systems of equations given by 14 and 17 can be solved in the general case (arbitrary y0), but the answers
are quite involved. Here we focus on the non-bursting case (b = 1 in 2). In this case the initial burst will
always push the system only one unit over the barrier, so the relevant statistics are hT1!0i and

⌦
T2

1!0
↵
.

hT1!0i can be calculated by noting that the sum of the equations in 14 is essentially a telescoping sum
showing that

hT1!0i =
•

Â
y0=1

1
lYf(y0)

(18)

=
1

lY

•

Â
y0=1

l
y0
Y

[y0 + lX][(y0 � 1) + lX] · · · [1 + lX]

=
1

lY
lXelY l�lX

Y g (lX, lY)�
1

lY
(19)

where g(s, y0) ⌘
R y0

0 e�tts�1dt is the lower incomplete gamma function.
Likewise, we can obtain a summed expression for

⌦
T2

1!0
↵
:

D
T2

1!0

E
=

•

Â
y0=1

2
⌦

Ty0!0
↵

lYf(y0)

To simplify this we observe that each of the steps Tx!x�1 (the first passage time from x to x � 1) occurs
independently

⌦
Ty0!0

↵
=

y0

Â
x=1

hTx!x�1i = hT1!0i+
y0

Â
x=2

hTx!x�1i

= hT1!0i+
⌦

Ty0!1
↵

(20)

This relationship can be used to bound the moment:

D
T2

1!0

E
=

•

Â
y0=1

2
⌦

Ty0!0
↵

lYf(y0)

= 2 hT1!0i
•

Â
y0=1

1
lYf(y0)

+
•

Â
y0=2

2
⌦

Ty0!1
↵

lYf(y0)
(21)

= 2 hT1!0i2 +
•

Â
y0=2

2
⌦

Ty0!1
↵

lYf(y0)
(22)

> 2 hT1!0i2 (23)

where from (21) to (22), we use Eq. (18).
Therefore the coefficient of variance (CV) of the dominance period duration for the non-bursting process

obeys

CV =

p
Var[T1!0]

hT1!0i
=

q⌦
T2

1!0
↵
� hT1!0i2

hT1!0i
>

q
2 hT1!0i2 � hT1!0i2

hT1!0i
= 1 (24)

This result means that dominance periods in the non-bursting model cannot be narrower than the expo-
nential distribution, which has a CV of 1.
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3.6 Numerical extension to the slower complexing regime

The exact inequality above for the fast complexing limit in fact is a lower bound on overall behavior. Nu-
merical simulations show that as c becomes smaller (so that dilution becomes more important), the CV is
even larger than when complexing dominates (see Fig. 2). Examination of the moments shows that this be-
havior occurs because the mean residence time decreases monotonically with c, while the second moment
remains almost the same.

3.7 In the absence of bursting, dominance periods of the minority species are short

The moment equations Eq. (18) also allow us to bound the average duration that SinI is dominant. Again as
in Fig. 1, we define the dominance period as the duration over which Y exceeds the barrier at a � 1. If there
is no bursting, then the beginning of the dominance period always starts with a molecules, and on average
lasts

hTa!a�1i =
1

a + lX
+

lY
a + lX

· 1
(a + 1) + lX

+
lY

a + lX
· lY
(a + 1) + lX

· 1
(a + 2) + lX

+ · · ·

<
1

a + lX
+

lY
a + lX

1
a + lX

+

✓
lY

a + lX

◆2 1
a + lX

+ · · ·

=
1

a + lX

"
1 +

lY
a + lX

+

✓
lY

a + lX

◆2
+

✓
lY

a + lX

◆3
+ · · ·

#

=
1

a + lX

1
1 � lY

a+lX

=
1

a + lX

a + lX
a + lX � lY

=
1

a + lX � lY
. (25)

Because we have rescaled time, time units are in generations. Since a � 1 and lX � lY by assumption, the
expression above is thus bounded above by 1, so the dominance periods of the minority species are at most
one generation long. Depending on the precise values of these parameters, dominance periods may in fact
be much shorter on average.

Eq. 25 also serves as an estimate for the duration of SinI dominance periods. As seen in Fig. 3, the
bound performs well and dominance periods are typically substantially shorter than a generation. Note
there is still a strong dependence of the duration on the ratio of production rates lY/lX.

4 Bursty production of the minority species can lead to short, narrowly

distributed dominance periods

We now consider the effect of bursts in the production of the minority species. We will again consider the
fast complexing limit. In this case, we allow b in Eq. 2 to be arbitrarily distributed. This is equivalent to con-
sidering a model where Y can be produced in many distinct production reactions and a single elimination
reaction:

Y
P(b)lY����! Y + b 8b > 0

Y lX+Y���! Y � 1

where P(b) denotes the probability that b molecules are produced in a given burst. We first show that this
model is a actually a suitable simplification of a more complex model in which both species are produced
in bursts, allowing us to proceed without loss of generality.
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Figure 2: Dependence of variability in Y-dominance on strength of complexing. In the fast complexing
limit, Eq. 24 shows that if the minority component Y is not produced in bursts, then the periods of Y-
dominance will always be highly variable (have a CV > 1). The figure shows that this result is in fact a
conservative bound on the true behavior: when complexing is not infinitely fast, the observed coefficients
of variation are in fact higher than in the limiting case. Each panel plots the observed CV as c is changed
for a a series of different pairs of production rates lX, lY.
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Figure 3: Approximation for SinI dominance period durations. In the fast complexing limit, Eq. 25 yields
an estimate of the average duration of dominance of the minority species Y. The figure compares the bound
to the actual dominance periods in two regimes as the ratio of production rates lY/lX is changed.

4.1 A reduced model for bursting

As before, we denote SinR by X and SinI by Y. Suppose each mRNA molecule of X (or Y) is produced
with rate lX (or lY). The lifetime of each mRNA molecule is determined by the first binding event of a
ribonuclease, leading to degradation. This lifetime is generally much smaller than the cell division time and
can be considered to be instantaneous. The number of proteins generated by a single mRNA molecule is a
result of individual ribosome binding events that competes with the binding of the degradation machinery.
Denoting r as the probability of ribosome binding and 1� r for RNase E binding, the number of X proteins
a produced from a single mRNA then follows a geometric distribution:

PNa(a) = ra(1 � r), a = 0, 1, 2, . . . (26)

where the parameter Na = r/(1 � r) is the mean value of the distribution. A “contracted” version of
SinI/SinR protein dynamics with bursting in both species then follows:

X
PNa (a)·lX�����! X + a, 8a � 0 Y

PNb (b)·lY
�����! Y + b, 8b � 0

X X/tX���! X � 1 Y
Y/tY���! Y � 1 (27)

(X, Y) cXY��! (X � 1, Y � 1)

where lX and lY are the production rates of mRNA molecules, tX and tY are the half-lives of X and Y
proteins, and c is the rate constant for complex formation. Note that there are actually an infinite number of
production reactions above, as production of X and Y proteins occurs in geometrically-distributed bursts
(the random variables a and b) with average burst sizes Na and Nb. We assume both proteins are subject
to the same degradation pathway and/or dilution through cell growth, and thus have the same half-lives.
For convenience we thus set tX = tY = 1.

Though the model has an infinite number of reactions, it can still be simulated efficiently through a
modified Gillespie algorithm using mixture distributions. Through a large amount of simulation results
in the region lY  lX (primarily the rare bursting regime) and Nb � Na (i.e. SinI is more bursty than
SinR), we observed that the two parameters Na and Nb can be reduced to be 1 and Nb/Na with negligible
influence on the residence time distribution of the Y-dominant state, as seen in Figure 4.
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Figure 4: Representative simulations showing that it is primarily the ratio Nb/Na that determines the sta-
tistical properties of pulses. The time spent in theY-dominant (respectively X-dominant) state is referred
to as TY (TX). The simulations fix the production rate of X at 40, and vary the production rate of Y, which
is denoted lY. The first four panels summarize simulations in which both X and Y are produced in bursts
with the same burst size. The first row of panels show the average time spent in the Y-dominant state (left)
and the X-dominant state (right). The second row of panels shows the coefficient of variation for these
residence times. In all cases the results are similar even though the burst size increases from 1 to 20. The
second set of four panels shows similar simulations, except that the burst size in Y production has been
set to be five times that in X production. Across a 20-fold change in burst size, the statistics are basically
unchanged.
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The model Eq. (27) can thus be reduced to one in which Y is produced in bursts and X is produced
randomly one at a time:

X lX�! X + 1 Y
PNb/Na (b)·lY
�������! Y + b, 8b � 0

X X�! X � 1 Y Y�! Y � 1 (28)

(X, Y) cXY��! (X � 1, Y � 1)

In the fast complexing limit, this model is in turn well-approximated by a model similar to the one discussed
in Section 2.1:

Y
PNb/Na (b)·lY
�������! Y + b, 8b � 0

Y lX+Y���! Y � 1 (29)

In the rare bursting limit, the the mean and variance of the Y-dominance time can then be calculated as
mixture distributions (with N0 := Nb/Na):

hTYi =
•

Â
b0=0

PN0(b0) hTb0+1!0i

=
•

Â
b0=0

rb0(1 � r)
b0+1

Â
y=1

1
lX + y

=
•

Â
b0=0

✓
N0

1 + N0

◆b0 1
1 + N0

b0+1

Â
y=1

1
lX + y

(30)

Var(TY) =
•

Â
b0=0

PN0(b0) ·
n
(hTb0+1!0i � hTYi)2 + Var[Tb0+1!0]

o

=
•

Â
b0=0

N0b0

(1 + N0)b0+1 ·

8
<

:

 
b0+1

Â
y=1

1
lX + y

� hTYi
!2

+
b0+1

Â
y=1

✓
1

lX + y

◆2
9
=

; (31)

An example comparison between simulations and the theoretical predictions for the reduced model is
shown in Figure 5.

4.2 Bursts of a fixed size in the rare bursting limit

To make progress, we further specialize to the case where lX � lY. This “rare bursting” limit ensures that
each dominance period of Y corresponds to a unique burst in Y production that subsequently dilutes out.
For example, say b molecules of Y have been produced. They will then each have exponentially distributed
lifetimes: the first molecule will take Exp(lX + b) units of time to eliminate (where Exp(l) denotes an
exponential random variable with rate l), the second molecule Exp(lX + b � 1) units of time, etc. The
total time for all molecules to be eliminated will then follow the hypoexponential (generalized Erlang)
distribution: Tb!0 ⇠ Hypo(lX + b, lX + b � 1, . . . , lX + 1). The mean and variance of this distribution
follow:

hTb!0i =
b

Â
y=1

1
lX + y

(32)

Var(Tb!0) =
b

Â
y=1

✓
1

lX + y

◆2
(33)

By Jensen’s inequality we then have Âb
y=1

⇣
1

lX+y

⌘2

⇣

Âb
y=1

1
lX+y

⌘2
, implying CV(Tb!0)  1 always, i.e.

bursts are more narrowly distributed than the exponential expectation.
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Figure 5: The simulations were performed by scanning Na from 1 to 20 while keeping Nb/Na as a fixed ratio.
The theoretical curves are calculated using Eqs. (30) and (31). In the left panel lY = 0.01 and lX = 20. In
the left panel lY = 0.01 and lX = 50.

4.3 Extension to distributed bursts

Most models of stochastic gene expression do not predict bursts of fixed size, but rather geometrically
distributed bursts of protein production as individual mRNAs are produced and destroyed as discussed
above. b is therefore a random variable. As the size of a particular burst may now vary, we simply denote
the dominance duration by Tburst. The moments in this case can then be computed using the formulas for
the moments of a mixture distribution:

hTbursti =
•

Â
b0=0

P(b0) hTb0+1!0i , (34)

Var(Tburst) =
•

Â
b0=0

P(b0) ·
n
(hTb0+1!0i � hTbursti)2 + Var(Tb0+1!0)

o
. (35)

Here b0 is the “net burst”. When the burst initiating a period of Y dominance occurs it produces b molecules,
but any free X molecules must first be eliminated, leaving behind b0 molecules. Connecting this distribution
to that of b is generally impossible. However, in the regime we consider, production events of Y are rare,
so we can regard X as being at steady state and in the dominant position (so that no free Y molecules are
present). As the burst occurs, the average “net burst” is then b0 = b � hXi. In the case of the geometric
distribution, we can then exploit memorylessness to see that

P(b0) = P(b|b � hXi � 0) =
P(b)

P(b � hXi � 0)
=

(1 � r)rb

1 � ÂhXi�1
y=1 (1 � r)ry

=
(1 � r)rb

rhXi

= (1 � r)rb�hXi = (1 � r)rb0 (36)

so the “net burst” has the same distribution as b. We will thus omit the prime in the subsequent discussions.

4.4 Two routes to narrowly distributed dominance periods

Bursting allows for accurate timing of the dominance periods in two different ways.
First, consider the case where lX � hbi—what might be called the “small burst” regime. The exact

moments can be calculated using 34 and 35, but the expressions are not particularly illuminating. We thus
offer a more intuitive picture. In this regime complexing is the dominant elimination pathway. The lifetime
of each Y molecule is then well-approximated as Exp(lX). If there are b total molecules in a particular
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burst, the total time to eliminate all molecules is then simply Tb!0 ⇠ Gamma(b, lX), which will be tightly
concentrated around hTb!0i = b/lX. (Indeed, the gamma becomes a better and better approximation for
the hypoexponential distribution discussed in Sec. 4.2 as lX increases.) If b is instead randomly distributed
on {1, 2, 3, · · · } according to the distribution P(b), Tb!0 will thus be a superposition of gamma distribu-
tions centered on the rescaled set { 1

lX
, 2

lX
, 3

lX
, · · · }, and thus obey roughly the same distribution defined

on (0, •). As the CV is invariant under scaling, a low CV burst distribution will thus yield a low CV
distribution for the duration of dominance periods Tb!0.

The second approach is to go to the opposite extreme and have extremely large bursts (b � lX). Dilution
is then the dominant elimination pathway, and the same exponential dilution principle discussed in the
main text takes over. Indeed, downstream targets of the SinI-SinR interaction can potentially benefit from
two rounds of this effect: one at the level of bursting of SinI, and a second at the level of production of the
targeted protein.

4.5 Durations of dominance periods when the minority species is produced in bursts

In the small burst regime, the approximate logic above suggests that the duration of dominance of the
minority species is approximately

Â
b

P(b) hTb!0i ⇡ Â
b

P(b)(b/lX) = hbi /lX ⌧ 1 ,

so dominance periods are again shorter than a generation. 34 can be used to provide a more precise upper
bound when the burst distribution is geometric:

hTBursti =
•

Â
b=0

P(b) hTb+1!0i =
•

Â
b=0

(1 � r)rb
b+1

Â
x=1

1
lX + x

=
•

Â
x=1

1
lX + x

•

Â
b=x�1

(1 � r)rb =
•

Â
x=1

1
lX + x

rx�1

<
1

lX + 1

•

Â
x=0

rx =
1

lX + 1
1

1 � r
=

1
lX + 1

1
1 � hbi /(hbi+ 1)

=
hbi+ 1
lX + 1

(37)

5 Switches into the minority-dominant state occur memorylessly when

rare

When lX � lY, the majority species will dominate most of the time and switches into the minority-
dominant state will be extremely rare. As they are also extremely short (see above), the likelihood of two
overlapping bursts becomes smaller and smaller, and they are effectively impulsive events compared to
the periods of in which the majority species is dominance. It is thus intuitively clear that switches into the
minority state arise memorylessly, and occur according to a Poisson process. Here we will demonstrate that
this is the case analytically by showing that the moments of the majority dominance periods tend to those of
the exponential distribution. Since experimentally we can only measure when minority dominance periods
begin (as the reporter responds slowly), we then show that this exponential distribution can be measured
from the distribution of interpulse times (i.e. the distribution of waiting times from the start of one pulse to
the start of the next).

Note that deviation from exponential interevent statistics is expected as lX and lY become comparable,
as in this regime it takes longer for a buffer of free molecules of either component to accumulate. This
can lead to the system being primed to stay in one state, and thus coupling (and loss of memorylessness)
between subsequent switching periods.
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Figure 6: Phase diagram for both SinI and SinR proteins produced in bursts. There are four parameters
in this model: the production rates of bursts for SinI and SinR and average burst sizes of SinI and SinR.
But effectively the number of parameters is two, since the production rate of bursts for SinI is small and
only the ratio of the average burst sizes between SinI and SinR influences the dynamics. We thus vary the
average burst size of SinI and burst rate of SinR in the x-y plane and the in the z-axis show the CV for SinI
dominance duration.

5.1 Periods of dominance for the majority species are exponentially distributed when

lX � lY

We will assume lY is small, say l = e where 0 < e ⌧ lX. As the system is symmetrical with respect to
the two variables, a reduced model for the dynamics of X similar to Eqs. 2 and 3 can be derived, leading
to an equation similar to Eq. 9. Again, this reduction to a single variable model is possible because fast
complexing guarantees that when X > 0, we must have Y = 0. The simplified model thus in fact describes
the dynamics of the difference X � Y. Switching will occur when this difference becomes negative, i.e. Y
starts to dominate. We are thus interested in the first passage time Tx0!�1 (i.e. the time to go from a surplus
of x0 SinR molecules to a deficit of one, when a period of Y dominance begins).

Similar to the derivation of Eq. 11 and Eq. 16, we can then develop a series of relationships among the
moments of the first passage time Tx0!�1

lX[
⌦

Tx0+1!�1
↵
�
⌦

Tx0!�1
↵
] + (x0 + #)[

⌦
Tx0�1!�1

↵
�
⌦

Tx0!�1
↵
] = �1 , (38)

lX

hD
T2

x0+1!�1

E
�
D

T2
x0!�1

Ei
+ (x0 + #)

hD
T2

x0�1!�1

E
�
D

T2
x0!�1

Ei
= �2

⌦
Tx0!�1

↵
, (39)

· · ·

lX

hD
Tn

x0+1!�1

E
�
D

Tn
x0!�1

Ei
+ (x0 + #)

hD
Tn

x0�1!�1

E
�
D

Tn
x0!�1

Ei
= �n

D
Tn�1

x0!�1

E
, (40)

· · ·

We will solve these equations for generic starting point x0, but we are interested specifically in the first
passage time T0!�1, meaning the time from when the two species are perfectly balanced (surplus of 0 SinR
molecules) to when SinI first begins to dominate (a surplus of one SinI molecule, or equivalently a deficit of
�1 SinR molecules). As before, we proceed by introducing an auxiliary function f that allows the solutions
to be phrased more simply. We set

f(x0) =
x0 + #

lX
· (y0 � 1) + #

lX
· · · 1 + #

lX
· #

lX
(41)



Mathematical Derivations 17

and f(�1) = 1. From (38) we derive

⌦
Tx0!�1

↵
= f(x0 � 1)

•

Â
x=x0

1
lXf(x)

(42)

=
•

Â
x=x0

lx�x0
X

[x + #][(x � 1) + #] · · · [x0 + #]

=

8
<

:

T̂
# ⌘ 1

#

n
1 + Â•

x=1
lx

X
[x+#][(x�1)+#]···[1+#]

o
⇠ O( 1

# ) x0 = 0

Â•
x=x0

l
x�x0
X

[x+#][(x�1)+#]···[x0+#] ⇠ O(1) x0 > 0
(43)

When # is small, the first term T̂
# in Eq. (43) will be much larger than the lower terms. Similarly for the

second moment we can derive from (39) that

D
T2

x0!�1

E
= f(x0 � 1)

•

Â
x=x0

2 hTx!�1i
lXf(x)

(44)

=

(
2 T̂2

#2 + O
⇣

1
#

⌘
x0 = 0

O(1) x0 > 0
(45)

where the x0 = 0 case follows since

D
T2

0!�1

E
=

•

Â
x=0

2


T̂
#
+ O(1)

�
· 1

lXf(x)

= 2
T̂2

#2 +
•

Â
x=0

1
lXf(x)

· O(1)

= 2
T̂2

#2 + O
✓

1
#

◆
(46)

Proceeding iteratively, we have for (40)

D
Tn

x0!�1

E
= f(x0 � 1)

•

Â
x=x0

n
D

Tn�1
x!�1

E

lXf(x)
(47)

=

(
n! T̂n

#n + O
⇣

1
#n�1

⌘
x0 = 0

O(1) x0 > 0
(48)

where the x0 = 0 case arises because

⌦
Tn

0!�1
↵
=

•

Â
x=0

n

(n � 1)!

T̂n�1

#n�1 + O
✓

1
#n�2

◆�
· 1

lXf(x)

= n!
T̂n

#n +
•

Â
x=0

1
lXf(x)

· O
✓

1
#n�2

◆

= n!
T̂n

#n + O
✓

1
#n�1

◆
(49)

As # ! 0, the first term accounts for more and more of the moment
⌦

Tn
0!�1

↵
. We thus conclude the first

passage time is asymptotically exponentially distributed with mean T̂/#.
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Figure 7: Approximation for SinR dominance period durations. In the fast complexing limit, Eq. 50 yields
an estimate of the average duration of dominance of the majority species X. The figure compares the bound
to the actual dominance periods in two regimes as the ratio of production rates lY/lX is changed.

5.2 Periods of majority dominance are long and highly sensitive to the ratio of pro-

duction rates lY/lX

As in the case of the minority species, the estimates above for the first passage time can also be used to
investigate the properties of the majority dominant state.

hT0!�1i =
1

lX

•

Â
x=0

lx
X

[x + lY][x � 1 + lY] · · · [1 + lY]
lX
lY

= elX (lX)
�lY g (lY, lX)

= elX (lX)
�lY G(lY)� elX (lX)

�lY (lX)
lY�1 e�lX

⇡ elX (lX)
�lY G(lY) (50)

Although better approximations are possible, it turns out that Eq. 50 is a good approximation for the
duration of SinR dominance periods, as seen in Fig. 7. Note that dominance periods for the majority
species are much longer than for the minority species, and that the duration is highly sensitive to the ratio
of production rates lY/lX.

5.3 The connection to experimentally measured distributions

The previous argument calculated the distribution of dominance period durations for the majority species
SinR (X) and showed that they were exponentially distributed when switching is rare. In experiments,
we instead measure the inter-pulse durations, i.e. the time from the beginning of one minority dominance
period to the next. We next briefly illustrate that the distribution of these times should be essentially the
same.

The key observation is that the minority dominance periods are short and narrowly distributed, as
proven above. The intervals measured in the interpulse distributions are thus the sum of an exponentially
distributed period in which SinR dominates, and a short, narrowly distributed period in which SinI domi-
nates. We can thus approximate it is a constant. The intervals we measure experimentally (which we see are
exponentially distributed) then take the form t = t0 + t0, where t is the observed interpulse duration, t is the
“true” SinR dominance period, and t0 is a constant representing the period of SinI dominance. Because the
exponential distribution is memoryless, the “distribution minus a constant” has the same distribution—and
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thus the same mean—as the original random variable. Thus if we observe an exponential P(t) = le�lt, the
random variable t0 = t � t0, t0 � 0 has a distribution

P(t0) = Pt(t0 + t0|t0 � 0) =
le�l(t0+t0)
R •

t=t0
le�ltdt

=
le�l(t0+t0)

e�lt0
= le�lt0 (51)

Hence the SinR dominance periods (t0) follow the same exponential distribution as the observed interpulse
durations (t).

6 SlrR can prolong dominance periods

The previous sections highlight the importance of the parameter lY/lX in understanding the dynamics of
SinI and SinR. Comparing Fig. 3 to Fig. 7, we see that the average duration of SinI dominance is extraor-
dinarily insensitive (in absolute terms) to this parameter, while the period of SinR dominance is conversely
extraordinarily sensitive. The net effect is that setting the relative production rates sets the frequency of
pulsing, and once this is set the resulting pulses are all approximately impulsive in nature. Bursting can
expand the duration of a period of SinI dominance, but this is opposed by the exponential nature of dilu-
tion/degradation, meaning that there are practical limits to how long a pulse can be made using the SinI
and SinR circuit alone. Bursting can, however, control how narrowly distributed dominance periods are, as
seen above. Below we demonstrate that the addition of SlrR to the circuit provides a vital “third knob” that
allows the periods of SinI dominance to be expanded.

6.1 A model with SlrR and a reporter

To model the effect of SlrR, we introduce a third species Z to the model of Eq. 27:

X
PNa (a)·lX�����! X + a, 8a � 0 Y

PNb (b)·lY
�����! Y + b, 8b � 0

X X/tX���! X � 1 Y
Y/tY���! Y � 1 (52)

(X, Y) cXY��! (X � 1, Y � 1)

Z
f (X)��! Z + 1 Z Z/tZ���! Z � 1

(X, Z) dXZ��! (X � 1, Z � 1)

In simulations we assume that tX = tY = tZ = t := 1 (proteins are diluted by cell division), c and d are
both very large (fast complexing), both binding reactions are irreversible, and that SinR regulates SlrR via
a Hill function dependence: f (X) = lZKd

Kd+Xh . We additionally include a reporter species R, representing a
repressed target of SinR:

R
PNr (r)·g(X)
������! R + r, R R/t��! R � 1

where repression follows Hill-type dynamics g(X) = lR
1+(X/Kr)n . In this section we will define dominance

periods through the expression of this reporter, as it provides a simple synthesis of SinI and SlrR’s effects.

6.2 Prolonged ON durations in the presence of SlrR

With two antagonists of SinR present, it is possible to use either to control the duration of ON durations
(which now correspond to periods when the pool of free SinI + SlrR exceeds that of SinR or, roughly equiv-
alently, when the reporter gene turns ON). Figure 8 compares these two strategies. In both figures, SinR is
produced at a set level (lX = 40, and geometric bursts of average size Na = 10). In the left panel, we sweep
SinI by changing its production rate (lY between 20 and 40, geometric bursts of average size Nb = 10). In
the right panel, we keep SinI’s production constant (lY = 20, Nb = 10) and instead increase ON durations
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Figure 8: Comparison of effect of increasing SinI production (left) and increasing SlrR for fixed SinI produc-
tion (right) on reporter ON and OFF durations. Production rates are described in the text. Other parameters
are: c = d = 10000, Kr = 5, Kd = 104,h = n = 4,lR = 5, Nr = 5, and all lifetimes (t0s) are set to 1, repre-
senting common removal by dilution/degradation.

by adding SlrR to the system (sweeping lZ from 0 to 440). As seen in the figures, this allows for much
greater variation in ON durations with relatively little effect on OFF durations, as opposed to the tight
correlation between the two in the circuit without SinI. By altering properties of the feedback loop, these
differences in behavior can be further tuned.

Importantly, the addition of SlrR does not alter the main properties of the circuit, i.e. the memoryless
production of stereotyped pulses. Figure 9 compares the distributions of reportor ON and OFF durations
in circuits with and without SlrR.

7 Detailed modeling of the SinI-SinR interaction on downstream tar-

gets yields no qualitative differences in behavior

In this section, we briefly discuss a more mechanistically complex model of the interaction between SinI and
SinR. The reactions below describe a system in which SinR (X) and SinI (Y) are produced in geometrically-
distributed bursts and removed by dilution/degradation, as in the main SI. The next series of reactions
explicitly model SinR dimerization (species DX) and tetramerization (species TX). We model the effects
of SinI on SinR as targeting the active tetramer population — that is, SinR dimers either merge to form
tetramers, which are capable of binding DNA, or are dismantled by permanent association with SinI to
form the species XY, which is then removed by dilution/degradation.

The target of SinR (R) is modeled as having two binding sites. The number bound is kept track of by
the variable B, which has a maximum value of 2. Transcription of the reporter takes place only when both
sites are unbound, and is made in geometrically-distributed bursts. The total model thus comprises the
following reactions:
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Figure 9: Example distributions of reporter ON (left panel) and OFF (right panel) durations in the circuit
with SlrR (red lines) and without (black lines). Parameters are as in Figure 8 with lZ = 220.

X
PNa (a)·lX�����! X + a, 8a � 0 Y

PNb (b)·lY
�����! Y + b, 8b � 0

X X/tX���! X � 1 Y
Y/tY���! Y � 1

(X, DX)
lDX ·X·(X�1)��������! (X � 2, DX + 1)

(DX, TX)
lTX ·DX·(DX�1)���������! (DX � 2, TX + 1)

(DX, TX)
dTX ·TX����! (DX + 2, TX � 1)

DX DX/tDX�����! DX � 1 TX TX/tTX����! TX � 1

(DX, Y, XY)
c·DX·Y(Y�1)�������! (DX � 1,Y � 2, XY + 2) XY

XY/tXY����! XY � 1

(B, TX)
lB ·(2�B)·TX�������! (B + 1, TX � 1)

(B, TX)
dB ·B��! (B � 1, TX + 1)

R
(1�B)·(2�B)·lR ·PNr (r)�������������! R + r, 8r � 0 R R/tR���! R � 1

where lX , lY are the production rates of SinR and SinI mRNA molecules; tX , tY, tDX , tTX , tXY are the
half-lives of X, Y, DX, TX, and XY proteins, c is the rate constant for complex formation, and lDX , lTX
and dTX are the rate constants controlling SinR dimer/tetramer formation. We assume all three proteins
are subject to the same degradation pathway and/or dilution through cell growth, and thus have the same
half-lives. For convenience we thus set tX = tY = tXY = tDX = tTX = tR = 1. Production of X,Y and
R proteins are produced in bursts: a, b, and r are geometrically distributed random variables with average
burst sizes Na, Nb, and Nr.

Many of the rate constants are not easily measurable, so we use a combination of constraints from
experimental data and reasonable assumptions:

• Though we do not know the exact abundance of each form of SinI and SinR, we can use rough litera-
ture estimates for the total abundance of all forms. We first constrain hSinR totali = hX + 2 · DX + 4 · TX + XYi ⇡
400, in line with mass spec estimates from growth in rich media [30]. SinI is low abundance and diffi-
cult to measure directly. We approximate its average copy number as hSinI totali = hY + XYi ⇡ 100
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based on our HALO-tagging experiments, though this estimate is rough since the two strains are
constructed differently.

• SinI affinity for SinR is measured to be in the nanomolar range [31], so we model this reaction as
irreversible.

• SinR is essentially completely tetrameric in solution (Anthony Wilkinson, personal communication,
and by similarity to the cI-Cro system [32]), so adjust lDX , lTX , and dTX to favor that (lDX = 10000,
lTX = 1, dTX = 100). We note this is in contradiction to a report in the literature of a Kd of 6.7 µM
for SinR tetramerization ([33]). This number was measured under non-physiological conditions and,
were it true, it would be expected that almost no tetramers would ever be present in the cell.

• Likewise, from our HALO-tagging experiments, we know approximate CVs for the these totals, so
we similarly constrain CVSinR total ⇡ 0.27 and CVSinI total ⇡ 0.34.

• From footprinting and gel-shift experiments, we observe almost complete protection of endogenous
SinR targets with 40 nM SinR ([34], [35]). We thus set the affinity of SinR tetramers for binding sites
to be 40 nM to be conservative (lB = 1, dB = Kd,BlB = 40). We note that there are two papers
in the literature claiming affinities of SinR for DNA in the 350 nM range ([36], [31]). Both papers
measure SinR binding to a short synthetic oligo sequence and not to natural promoters. Moreover,
the measured numbers are inconsistent with all copy number estimates of SinR in individual cells, as
at this affinity very little SinR would ever be bound to DNA.

• We assume all proteins are subject to removal by dilution/degradation with the same rate constants
(all t’s set to 1).

The constraints still leave a lot of parametric flexibility, including the complete dynamics of SinI/SinR
production. One example sets the average bursting rate of SinI to 10 (lY = 10) with average burst size 10
(Nb = hbi = 10) and average burst rate of SinR to 16 (lR = 16) with average burst size 25 (Na = hai = 25).
These dynamics lead to average abundances and CVs that match the estimates above. The second area of
flexibility is in reporter expression. We thus provide a handful of examples below.

In most of the SI we ignored this level of complexity and used simpler models describing only the
interaction of SinI and SinR, as it is this interaction that gives rise to most of the behavior. To show that
these simpler models accurately recapitulate the “more complete” model above, we simulated a reduced
version in which explicit modeling of SinR oligomerization and DNA binding was ignored and replaced
by Hill-type dynamics:

reporter production rate =
lR

1 + (X/Kd)
h

By matching the production rates and equilbrium concentrations of SinR between these two models, we can
produce a “matched” reduced model. The precise matching conditions are described in the next section
below, but the results boil down to doubling lR and setting Kd = 249. Simulations of both models are
showing in Figure 10, showing excellent agreement in the qualitative behavior despite the simplifications.
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Figure 10: The figure shows the distributions of SinI dominance (left panels) and SinR dominance (right
panels) as measured by expression of the SinR-controlled reporter R. The top panels are for the complete
model described above, and the bottom panels are for the reduced model where SinR tetramerization and
promoter binding have been approximated by Hill-function dynamics. The parameters of the reporter are
indicated by the line color.
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7.1 Deriving a matched, reduced model from the complete model

We will approximate that all of the X molecules are either in dimers or tetramers, as the equilibria strongly
favor oligomerization of X. The key reactions in our “complete model” involving multimers of X are then:

(DX, TX)
lTX ·DX·(DX�1)���������! (DX � 2, TX + 1)

(DX, TX)
dTX ·TX����! (DX + 2, TX � 1)

(B, TX)
lB ·(2�B)·TX�������! (B + 1, TX � 1)

(B, TX)
dB ·B��! (B � 1, TX + 1)

R
(1�B)·(2�B)·lR ·PNr (r)�������������!R + r, 8r � 0 R R/tR���! R � 1

We approximate the two tetramer binding sites as one with double the production rate, leading to the
modified reactions:

(B, TX)
2lB ·(1�B)·TX��������! (B + 1, TX � 1)

(B, TX)
dB ·B��! (B � 1, TX + 1)

R
2(1�B)·lR ·PNr (r)⌘vR ·PNr���������������!R + r, 8r � 0 R R/tR���! R � 1

The mean dynamics of dimers, tetramers, and DNA binding then follow:

dDX
dt

= �2lTX · DX2 + 2dTX · TX

dTX
dt

= lTX · DX2 � dTX · TX � 2lB · (1 � B) · TX + dB · B

dB
dt

= 2lB · (1 � B) · TX � dB · B

In equilibrium, dDX
dt = dTX

dt = dB
dt = 0, so

�lTX · DX2 + dTX · TX = 0
2lB · (1 � B) · TX � dB · B = 0

We can then calculate equilibrium values for the concentrations of the various species, the bound fraction,
and the production rate of the of the reporter:

TX = DX2/Kd,TX

B =
2lBTX

dB + 2lBTX
(53)

vR = 2lR · (1 � B) =
2lR

1 + TX/(Kd,B/2)
=

2lR
1 + DX2/(Kd,TX · Kd,B/2)

In an equivalent “reduced” model, we ignore explict modeling of the dimer and tetramer species and
model binding simply as 4 X molecules coming together on a single site on DNA:

(X, B)
lB ·X(X�1)(X�2)(X�3)(1�B)�����������������! (X � 4, B + 1)

(X, B) dB ·B��! (X + 4, B � 1)

R
(1�B)·l0

R ·PNr (r)⌘vR ·PNr��������������!R + r, 8r � 0 R R/tR���! R � 1
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The equilibrium reactions in this case follow:

dX
dt

= �4lB · X4 · (1 � B) + 4dB · B

dB
dt

= lB · X4 · (1 � B)� dB · B

And in equilibrium, dX
dt = dB

dt = 0, we have

lB · X4 · (1 � B) = dB · B

B =
lB · X4

dB + lB · X4 (54)

vR = l0
R · (1 � B) =

l0
R

1 + X4/K0
d,B

=
l0

R
1 + (X/Kd)4

By comparing Eqs. 53 with Eqs. 54, we can match production rates

vR =
l0

R
1 + (X/Kd)4 =

2lR
1 + DX2/(Kd,TX · Kd,B/2)

(55)

Since we assume in the complete model that complexing is fast (so that all X is in either dimers or tetramers),
we then can dictate that the total equilibrium average amounts of X between the complete (LHS) and
reduced (RHS) models be the same:

2 · DX + 4 · TX = X

2 · DX + 4 · DX2/Kd,TX = X (equilibrium between DX and TX)
⇡ lX · Na � lY · Nb

The final approximation follows from the dynamics of X production and removal by Y (assuming com-
plexing by SinI is dominates over dilution). By solving the equation using the parameters in the previous
section, we have X ⇡ 300, DX ⇡ 65. From Eq. (55), we obtain

l0
R = 2lR

Kd = (K0
d,B)

1/4 = (X4/DX2 · Kd,TX · Kd,B/2)1/4 ⇡ 249

8 Expected autocorrelation in experimental reporters

In the main text and above, we argue that stochastic antagonism between SinI and SinR gives rise to dy-
namics in which the minority species comes to dominate for short periods of time at memoryless intervals.
However, because these dominance periods are so short, they cannot be observed directly, though we can
look for properties such as memorylessness and timing that are expected to follow from the model. We next
consider another prediction of the model that can be investigated experimentally: the expected autocorre-
lation for a reporter that is controlled by SinR (as plotted in Fig. S3C of the main text).

We must thus model the production and maturation of a fluorescent reporter under SinR control. We
will denote immature (dark) fluorescent proteins by p and mature fluorescent protens by q. When durations
of SinI dominance are short relative to the time between successive events, we can approximate the birth
dynamics of p as occurring in large bursts (of size b) with constant probability in time (with rate l, set by
the relative balance of SinI and SinR). The protein then matures with first order kinetics (rate constant g),
and both mature and immature proteins are degraded/diluted through growth (occurring exponentially
with rate b). This leads to the scheme

p l�!p + b (p, q)
gp�! (p � 1, q + 1)

p
bp�!p � 1 q

bq�! q � 1
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We assume that p and q are sufficiently high abundance that low copy fluctuations are negligible, and the
only source of noise in the system is production bursts (i.e. 1

hpi ⇡ 0, 1
hqi ⇡ 0, but b

hpi is non-negligible). In

this case the steady state normalized covariances hpq = Cov(p,q)
hpihqi ,hqq = s2

q / hqi2, and hpp = s2
p/ hpi2 using

the fluctuation-dissipation relation (FDR) [37]

Mh + hMt = D

with M =

✓
b + g 0
�b b

◆
, h =

✓
hpp hpq
hpq hqq

◆
(the normalized covariance matrix), and D =

 
2b(b+g)

hpi 0
0 0

!
.

The zeros in the diffusion matrix D are induced by the approximations mentioned above, and indicate that
we consider only noise originating in p as it propagates through the system. The solution then yields

hpp =
b
hpi

hpq = hqq =
b

(g + 2b)
b
hpi

A slight modification of the calculation in [38] then shows that the normalized matrix of autocorrelations
(R(t)) follows

dR(t)
dt

= �MR(t)

with solution given by the matrix exponential

R(t) = e�Mth .

After normalizing by h2
qq, we thus obtain

Rqq(t)

h2
qq

=
b

g
e�bt � e�bt

g
(be�gt � g) .

Remarks

• Once the autocorrelation has been normalized to its initial value, the curve is parametrized by only
the component stability (b), and the maturation rate of the fluorescent protein (g). Empirically-
determined values for these constants are used to plot the curves in the main text.

• The initiation rate of bursts (i.e. l) does not enter into this equation: provided that bursts fire mem-
orylessly in time, the temporal correlations will always follow the same form. The firing rate does of
course change the moments, but these changes are scaled away by normalizing the autocorrelation to
its initial value (i.e. h2

qq).

• Consistency with this model indicates that production of the immature reporter can be treated as an
essentially instantaneous process. This is consistent with the expectations derived from the simple
stochastic antagonism model in which periods of SinI dominance are expected to be rare and very
short. Correlations that decay more slowly than this expectation are suggestive of a long-lived vari-
ability upstream of the reporter itself. We in fact observe precisely this effect when we add SlrR to our
reconstitution system. In that circuit, the periods of SinI/SlrR dominance have substantial duration,
creating longer-lived temporal correlations in the reporter.

9 Inferring properties of stochastic antagonism from reporter traces

In the main text, we argued that the observed pulses of gene expression in B. subtilis and the reconstituted
E. coli circuit resulted from occasional dominance of SinI over SinR. As suggested by the mathematical
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reasoning in previous sections of this document, these periods of dominance are expected to be very short—
well below the time resolution of our experiments. While the statistics describing the periods of dominance
of SinI over SinR are thus not directly accessible, we can make some inferences using the observed peaks
and additional measurements of variability in GFP synthesis under saturating IPTG conditions. Specifically,
we would like to determine whether the data are consistent with a model in which the periods of active
reporter synthesis (i.e. SinI dominance) exhibit timing.

9.1 A simple model for reporter burst size

To make these inferences, we developed a simple model describing how bursts of reporter synthesis fol-
low from the underlying dynamics of SinI and SinR. We assume that bursts arise from discrete periods of
promoter activity, each of which has a random duration (T, with unknown statistics). During this period,
reporter production is assumed to follow a non-homogeneous Poisson process with possibly changing rate
l(t). The size of burst produced in a period of SinI dominance can then be written as

b =
Z T

0
l(t0)dt0

= T
✓

1
T

Z T

0
l(t0)dt0

◆

= Tl̄

where l̄ is the average production rate taken over the duration of SinI dominance (itself a random variable).
We next make the simplifying (but reasonable, see below) assumption that these two random variables can

be treated as independent of one another, so that the normalized variance in the burst size s2
b

hbi2 then follows:

s2
b

hbi2 =
s2

T
hTi2 +

s2
l̄

hl̄i2 +
s2

T
hTi2

s2
l̄

hl̄i2 (56)

The assumption of independence amounts to a statement about the relative timescales of synthesis rate
fluctuation and duration of SinI dominance. Specifically, we assume that the rate is effectively constant
within a given period of SinI dominance, but may fluctuates between subsequent intervals. Given that
we establish the periods of SinI dominance to be substantially shorter than a generation, we consider this
to be a reasonable assumption as most determinants of gene expression variability are stable (e.g. sigma
factors, ribosomes, polymerases, etc.), and will likely fluctuate with a characteristic timescale of at least one
generation.

9.2 Inferring timing in the SinI dominance periods

Eq. 56 can be rearranged to yield an estimate of the variability in SinI dominance periods T:

CV2
T =

s2
T

hTi2 =

s2
b

hbi2 �
s2

l̄
hl̄i2

1 +
s2

l̄
hl̄i2

(57)

We functionally define timing by the observation of sub-exponential statistics in T, i.e. CVT < 1. We thus
had to experimentally estimate s2

b /hbi2 and s2
l̄

/hl̄i2.
We estimate the variability in burst size (s2

b /hbi2) from the distribution of peak heights in the main text
(Figure 3). By simulating the burst-maturation-dilution process modeled described in he previous section,
we found that the peak height was proportional to the initial burst size. The normalized variance in the
distribution of peak heights will therefore be the same as the normalized variance in burst sizes. Using this
procedure, we estimate s2

b /hbi2 in the reconstitution strain (NDL-423) to be 2.04, 1.35, and 0.83 for 90 uM,
100 uM and 110 uM IPTG, respectively.

To determine s2
l̄

/hl̄i2, we directly measured the variability in GFP production rate in the reconstitution
strain (NDL-423) under saturating concentrations of IPTG. We assume, therefore, that during periods of
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SinI dominance, the reporter is completely derepressed, and is therefore well-modeled by the maximally-
induced promoter. The rates were calculated by measuring the total amount of GFP produced within each
8-minute interframe interval (see SI methods), yielding an estimate of s2

l̄
/hl̄i2 = 0.33.

Plugging into Eq. 57, we arrive at estimates for CVT of 1.13, 0.87 and 0.61 (for 90 uM, 100 uM and 110 uM
IPTG). Thus as pulsing becomes stronger and more frequent, it also becomes more narrowly distributed.

Remarks

We argue that this procedure results in conservative estimates for the degree of timing associated with SinI
dominance for several reasons:

1. Our estimate of the variability in the production rate is extremely conservative (i.e. small). The mea-
sured rate reflects substantially more time-averaging of the production rate than is possible during
the abbreviated periods of SinI dominance. As Eq. 57 is decreasing in s2

l̄
/hl̄i2, the true values of CVT

will be lower than our estimates.

2. We neglect low-copy noise in the production of the immature reporter. This effectively over-attributes
variability in the observed burst size to variability in duration of SinI dominance, as our estimates of
s2

b /hbi2 will be increased by the added noise.

3. We derive our estimate of l(t) fluctuations from a conditioned dataset in which observations derived
from late stages of the cell cycle were discarded. This again leads to an underestimate of the variability
in production rate giving rise to the bursts: these events occur at all cell cycle stages, and therefore
will reflect variation in chromosomal locus copy number and total protein expression capacity of the
cell.

Accordingly, even under assumptions that systematically overestimate the variability in SinI dominance
duration, we find evidence of timing in the vigorous pulsing regimes (100 uM and 110 uM IPTG) consis-
tent with the model-derived prediction that stochastic antagonism can give rise to timed periods of SinI
dominance without the need for feedback.

10 Diffusion Approximations

Because the natural process we study is discrete, and the states with close to zero free molecules of SinI or
SinR are very relevant, we use discrete point processes in the derivations. However, to help orient readers
who are more familiar with diffusion approximations, where the discrete random events are captured by
adding noise terms to otherwise deterministic equations, we here attempt to rephrase some basic results
in that language. For our models, we did not find this approximation helpful to obtain intuitive analytical
results, so this section is only intended to serve a pedagogical role.

10.1 Diffusion model

For the chemical reaction system where SinR (X) and SinI (Y) are produced one by one and lX > lY

X lX�! X + 1 Y
lY�! Y + 1

X X�! X � 1 Y Y�! Y � 1 (58)

(X, Y) cXY��! (X � 1, Y � 1)

we can use e.g. Gillespie’s framework [39] to obtain a corresponding chemical Langevin equation from the
reaction system:

8
><

>:

dX
dt

= lX � X � cXY +
p

lX · x1 �
p

X · x3 �
p

cXY · x5

dY
dt

= lY � Y � cXY +
p

lY · x2 �
p

Y · x4 �
p

cXY · x5

(59)
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where the xi (i = 1, . . . , 5) are temporally uncorrelated, statistically independent Gaussian white noise
terms corresponding to the five reactions in (58). One approach to gain intuition from Eq. (59) is to examine
the properties of the fixed points from the deterministic counterpart dynamics

8
><

>:

dX
dt

= lX � X � cXY

dY
dt

= lY � Y � cXY
(60)

which has a single nonnegative fixed point (X⇤, Y⇤)
8
>>>>>><

>>>>>>:

X⇤ =
lX � lY � 1

c +

r⇣
lX � lY � 1

c

⌘
+ 4lX

c

2

Y⇤ =
lY � lX � 1

c +

r⇣
lY � lX � 1

c

⌘
+ 4lY

c

2

(61)

The eigenvalues of the Jacobian matrix at this fixed point are both negative
⇣
�1,�

p
4clX + (clX � clY � 1)2

⌘
,

hence the fixed point is stable. In the fast complexing region c ! •, (X⇤, Y⇤) ! (lX � lY, 0), the number
of Y will go to zero quickly, and we expect the diffusion approximation to perform poorly since it can go to
negative values, and correction methods that add reflecting boundaries can in turn introduce undesirable
artifacts [40].

10.2 Diffusion approximation for dominance periods of the minority species

Analogously to the results in Section 3 and assuming high rates of complexing reaction, we can consider
the first passage time from b to 0 SinI molecules to understand dominance periods of the minority species:

Y lX+Y���! Y � 1 (62)

This can be approximated by a Langevin equation

dY
dt

= A(Y)�
q

B(Y) · x(t) = �(lX + Y)�
p

lX + Y · x(t) (63)

Using the backward Fokker-Planck equation [28], we know the first passage time hTb!0i starting from b
with an absorbing boundary at 0 and a reflecting boundary at infinity is

hTb!0i = 2
Z b

0

dz
y(z)

Z •

z

y(Y)
B(Y)

dY (64)

where

y(Y) = exp
Z Y

0

2A(z)
B(z)

dz
�
= e�2Y (65)

Therefore, we know

hTb!0i = 2
Z b

0

dz
e�2z

Z •

z

e�2Y

lX + Y
dY

= log
✓

1 +
b

lX

◆
+ e2(lX+b) Ei[2(lX + b)]� e2lX Ei[2lX ] (66)

where Ei[x] =
R •

x e�t/t dt is the exponential integral function, which is is similar to the exact result

⌦
T0

b!0
↵
=

b

Â
Y=1

1
lX + Y

⇡ log
✓

1 +
b

lX

◆
(67)
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Figure 11: Comparison of the results under diffusion approximation with the exact results for fixed burst
size b. Note that the lX = 3.

We can similarly obtain the second order moment of Tb!0 and its variance

Var[Tb!0] = 4
Z b

0

dz
e�2z

Z •

z

e�2Y hTY!0i
lX + Y

dY � hTb!0i2 (68)

However, for the variance this integral seems if anything more difficult to calculate than the sum of the
corresponding exact result

Var[T0
b!0] =

b

Â
Y=1

1
(lX + Y)2 ⇡ 1

lX
� 1

lX + b
(69)
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