Deciphering heterogeneity of Septic Shock Patients using Immune Functional Assays: a

proof of concept study

Chloé Albert Vega^{1,2,*}, Guy Oriol^{1,2}, François Bartolo^{1,3}, Jonathan Lopez⁴, Alexandre Pachot², Thomas Rimmelé^{5,6}, Fabienne Venet^{5,7}, Véronique Leray⁶, Guillaume Monneret^{5,7}, Benjamin Delwarde⁶, Karen Brengel-Pesce^{1,2}, Julien Textoris^{2,5,6}, François Mallet^{1,2,5,#}, Sophie Trouillet-Assant^{1, 8, #}

¹Joint Research Unit Hospices Civils de Lyon-bioMérieux, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Pierre-Bénite, 69495 Lyon, France.

²Open Innovation and Partnerships Department, bioMérieux S.A., France.

³Soladis, Lyon, France

⁴Hospices Civils de Lyon - Plateforme de Recherche de Transfert en Oncologie, Centre Hospitalier Lyon Sud, Pierre-Bénite, 69495 Lyon, France.

⁵EA 7426 Pathophysiology of Injury-Induced Immunosuppression, PI3, Claude Bernard Lyon 1 University-bioMérieux-Hospices Civils de Lyon, Hôpital Edouard Herriot, 69437 Lyon, France.

⁶Hospices Civils de Lyon, Hôpital Edouard Herriot, Anesthesia and Critical Care Medicine Department, 69437 Lyon, France.

⁷Hospices Civils de Lyon, Hôpital Edouard Herriot, Immunology Laboratory, 69437 Lyon, France.

⁸Virpath - Université Lyon, CIRI, INSERM U1111, CNRS 5308, ENS, UCBL, Faculté de Médecine Lyon Est, 7 rue Guillaume Paradin, 69372 LYON cedex 08, France.

[#]Equally contributed to this work

*Corresponding author

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY FIGURES

Figure S1. Comparison of response to stimulation between independent studies.

Responses to (A) LPS and (B) SEB stimulations post-24 hours was evaluated in 10 healthy volunteers representing the control population of the present study referred to as the Lyon study, and in 25 healthy volunteers from the *Milieu Intérieur* study (Urrutia et al. 2016). Comparison of the response to each stimulation between both cohorts was performed on medians of gene expression ratios (stimulation condition / NUL condition) from the 44-gene signature representative of a healthy immunity (Urrutia et al. 2016). Gene expression was quantified using Nanostring nCounter technology and normalised by nSolver software using four housekeeping genes (HPRT1, POLR2A, RPL19 and TBP). The *Milieu Intérieur* data was obtained from Gene Expression Omnibus (GEO) DataSets (GSE85176). A Spearman's correlation coefficient was calculated for each condition and indicated on each graphical representation. LPS: lipopolysaccharide, SEB: staphylococcal enterotoxin B.

Figure S2. TNF α secreted protein and gene expression between healthy volunteers (HV) and septic shock patients. TNF α response measured in (A) protein secretion and (B) gene expression to LPS stimulation in 10 HV (blue) and 30 septic shock patients (orange). (C) Spearman's correlation coefficient between protein and gene expression for TNF α . ***p<0.001. LPS: lipopolysaccharide.

Figure S3. TNF*a* protein secretion post-LPS stimulation and mHLA-DR distribution in clusters identified upon SEB stimulation (through gene expression) in the discovery cohort. At day 3-4 after septic shock onset, (A) TNF*a* protein secretion was measured *ex vivo* 24 hours post-LPS stimulation in HV (circles) and septic shock patients (squares) and (B) mHLA-DR was measured with flow cytometry only in septic shock patients (squares). Mortality is depicted in red and HAI in orange. Clusters post-SEB stimulation were obtained using PAM method with correlation distance. **p<0.001; ***p<0.0001. SEB: staphylococcal enterotoxin B, LPS: lipopolysaccharide, mHLA-DR: monocyte human leukocyte antigen DR, HV: healthy volunteers and HAI: hospital-acquired infection.

Figure S4. TNF α protein secretion post-LPS stimulation and mHLA-DR distribution in clusters identified upon SEB stimulation (through gene expression) in the validation cohort. At day 3-4 after admission to the study, (A) TNF α protein secretion was measured *ex vivo* 24 hours post-LPS stimulation and (B) mHLA-DR was measured with flow cytometry in HV (circles) and septic patients (squares). Mortality is depicted in red and HAI in orange. Cluster post-SEB stimulation was obtained using PAM method with correlation distance. **p<0.001; ***p<0.0001. SEB: staphylococcal enterotoxin B, LPS: lipopolysaccharide, mHLA-DR: monocyte human leukocyte antigen DR, HV: healthy volunteers, SP: septic patients and HAI: hospital-acquired infection.

SUPPLEMENTARY METHODS

Experimental pipeline

The pipeline to complete the analysis from blood collection to clustering required 60 hours. In details, 24 hours of blood stimulation, 6 hours for RNA preparation and 27 hours for RNA detection using NanoString protocol and 3 hours of analysis and clustering.

Biological measurements

Molecular detection

For TruCulture cell pellet handling and RNA processing and detection, the protocol was carried out according to the study by Urrutia et al. Cell pellets from TruCulture stimulations kept in TRI Reagent LS (Sigma-Aldrich) were thawed under agitation. Before processing, thawed samples were centrifuged (3.000 g for 5 minutes at 4°C) to pellet cellular debris generated during the Trizol lysis. For extraction, a modified protocol of the NucleoSpin 96 RNA tissue kit (Macherey-Nagel Gmbh&Co. KG, Düren, Germany) was followed using a vacuum system. Briefly, 600 µL of clarified Trizol lysate was transferred to a tube preloaded with 900 µL 100% ethanol. The binding mixture was transferred to a silica column, then washed with buffers MW1 and MW2, and RNA was eluted using 30 µL RNase-free water. NanoString technology was used for mRNA detection of an 86-gene panel (Supplementary Table 1), a hybridisation-based multiplex assay characterised by its amplification-free step; 300 ng of RNA were hybridised to the probes at 67°C for 18 hours using a thermocycler (Biometra, Tprofesssional TRIO, Analytik Jena AG, Jena, Germany). After removal of excessive probes, samples were loaded into the nCounter Prep Station (NanoString Technologies, Seattle, WA, USA) for purification and immobilisation onto the internal surface of a sample cartridge for 2-3 hours. The sample cartridge was then transferred and imaged on the nCounter Digital Analyzer (NanoString Technologies) where colour codes were counted and tabulated for the 86 genes.

Gene expression analysis

Generation of normalised data

Each sample was analysed in a separate multiplexed reaction each including 8 negative probes and 6 serial concentrations of positive control probes. Negative control analysis was performed to determine the background for each sample. Data was imported into nSolver analysis software (version 4.0, NanoString technologies) for quality checking and normalisation of the data. A first step of normalisation using the internal positive controls allowed correction of a potential source of variation associated with the technical platform. To do so, we calculated for all the samples the background level as the median +3 SD across the six negative probe counts. Every sample under the background level was fixed to this value. Next, we calculated for each sample the geometric mean of the positive probe counts. A scaling factor for a sample was a ratio of the geometric mean of the sample and the average across all geometric means. For each sample, we divided all gene counts by the corresponding scaling factor. To normalise for differences in RNA input we used the same method as in the positive control normalisation, except that geometric means were calculated over three housekeeping genes (HPRT1 (NM 000194.1), DECR1 (NM 001359.1), and TBP (NM 001172085.1)). These genes were selected using NormFinder method, an established approach for identification of stable housekeeping genes within and between groups, from the 6 candidate genes included in the custom panel. Results are expressed as fold change inductions.

Cluster building

Data were log10-transformed, centred and scaled. Two distances matrix and a correlation matrix were built on the data and 10 clustering methods were launched ("hierarchical", "k-means", "diana", "fanny", "som", "model", "sota", "pam", "clara", and "agnes"). For each method, k=3 to k=18 clusters were tested. The best clusters methods were selected using 7

indexes combining internal (connectivity, silhouette width, and Dunn index) and stability measures (the average proportion of non-overlap (APN), the average distance (AD), the average distance between means (ADM), and the figure of merit (FOM)). The most stable method for LPS was the hierarchical method using manhattan distances and single-linkage clustering (score index=17), however this method for SEB response had a score index of 541, so the most stable method for SEB was found to be the PAM method using correlation and average distance (score index=31).

SUPPLEMENTARY TABLES

Supplementary Table S1. Presence and nature of patients' comorbidities in the discovery cohort.

Sample	Comorbidities	Cerebro- vascular damage	Pulmonary chronic	Heart failure	Myocardial infarction	Ulcer	Diabetes	Renal damage	Solid tumours malignancy
D1	1	0	1	0	0	1	1	0	0
D2	1	0	0	1	0	0	0	1	0
D3	1	0	0	0	0	0	0	2	0
D4	1	0	0	0	0	1	0	0	0
D5	1	1	0	1	0	0	0	3	0
D6	0	0	0	0	0	0	0	0	0
D8	0	0	0	0	0	0	0	0	0
D9	1	0	0	1	1	0	1	3	0
D10	1	1	0	0	0	0	0	0	1
D11	1	0	0	0	0	0	1	0	0
D12	1	1	0	0	0	0	0	0	1
D13	1	0	1	0	0	0	0	0	1
D14	1	0	0	0	0	1	0	0	2
D25	1	1	0	1	1	0	2	1	1
D26	0	0	0	0	0	0	0	0	0
D27	1	0	0	0	0	0	0	0	1
D28	1	0	1	0	1	0	1	0	1
D29	1	0	1	0	0	0	0	0	0
D30	1	0	1	0	0	0	0	0	0
D31	0	0	0	0	0	0	0	0	0
D32	1	0	0	0	0	0	0	1	0
D33	1	0	0	0	1	0	0	0	1
D34	1	0	0	0	0	0	1	0	0
D35	1	0	0	0	0	0	1	1	2
D36	0	0	0	0	0	0	0	0	0
D37	0	0	0	0	0	0	0	0	0
D38	0	0	0	0	0	0	0	0	0
D39	0	0	0	0	0	0	0	0	0
D40	0	0	0	0	0	0	0	0	0
D41	0	0	0	0	0	0	0	0	0

Supplementary Table S2. Infection number, type, and germ responsible for sepsis in the

discovery cohort.

Sample	Infection number	Туре	Germ		
D1	1	Gram-negative	<i>Escherichia</i> coli		
D2	1	Gram-negative	Escherichia coli		
D3	2	Gram-positive	Enterococcus faecium and Streptococcus spp		
D4	NA		Non-documented infection		
D5	1	Gram-negative	Proteus mirabilis		
D6	2	Gram-negative and Gram- positive	Ungroupable Streptococcus and Klebsiella pneumoniae		
D8	NA		Non-documented infection		
D9	NA		Non-documented infection		
D10	1	Gram-positive	Enterococcus faecium		
D11	NA		Non-documented infection		
D12	2	Gram-negative and Gram- positive	Escherichia coli and Enterococcus spp		
D13	NA	Non-documented infection			
D14	2	Gram-positive and fungal Enterococcus faecium and Candida tropi			
D25	NA	Non-documented infection			
D26	1	Gram-positive Streptococcus pyogenes (A)			
D27	NA	Non-documented infection			
D28	1	Gram-negative	Enterobacter cloacae		
D29	2	Gram-positive	Lactobacillus spp and Enterococcus faecalis		
D30	1	Virus	Influenza		
D31	2	Gram-positive and fungal	Staphylococcus epidermidis and Candida albicans		
D32	2	Gram-negative and Gram- positive	Klebsiella oxytoxa and Enterococcus faecalis		
D33	1	Gram-negative	Escherichia coli		
D34	1	Gram-negative	Escherichia coli		
D35	2	Gram-negative and Gram- positive	Escherichia coli and Enterococcus spp		
D36	NA		Non-documented infection		
D37	2	Gram-positive	Enterococcus faecalis and Enterococcus spp		
D38	1	Gram-negative	Escherichia coli		
D39	NA		Non-documented infection		
D40	NA		Non-documented infection		
D41	2	Gram-positive	Ungroupable (viridans) Streptococcus		

Supplementary Table S3. Weight of genes driving the total variance in first (PC1) and

second (PC2) component for LPS stimulation in both populations. Ordered from the

LPS stimulation PC1 weight LPS stimulation PC2 weight 0.3081 SLAMF7 -0.1554 CD74 NFKBIA -0.1551 HLA-DPA1 0.3030 NFKB1 -0.1505 HLA-DRA 0.2859 IDO1 HLA-DMB -0.1501 0.2740 IFIH1 -0.1496 HLA-DPB1 0.2623 NFKB2 -0.1495 BST2 0.1889 NFKBIZ -0.1494 IL18 0.1741 OAS1 -0.1470 ZBP1 0.1714 RPLP0 121601901-HERV0116 -0.1467 0.1639 RELB -0.1460 RARRES3 0.1563 CXCL2 -0.1455 TBX21 0.1507 IFI44L -0.1455 STAT2 0.1432 SOCS3 -0.1451 IRF3 0.1328 IL1A ARL14EP -0.1431 0.1313 IRF7 IL6 -0.1305 -0.1424 CXCL10/IP10 -0.1422 OAS2 0.1292 SRC -0.1415 RPL19 0.1290 ADGRE3 0.1413 IFI35 0.1283 TNFA MX1 0.1252 -0.1411 IFI35 -0.1400 ZAP70 0.1240 -0.1395 DYRK2 CDKN1A 0.1236 CCL4 -0.1387 IL18R1 -0.1213 IRAK2 -0.1384 MDC1 0.1191 TNFSF10 TNFSF13B -0.1378 0.1186 IFNG -0.1369 IL1B -0.1099 STAT2 -0.1351 PTGS2 -0.1068 DDX58/RIG1 -0.1347 TNFSF10 0.1053 IL1B -0.1337 OAS1 0.1050 HAVCR2/TIM3 -0.1325 S100A9 -0.1038 SOCS1 -0.1319 -0.1020 IL1R2 CCL8 -0.1317 DDX58/RIG1 0.0930 -0.0909 CD83 -0.1317 IL10 CCR1 -0.1316 JAK2 0.0860 TNFSF13B -0.1308 CD3D 0.0858 OAS2 -0.1296 CCL20 -0.0849 -0.0812 PTGS2 -0.1254 IL1A CD44 -0.1194 121601901-HERV0116 0.0782 C3 -0.1193 MERTK 0.0780 RPL19 0.1171 IFIH1 0.0747 CXCL9 -0.1170 SOCS3 -0.0717

highest to the lowest in absolute value.

IL6	-0.1162	IRF7	0.0707
IFI27	-0.1125	CLEC7A/DECTIN1	0.0695
BST2	-0.1121	CDKN1A	-0.0669
JAK2	-0.1094	NFKBIZ	-0.0657
IL10	-0.1081	EIF2AK4	0.0634
CCL2	-0.1078	IFI44L	0.0622
CX3CR1	0.1054	PTX3	-0.0558
MX1	-0.1052	TDRD9	-0.0534
TNFAIP3	-0.1046	IDO1	-0.0520
CCL20	-0.1040	TNFAIP3	-0.0518
EIF2AK4	0.0920	HAVCR2/TIM3	0.0514
IFITM1	-0.0918	CXCL9	0.0502
CLEC7A/DECTIN1	0.0867	NFKBIA	-0.0490
ZBP1	-0.0850	CXCL2	-0.0462
RPLP0	0.0840	CCL8	0.0427
HLA-DPB1	0.0775	CD209/DC-SIGN	0.0425
DYRK2	0.0770	TGFB1	0.0406
LILRB1	-0.0753	IL7R	0.0397
RARRES3	-0.0707	C3	0.0388
TBX21	0.0689	LILRB1	0.0387
POLR2A	-0.0674	NFKB2	-0.0384
PTX3	-0.0660	NFKB1	-0.0382
POU2F2	-0.0643	ADGRE3	0.0355
ARL14EP	0.0630	POLR2A	-0.0344
IL7R	0.0614	ZBTB16	0.0339
IL18	-0.0605	CD44	-0.0334
CD3D	0.0521	CXCL10/IP10	0.0326
S100A9	-0.0469	POU2F2	0.0310
TMEM173/STING	-0.0452	CCL2	0.0307
IL18R1	0.0430	SOCS1	0.0229
HLA-DRA	-0.0420	CX3CR1	0.0225
HLA-DMB	0.0412	IFNG	0.0220
ZAP70	0.0384	RELB	-0.0210
TGFB1	-0.0382	IRAK2	-0.0185
TDRD9	0.0328	TMEM173/STING	-0.0156
IRF3	0.0317	SLAMF7	-0.0151
MDC1	0.0301	IFI27	0.0150
HLA-DPA1	0.0300	CCR1	0.0121
IL1R2	0.0226	IFITM1	-0.0118
CCNB1IP1	0.0200	FAM89A	-0.0091
ZBTB16	0.0143	TNFA	0.0080
IL2	0.0096	IL2	0.0039
MERTK	-0.0089	CCNB1IP1	-0.0036
FAM89A	-0.0071	CCL4	-0.0032
CD209/DC-SIGN	-0.0035	CD83	-0.0013
CD74	-0.0023	SRC	0.0002

Supplementary Table S4. Weight of genes driving the total variance in first (PC1) and second (PC2) component for SEB stimulation in both populations. Ordered from the highest

to the lowest in absolute value	e.
---------------------------------	----

SEB stimulation_PC1	weight	SEB stimulation_PC2	weight
RARRES3	-0.1761	121601901-HERV0116	0.2284
IL1A	0.1721	SLAMF7	0.2111
CXCL2	0.1675	CCL4	0.2038
STAT2	-0.1658	C3	0.1919
IFNG	0.1633	CXCL10/IP10	0.1880
PTGS2	0.1616	IFIH1	0.1831
CCL20	0.1576	IDO1	0.1793
NFKB1	0.1572	CXCL9	0.1783
ZBP1	-0.1552	IFI44L	0.1778
NFKBIA	0.1535	TNFAIP3	0.1770
HLA-DMB	-0.1522	CD44	0.1735
CD209/DC-SIGN	0.1507	POU2F2	0.1683
IL1B	0.1498	OAS2	0.1658
NFKB2	0.1485	IRAK2	0.1607
NFKBIZ	0.1478	CD74	0.1591
BST2	-0.1477	HLA-DRA	0.1538
TNFSF10	-0.1466	ADGRE3	-0.1522
DDX58/RIG1	-0.1463	OAS1	0.1480
CX3CR1	-0.1458	TNFA	0.1440
HLA-DPB1	-0.1434	SRC	0.1431
CDKN1A	0.1426	HLA-DPA1	0.1429
IL6	0.1423	TNFSF13B	0.1336
IFI35	-0.1403	SOCS1	0.1317
CD83	0.1394	IFI35	0.1304
HAVCR2/TIM3	0.1356	MX1	0.1288
HLA-DPA1	-0.1313	HLA-DPB1	0.1202
TNFA	0.1312	CD83	0.1198
HLA-DRA	-0.1312	TMEM173/STING	0.1188
IL2	0.1302	HLA-DMB	0.1171
IRAK2	0.1294	MDC1	0.1148
RELB	0.1283	CDKN1A	0.1086
CD74	-0.1263	FAM89A	0.1002
IL10	0.1259	NFKB1	0.0965
CCL2	0.1258	NFKBIA	0.0964
SOCS3	0.1228	CCR1	0.0955
OAS2	-0.1216	NFKB2	0.0950
MX1	-0.1161	TBX21	0.0948
TNFSF13B	-0.1127	IL1B	0.0947
IFITM1	-0.1120	CCL8	0.0944
IL1R2	0.1073	BST2	0.0906

DYRK2	-0.1049	IL2	0.0852
RPL19	-0.1011	DYRK2	-0.0834
IL7R	-0.0977	CLEC7A/DECTIN1	-0.0763
CCL8	0.0973	S100A9	-0.0758
TDRD9	0.0966	DDX58/RIG1	0.0754
ARL14EP	-0.0954	MERTK	-0.0730
SRC	0.0944	IL1A	0.0729
MERTK	0.0902	IL7R	-0.0721
CD44	0.0891	ZBTB16	-0.0710
IFIH1	-0.0855	IL10	-0.0694
TMEM173/STING	0.0847	ZBP1	0.0674
CCNB1IP1	-0.0842	RARRES3	0.0663
OAS1	-0.0828	NFKBIZ	0.0663
PTX3	0.0822	PTX3	-0.0658
CLEC7A/DECTIN1	-0.0775	RELB	0.0643
IRF3	-0.0760	IRF3	-0.0620
CCL4	0.0749	ARL14EP	0.0617
EIF2AK4	-0.0740	LILRB1	0.0609
POU2F2	0.0737	IL18R1	-0.0604
LILRB1	0.0719	JAK2	-0.0597
POLR2A	0.0665	CCL20	0.0579
ZBTB16	0.0602	TDRD9	-0.0536
ZAP70	-0.0601	IRF7	0.0490
IDO1	-0.0568	POLR2A	-0.0470
CXCL9	0.0560	IFITM1	0.0463
RPLP0	0.0514	IFNG	0.0461
CD3D	-0.0485	CCL2	0.0427
IL18R1	0.0460	SOCS3	0.0424
IFI44L	-0.0430	HAVCR2/TIM3	-0.0405
TBX21	-0.0422	CD3D	0.0400
C3	0.0361	CX3CR1	0.0385
IRF7	-0.0338	TGFB1	0.0379
JAK2	-0.0296	IFI27	0.0353
TGFB1	0.0285	ZAP70	0.0351
SLAMF7	0.0270	STAT2	0.0323
CCR1	0.0247	IL1R2	-0.0321
FAM89A	-0.0202	CD209/DC-SIGN	0.0319
ADGRE3	0.0177	EIF2AK4	0.0214
IFI27	0.0096	IL6	-0.0154
TNFAIP3	0.0083	RPL19	-0.0153
121601901-HERV0116	-0.0077	CXCL2	0.0146
IL18	-0.0056	CCNB1IP1	0.0120
CXCL10/IP10	-0.0047	TNFSF10	-0.0076
MDC1	0.0043	PTGS2	-0.0072
SOCS1	-0.0036	RPLP0	-0.0068
S100A9	0.0010	IL18	0.0019

Supplementary Table S5. Individual composition of the clusters obtained after LPS and

CLUSTERS	S 1	S2	\$3
L1	D15; D16; D17; D18; D19; D20; D21; D22; D23; D24		
L2	D4; D9; D10; D13	D1; D11; D14; D26; D29; D31; D32; D37; D38 ;D40; D41	D2; D3; D6; D12; D25; D27; D28; D30; D33; D34; D35; D39
L3	D5; D8		

Individual composition (donors) of the clusters obtained with LPS stimulation (on rows) and with SEB stimulation (on columns) and correspondence between both stimulations.

HV are depicted in blue, septic shock patients in black, non-survivors in red, and HAI in orange. D7 was excluded from the analysis as it did not pass quality control and there was not enough blood volume to stimulate D36 with SEB. D: Donor

	Discovery cohort (n=40)	Validation cohort (n=40)	P-value
HEALTHY DONORS			
Admission data			
Sex, male, n (%)	5 (50)	5 (50)	1
median age, years [IQR]	54 [51.5-56.5]	73 [72-73.75]	<0.001
Immunology			
median mHLA-DR, Ab/C [IQR]	NA	28344 [21238-31404]	NA
median TNFα secretion post-LPS stimulation, pg/mL [IQR]	5214 [4203-5709]	4144 [3622-4956]	0.464
SEPTIC PATIENTS		<u> </u>	
Admission data			
Sex, male, n (%)	21 (70)	21 (70)	1
median age, years [IQR]	66 [59-73]	66 [60-79]	0.487
median BMI, kg/m2 [IQR]	27 [21-34]	25 [22-28]	0.290
median SAPS II [IQR]	59 [47.5-76.5]	47 [39-56]	0.002
median SOFA score (day 1) [IQR]	8 [7-10]	9 [7-10]	0.693
Mechanical ventilation, n (%)	22 (73)	20 (67)	0.778
median plasma Lactate level, mM [IQR]	3.2 [2.6-5.2]	2.2 [1.7-2.6]	<0.001
Shock, n(%)	30 (100)	20 (67)	0.001
median CCI [IQR]	1.5 [0.1-3.3]	2 [0.8-4]	0.688
Comorbidities ^a , n (%)			0.778
0	10 (33.3)	8 (26.7)	
≥1	20 (66.7)	22 (73.3)	
Primary site of infection, n (%)			0.058
Abdominal	9 (30)	12 (40)	
UTI	6 (20)	2 (6.7)	
SST	4 (13)	2 (6.7)	
Pulmonary	2(6.7)	10 (33.3)	
Others	9 (30)	4 (12.5)	
Type of primary infection, n (%)	· •		0.068
Community acquired	13 (43)	21 (70)	
Hospital acquired	17 (57)	9 (30)	
Documentation of infection, n (%)			<0.001

Supplementary Table S6. Clinical and immunological data for healthy donors and sepsis patients in the discovery and validation cohorts.

Gram-negative	7 (23 3)	5 (16 7)	
Gram-nositive	6 (20)	10(333)	
Vinic	1(22)	10 (55.5)	
	1 (3.3)	0	
Fungal	0	4 (13.3)	
Co-infection	6 (20)	5 (16.7)	
Non-documented infection	10 (33.3)	6 (20)	
Hydrocortisone, n (%)	10 (33)	7 (23.3)	0.566
Day 3-4 data			
Immunology			
median mHLA-DR, Ab/C [IQR]	7348 [3838-10103]	4693 [3217-8363]	0.187
median TNFα secretion post-LPS stimulation, pg/mL [IQR]	701 [320-1260]	1214 [709-1911]	0.021
Outcomes			
Vasopressor requirement, n(%)	30 (100)	28 (93)	0.491
median vasopressor duration, days [IQR]	3.5 [2-6.8]	1.9 [1-3.3]	0.001
Hemofiltration, n (%)	10 (33)	7 (23)	0.566
Hospital-acquired infection, n (%)	1 (3.3)	8 (26.7)	0.025
median ICU length of stay, days [IQR]	8 [4.2-12]	8 [6-13]	0.378
missing data	0	1	
median hospital length of stay, days [IQR]	56 [20-78]	28 [13-48]	0.025
missing data	0	3	
Mortality D28, n (%)	4 (13.3)	3 (10)	1

For numerical variables, t-test (parametric) or Wilcoxon (non-parametric) was used and for categorical variables, Chi-squared test was used.

SAPS II was calculated after admission and SOFA score was measured after 24 h of ICU stay.

BMI: body mass index

SAPS II: simplified acute physiology score

SOFA: sequential organ failure assessment

CCI: Charlson comorbidity index

UTI: urinary tract infection

SST: skin and soft tissue

HLA-DR: human leukocyte antigen DR

TNFα: tumour necrosis factor alpha

LPS: lipopolysaccharide

ICU: intensive care unit

^a: Presence of comorbidities was affirmative when at least one of the following comorbidity was present in the patient: chronic pulmonary disease, heart failure, myocardial infarction, ulcer, diabetes, renal failure, or malign solid tumour.

Sample	Comorbidities	Cerebro- vascular damage	Pulmonary chronic	Heart failure	Myocardial infarction	Ulcer	Diabetes	Renal damage	Solid tumour malignancy
R3/4	2	0	0	1	0	1	0	0	0
R5/6	1	0	1	0	0	0	0	0	0
R7/8	1	0	0	0	0	1	0	0	0
R9/10	0	0	0	0	0	0	0	0	0
R11/12	3	1	0	1	0	0	0	1	0
R13/14	3	0	0	0	1	0	1	1	0
R15/16	3	0	1	0	0	0	1	1	0
R17/18	2	0	0	1	0	0	0	1	0
R19/20	2	0	0	0	0	0	1	1	0
R21/22	2	0	0	0	1	0	0	0	1
R23/24	0	0	0	0	0	0	0	0	0
R25/26	1	0	0	0	0	0	0	0	1
R27/28	2	0	0	1	1	0	0	0	0
R29/30	2	0	0	0	1	1	0	0	0
R31/32	1	0	0	0	0	0	1	0	0
R33/34	0	0	0	0	0	0	0	0	0
R35/36	5	0	1	1	0	1	1	1	0
R37/38	3	1	0	0	1	0	1	0	0
R39/40	0	0	0	0	0	0	0	0	0
R41/42	0	0	0	0	0	0	0	0	0
R43/44	1	0	0	0	0	0	0	0	1
R45/46	0	0	0	0	0	0	0	0	0
R47/48	3	1	0	1	0	0	0	1	0
R49/50	0	0	0	0	0	0	0	0	0
R51/52	2	0	0	0	0	0	1	1	0
R57/58	0	0	0	0	0	0	0	0	0
R59/60	2	0	0	0	0	0	0	1	1
R61/62	1	0	1	0	0	0	0	0	0
R63/64	1	0	1	0	0	0	0	0	0
R85/86	1	0	1	0	0	0	0	0	0

Supplementary Table S7. Presence and nature of patients' comorbidities in the validation cohort

Supplementary Table S8. Infection number, type, and germs responsible for sepsis in

the validation cohort

Sample	Infection number	Type Germ			
R3/4	2	Fungal	Candida krusei and Candida tropicalis		
R5/6	1	Fungal	Aspergillus fumigatus		
R7/8	3	Gram-negative and fungal	Enterobacter cloacae, Escherichia coli and Candida albicans		
R9/10	2	Gram-positive and other bacteria	Streptococcus spp and Actinomyces spp		
R11/12	2	Gram-negative	Providencia and Escherichia coli		
R13/14	1	Gram-positive	Staphylococcus aureus		
R15/16	1	Gram-positive	Staphylococcus aureus		
R17/18	1	Gram-negative	Klebsiella oxytoxa		
R19/20	NA		Non-documented infection		
R21/22	0		Non-documented infection		
R23/24	1	Gram-negative	Klebsiella pneumoniae		
R25/26	1	Gram-negative	Escherichia coli		
R27/28	NA	Non-documented infection			
R29/30	2	Fungal	Candida albicans and Candida glabrata		
R31/32	0	Non-documented infection			
R33/34	2	Gram-positive	Streptococcus pyogenes (A) and Staphylococcus aureus		
R35/36	1	Gram-positive	Coagulase-negative Staphylococcus spp		
R37/38	3	Gram-negative and Gram- positive	Escherichia coli, Klebsiella pneumoniae and Coagulase-negative Staphylococcus spp		
R39/40	1	Gram-positive	Gram-positive Bacilli		
R41/42	2	Gram-positive and fungal	Candida albicans and Streptococcus spp		
R43/44	1	Gram-negative	Klebsiella pneumoniae		
R45/46	1	Fungal	Candida albicans		
R47/48	NA		Non-documented infection		
R49/50	1	Gram-positive	Streptococcus pneumoniae		
R51/52	1	Gram-positive	Enterococcus faecalis		
R57/58	1	Gram-positive	Staphylococcus aureus		
R59/60	0		Non-documented infection		
R61/62	2	Gram-positive	Streptococcus spp and Staphylococcus epidermidis		
R63/64	1	Gram-positive	Staphylococcus aureus		
R85/86	2	Gram-negative and Gram- positive	Streptococcus pneumoniae and Moraxella spp		

Supplementary Table S9. Individual composition of the clusters obtained after SEB stimulation in the validation cohort.

Cluster SV1 (n=11)	Cluster SV2 (n=14)	Cluster SV3 (n=17)
R36; R65; R67; R69; R71; R73; R75; R77; R79; R81; R83	R4 ; R14; R18 ; R24; R28 ; R40; R42; R44; R48; R50; R52; R58; R62 ; R64	R6; R8; R10; R12; R16; R20; R22; R26; R30; R32; R34; R38; R46; R60; R86

HV are depicted in blue, septic patients in black, non-survivors in red, and HAI in orange. R: Donor

	0	
Target genes	Accession number	References
ADGRE3	NM_032571.2	Davenport et al. Lancet Respir Med. 2016
ARL14EP	NM_152316.1	Davenport et al. Lancet Respir Med. 2016
BST2	NM_004335.2	Urrutia et al. Cell Rep. 2016
C3	NM_000064.2	Urrutia et al. Cell Rep. 2016
CCL2	NM_002982.3	Urrutia et al. Cell Rep. 2016
CCL20	NM_004591.1	Urrutia et al. Cell Rep. 2016
CCL4	NM_002984.2	Urrutia et al. Cell Rep. 2016
CCL8	NM_005623.2	Urrutia et al. Cell Rep. 2016
CCNB1IP1	NM_182849.2	Davenport et al. Lancet Respir Med. 2016
CCR1	NM_001295.2	Urrutia et al. Cell Rep. 2016
CD209/DC-SIGN	NM_021155.2	Pilling et al. BMC Immunol. 2017
CD3D	NM_000732.4	Tawfik et al. bioRxiv 2019
CD44	NM_001001392.1	Urrutia et al. Cell Rep. 2016
CD74	NM_001025159.1	Cazalis et al. Crit Care. 2013
CD83	NM_004233.3	Urrutia et al. Cell Rep. 2016
CDKN1A	NM_000389.2	Urrutia et al. Cell Rep. 2016
CLEC7A/DECTIN1	NM_197954.2	Mommert et al. BMC Genomics. 2018
CX3CR1	NM_001337.3	Friggeri et al. Crit Care. 2016
CXCL10/IP10	NM_001565.1	Urrutia et al. Cell Rep. 2016
CXCL2/MIP2A	NM_002089.3	Urrutia et al. Cell Rep. 2016
CXCL9	NM_002416.1	Urrutia et al. Cell Rep. 2016
DECR1	NM_001359.1	Housekeeping gene
DDX58/RIG1	NM_014314.3	This study
DYRK2	NM_003583.3	Davenport et al. Lancet Respir Med. 2016
EIF2AK4	NM_001013703.2	Mommert et al. BMC Genomics. 2018
FAM89A	NM_198552.2	Herberg et al. JAMA. 2016
HAVCR2/TIM3	NM_032782.3	Gossez et al. Sci Rep. 2018
HLA-DMB	NM_002118.3	Urrutia et al. Cell Rep. 2016
HLA-DPA1	NM_033554.2	Urrutia et al. Cell Rep. 2016
HLA-DPB1	NM_002121.4	Urrutia et al. Cell Rep. 2016
HLA-DRA	NM_019111.3	Urrutia et al. Cell Rep. 2016
HPRT1	NM_000194.1	Housekeeping gene
IDO1	NM_002164.3	Urrutia et al. Cell Rep. 2016
IFI27	NM_005532.3	This study
IFI35	NM_005533.3	Urrutia et al. Cell Rep. 2016
IFI44L	NM_006820.2	Herberg et al. JAMA. 2016
IFIH1	NM_022168.2	Urrutia et al. Cell Rep. 2016
IFITM1	NM_003641.3	Urrutia et al. Cell Rep. 2016
IFNG	NM_000619.2	Mommert et al. BMC Genomics. 2018
IL10	NM_000572.2	Tawfik et al. bioRxiv 2019
IL18	NM_001562.2	Tawfik et al. bioRxiv 2019

Supplementary Table S10. NanoString target genes and accession numbers

IL18R1	NM_003855.2	Mommert et al. Crit Care. 2020
IL1A	NM_000575.3	Urrutia et al. Cell Rep. 2016
IL1B	NM_000576.2	Urrutia et al. Cell Rep. 2016
IL1R2	NM_004633.3	Mommert et al. Crit Care. 2020
IL2	NM_000586.2	This study
IL6	NM_000600.1	Urrutia et al. Cell Rep. 2016
IL7R	NM_002185.2	Mouillaux et al. Crit Care. 2019
IRAK2	NM_001570.3	Urrutia et al. Cell Rep. 2016
IRF3	NM_001571.5	This study
IRF7	NM_001572.3	Urrutia et al. Cell Rep. 2016
JAK2	NM_004972.2	Urrutia et al. Cell Rep. 2016
LILRB1	NM_001081637.1	Urrutia et al. Cell Rep. 2016
MDC1	NM_014641.2	Davenport et al. Lancet Respir Med. 2016
MERTK	NM_006343.2	Mommert et al. BMC Genomics. 2018
MX1	NM_002462.2	Urrutia et al. Cell Rep. 2016
NFKB1	NM_003998.2	Urrutia et al. Cell Rep. 2016
NFKB2	NM_002502.2	Urrutia et al. Cell Rep. 2016
NFKBIA	NM_020529.1	Urrutia et al. Cell Rep. 2016
NFKBIZ	NM_001005474.1	Urrutia et al. Cell Rep. 2016
OAS1	NM_001032409.1	Mommert et al. BMC Genomics. 2018
OAS2	NM_016817.2	Mommert et al. BMC Genomics. 2018
POLR2A	NM_000937.2	Housekeeping gene
POU2F2	NM_002698.2	Urrutia et al. Cell Rep. 2016
PTGS2	NM_000963.1	Mommert et al. BMC Genomics. 2018
PTX3	NM_002852.3	Albert Vega et al. Front Immunol. 2018
RARRES3	NM_004585.3	Urrutia et al. Cell Rep. 2016
RELB	NM_006509.2	Urrutia et al. Cell Rep. 2016
RPL19	NM_000981.3	Housekeeping gene
RPLP0	NM_001002.3	Housekeeping gene
S100A9	NM_002965.2	Tawfik et al. bioRxiv 2019
SLAMF7	NM_021181.3	Urrutia et al. Cell Rep. 2016
SOCS1	NM_003745.1	Urrutia et al. Cell Rep. 2016
SOCS3	NM_003955.3	Urrutia et al. Cell Rep. 2016
SRC	NM_005417.3	Urrutia et al. Cell Rep. 2016
STAT2	NM_005419.2	Urrutia et al. Cell Rep. 2016
TBX21	NM_013351.1	This study
TBP	NM_001172085.1	Housekeeping gene
TDRD9	NM_153046.2	Davenport et al. Lancet Respir Med. 2016
TGFB1	NM_000660.3	Tawfik et al. bioRxiv 2019
TMEM173/STING	NM_198282.1	This study
TNFA	NM_000594.2	Tawfik et al. bioRxiv 2019
TNFAIP3	NM 006290.2	Urrutia et al. Cell Rep. 2016

TNFSF10	NM_003810.2	Urrutia et al. Cell Rep. 2016
TNFSF13B	NM_006573.4	Urrutia et al. Cell Rep. 2016
ZAP70	NM_001079.3	Davenport et al. Lancet Respir Med. 2016
ZBP1	NM_001160419.2	Davenport et al. Lancet Respir Med. 2016
ZBTB16	NM_006006.4	Godini et al. PLoS One. 2018
121601901-HERV0116	chr12:112972627-112975754	Mommert et al. BMC Genomics. 2018